Nuclear translocation of green fluorescent protein-nuclear factor kappaB with a distinct lag time in living cells. (1/199)

A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the human nuclear factor kappaB (NF-kappaB) p50 and p105 (p50/IkappaB gamma), a precursor protein of NF-kappaB p50. GFP-p50 and GFP-p105 were expressed in monkey COS-7 cells and human HeLa cells. Translocation of these chimeric proteins was observed by confocal laser scanning microscopy. GFP-p50 (without IkappaB gamma) in the transfected cells resided in the nucleus. On the other hand, GFP-p105 (GFP-p50 with IkappaB gamma) localized only in the cytoplasm before stimulation and translocated to the nucleus with stimulant specificity similar to that of native NF-kappaB/IkappaB. In addition, the translocation of NF-kappaB to the nucleus had a distinct lag time (a quiescent time) in the target cells. The lag time lasted 10-20 min after stimulation with hydrogen peroxide or tumor necrosis factor alpha. It was suggested that this might be due to the existence of a limiting step where NF-kappaB is released from NF-kappaB/IkappaB by the proteasome.  (+info)

Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. (2/199)

A series of tobacco mosaic virus (TMV)-based hybrid vectors for transient gene expression were constructed with similar designs but differing in the source of heterologous tobamovirus sequence: Odontoglossum ringspot virus, tobacco mild green mosaic virus variants U2 and U5, tomato mosaic virus, and sunn-hemp mosaic virus. These vectors contained a heterologous coat protein subgenomic mRNA promoter and coat protein open reading frame (ORF) and either TMV or heterologous 3' nontranslated region. The foreign ORF, from the jellyfish green fluorescent protein (GFP) gene, was transcribed from the native TMV coat protein subgenomic mRNA promoter, which extended into the coat protein ORF. The presence of an in-frame stop codon within the GFP mRNA leader and the choice of sequence of GFP ORFs substantially affected translational efficiency. However, the major regulatory component of gene expression in these vectors appeared to be transcriptional rather than translational. There was an inverse relationship between expression of GFP and the heterologous coat protein genes that was reflected in accumulation of the respective mRNAs and proteins. The most effective vector in this series (30B) contained sequences encoding the coat protein subgenomic mRNA promoter, coat protein ORF, and 3' nontranslated region from tobacco mild green mosaic virus U5. Expressed from 30B, GFP accumulated up to 10% of total soluble protein in leaves.  (+info)

Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. (3/199)

The ActA protein of Listeria monocytogenes is an essential virulence factor and is required for intracellular bacterial motility and cell-to-cell spread. plcB, cotranscribed with actA, encodes a broad-specificity phospholipase C that contributes to lysis of host cell vacuoles and cell-to-cell spread. Construction of a transcriptional fusion between actA-plcB and the green fluorescent protein gene of Aequorea victoria has facilitated the detailed examination of patterns of actA/plcB expression within infected tissue culture cells. actA/plcB expression began approximately 30 min postinfection and was dependent upon entry of L. monocytogenes into the host cytosol. L. monocytogenes Deltahly mutants, which are unable to escape from host cell vacuoles, did not express actA/plcB at detectable levels within infected tissue culture cells; however, complementation of the hly defect allowed entry of the bacteria into the host cytoplasm and subsequent actA/plcB expression. These results emphasize the ability of L. monocytogenes to sense the different host cell compartment environments encountered during the course of infection and to regulate virulence gene expression in response.  (+info)

The effects of level of expression of a jellyfish Shaker potassium channel: a positive potassium feedback mechanism. (4/199)

1. When jellyfish Shaker potassium channels (jShak2) are heterologously expressed in Xenopus oocytes at different levels they demonstrate density-dependent changes in electrical and kinetic properties of macroscopic currents. 2. The activation and inactivation properties of jShak2 channels depend on the extracellular potassium concentration. In this study we present experimental data which show that expression-dependent changes in kinetic and electrical properties of jShak2 macroscopic currents can be explained by the positive feedback effect of dynamic accumulation of K+ in the perimembranal space.  (+info)

Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. (5/199)

A bacterial plasmid was constructed on which the regulatory region of the umuC gene of Escherichia coli was fused to the coding sequence of the green fluorescent protein gene (gfp) from the jellyfish Aequorea victoria. Escherichia coli AB1157 strains carrying the plasmid emitted fluorescence in the presence of mutagens that induce the SOS DNA repair system. Data on tests with nitrosoguanidine, methylmethane sulphonate and UV radiation (254 nm) are presented. Although fluorescent detection using this system was not as rapid or sensitive as a similar luminescent equivalent (umuC-luxAB), the gfp reporter system was more robust. Escherichia coli umu gene induction was also analysed in Salmonella typhimurium TA1537 cells following plasmid transfer and exposure to the same range of mutagens. There was no significant difference in sensitivity between the two species. These preliminary results will provide the basis for development of mutagenicity test systems useful in the testing of complex mixtures, such as environmental samples, and the investigation of physiological parameters influencing spontaneous mutagenesis in bacteria.  (+info)

Reversible inactivation of cell-type-specific regulatory and structural genes in migrating isolated striated muscle cells of jellyfish. (6/199)

We have investigated, by RT-PCR and in situ hybridization, expression of genes encoding regulatory and structural proteins in migrating mononucleated striated muscle cells of the medusa Podocoryne carnea. Expression of the three homeobox genes Otx, Cnox1-Pc, and Cnox3-Pc; a specific splice variant of the myosin heavy chain gene (Myo1); and a tropomyosin (Tpm2) is stable in isolated and cultured striated muscle tissue. When grafted onto cell-free extracellular matrix (ECM), muscle cells of the tissue fragments leave their native ECM and migrate as a coherent tissue onto a host ECM until a stretched cell monolayer is formed. Shortly after the first cells of the grafted isolate have made contact with the host ECM, Otx and Cnox1-Pc expression is completely turned off in all cells of the graft, including those still adhering to their native ECM. Myo1 message disappears with a delay while the expression level of Tpm2 is strongly reduced. However, expression of the homeobox gene Cnox3-Pc, a msh-like gene, and of the ubiquitously expressed elongation factor 1 alpha is not affected by the migration process. All genes are reexpressed after 12-24 h, once migration of the cells has ceased. Our results demonstrate that the first few migrating cells induce a change in gene expression which is rapidly communicated throughout the entire tissue. Furthermore, we showed that commitment of striated muscle cells remains stable despite the transient inactivation of cell-type-specific regulatory and structural genes.  (+info)

Modulation of jellyfish potassium channels by external potassium ions. (7/199)

The amplitude of an A-like potassium current (I(Kfast)) in identified cultured motor neurons isolated from the jellyfish Polyorchis penicillatus was found to be strongly modulated by extracellular potassium ([K(+)](out)). When expressed in Xenopus oocytes, two jellyfish Shaker-like genes, jShak1 and jShak2, coding for potassium channels, exhibited similar modulation by [K(+)](out) over a range of concentrations from 0 to 100 mM. jShak2-encoded channels also showed a decreased rate of inactivation and an increased rate of recovery from inactivation at high [K(+)](out). Using site-directed mutagenesis we show that inactivation of jShak2 can be ascribed to an unusual combination of a weak "implicit" N-type inactivation mechanism and a strong, fast, potassium-sensitive C-type mechanism. Interaction between the two forms of inactivation is responsible for the potassium dependence of cumulative inactivation. Inactivation of jShak1 was determined primarily by a strong "ball and chain" mechanism similar to fruit fly Shaker channels. Experiments using fast perfusion of outside-out patches with jShak2 channels were used to establish that the effects of [K(+)](out) on the peak current amplitude and inactivation were due to processes occurring at either different sites located at the external channel mouth with different retention times for potassium ions, or at the same site(s) where retention time is determined by state-dependent conformations of the channel protein. The possible physiological implications of potassium sensitivity of high-threshold potassium A-like currents is discussed.  (+info)

Residues in a jellyfish shaker-like channel involved in modulation by external potassium. (8/199)

The jellyfish gene, jShak2, coded for a potassium channel that showed increased conductance and a decreased inactivation rate as [K(+)](out) was increased. The relative modulatory effectiveness of K(+), Rb(+), Cs(+), and Na(+) indicated that a weak-field-strength site is present. Cysteine substituted mutants (L369C and F370C) of an N-terminal truncated construct, (jShak2Delta2-38) which only showed C-type inactivation, were used to establish the position and nature of this site(s). In comparison with jShak2Delta2-38 and F370C, L369C showed a greater relative increase in peak current when [K(+)](out) was increased from 1 to 100 mM because the affinity of this site was reduced at low [K(+)](out). Increasing [K(+)](out) had little effect on the rate of inactivation of L369C; however, the appearance of a second, hyperbolic component to the inactivation curve for F370C indicated that this mutation had increased the affinity of the low-affinity site by bringing the backbone oxygens closer together. Methanethiosulphonate reagents were used to form positively (MTSET), negatively (MTSES), and neutrally (MTSM) charged side groups on the cysteine-substituted residues at the purported K(+) binding site(s) in the channel mouth and conductance and inactivation kinetic measurements made. The reduced affinity of the site produced by the mutation L369C was probably due to the increased hydrophobicity of cysteine, which changed the relative positions of carbonyl oxygens since MTSES modification did not form a high-field-strength site as might be expected if the cysteine residues project into the pore. Addition of the side chain -CH(2)-S-S-CH(3), which is similar to the side chain of methionine, a conserved residue in many potassium channels, resulted in an increased peak current and reduced inactivation rate, hence a higher affinity binding site. Modification of cysteine substituted mutants occurred more readily from the inactivated state confirming that side chains probably rotate into the pore from a buried position when no K ions are in the pore. In conclusion we were able to show that, as for certain potassium channels in higher taxonomic groups, the site(s) responsible for modulation by [K(+)](out) is situated just outside the selectivity filter and is represented by the residues L(369) and F(370) in the jellyfish Shaker channel, jShak2.  (+info)