Hypotension induced by exercise is associated with enhanced release of adenyl purines from aged rat artery. (41/31363)

To determine whether the antihypertensive effects of exercise are associated with release of ATP and its metabolites from arteries, we assayed blood pressure and the release of adenine nucleotides and nucleosides from the caudal arteries of exercised and sedentary aged hypercholesterolemic rats. Exercise on a treadmill for 12 wk significantly decreased the rise in systolic and diastolic blood pressure by 7.5 and 15.9%, respectively, with advanced age. The concentrations of oleic, linoleic, and linolenic acids in the caudal artery decreased significantly with exercise, demonstrating an association between exercise and the unsaturation index of caudal arterial fatty acids. The amounts of total adenyl purines released by the arterial segments from exercised rats, both spontaneously and in response to norepinephrine, were significantly greater by 80.0 and 60.7%, respectively, than those released by tissues from sedentary rats. These results suggest that exercise alters the membrane fatty acid composition in aged rats as well as the release of ATP from vascular endothelial cells and that these factors are associated with the regression of the rise in blood pressure normally observed with advanced age.  (+info)

Fatty acid binding protein in heart and skeletal muscles of the migratory barnacle goose throughout development. (42/31363)

The long-distance migratory flights of birds are predominantly fueled by the oxidation of fatty acids, which are sourced primarily from extracellular adipose stores. These fatty acids have to be transported, via the circulatory system, to the mitochondria of the active muscles. An important facilitator of fatty acid transport within the cytoplasm of muscle cells is fatty acid binding protein (FABP), which serves as an intracellular carrier of long-chain fatty acids. In mammals, the muscular FABP content is related to the fatty acid oxidation capacity of the tissue. The aim of this study was to measure FABP in samples taken from the cardiac, pectoralis, and semimembranosus muscles of a long-distance avian migrant, the barnacle goose (Branta leucopsis), at various stages of development. Western blot analysis identified a single goose muscle protein of 15 kDa that was able to bind fatty acids and showed a 66% cross-reactivity with antibodies against human heart-type FABP. Captive goslings showed no significant changes in FABP content of either the heart (62.6 +/- 10.6 microgram/g wet wt) or the semimembranosus muscle (8.4 +/- 1.9 microgram/g wet wt) during development. However, in both peripheral and deep sites within the pectoralis muscle, FABP content of samples taken from captive goslings were approximately 10-fold higher throughout development and reached values of 30-40 microgram/g wet wt in fledging goslings at 7 wk of age. A further twofold higher value was seen in wild but not in captive goslings immediately before migration (12 wk of age). Similarly, FABP content was significantly higher in pectoralis samples taken from wild adults (94.3 +/- 3.6 microgram/g wet wt) compared with those from captive adults (60.5 +/- 3.6 micro/g wet wt). These results suggest that the experience of flight activity may be of critical importance in achieving maximal expression of FABP in the pectoralis muscles of postfledging and mature geese immediately before migration.  (+info)

Ontogeny of intestinal safety factors: lactase capacities and lactose loads. (43/31363)

We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.  (+info)

Impact of development and chronic hypoxia on NE release from adrenergic nerves in sheep arteries. (44/31363)

To examine effects of development and chronic high-altitude hypoxia on sympathetic nerve function in sheep, norepinephrine release was measured in vitro from middle cerebral and facial arteries. Capsaicin was used to test the role of capsaicin-sensitive sensory nerves; norepinephrine release was not altered by capsaicin treatment. Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, decreased stimulation-evoked norepinephrine release in middle cerebral arteries from normoxic sheep with no effect in hypoxic arteries or facial arteries. Thus NO-releasing nerves augmented norepinephrine release. Furthermore, the function of NO-releasing nerves declined after chronic hypoxia. Despite loss of the augmenting effects of NO, stimulation-evoked fractional norepinephrine release was unchanged after chronic hypoxia, suggesting that middle cerebral arteries adapt to hypoxia by increasing stimulation-evoked norepinephrine release. In fetal facial arteries, chronic hypoxia resulted in a decline in stimulation-evoked norepinephrine release, but there was an increase in the adult facial artery. In the adult, adaptation to chronic hypoxia is similar in both cerebral and facial arteries. However, differential adaptation in fetal adrenergic nerves may reflect differences in fetal redistribution of blood flow in the face of chronic hypoxia but could also possibly contribute to increased incidence of fetal morbidity.  (+info)

Alterations in endogenous circadian rhythm of core temperature in senescent Fischer 344 rats. (45/31363)

We assessed whether alterations in endogenous circadian rhythm of core temperature (CRT) in aging rats are associated with chronological time or with a biological marker of senescence, i.e., spontaneous rapid body weight loss. CRT was measured in male Fischer 344 (F344) rats beginning at age 689 days and then continuously until death. Young rats were also monitored. The rats were housed under constant dim red light at 24-26 degrees C, and core temperature was recorded every 10 min via biotelemetry. The CRT amplitude of the body weight-stable (presenescent) old rats was significantly less than that of young rats at all analysis periods. At the onset of spontaneous rapid weight loss (senescence), all measures of endogenous CRT differed significantly from those in the presenescent period. The suprachiasmatic nucleus (a circadian pacemaker) of the senescent rats maintained its light responsiveness as determined by an increase in c-fos expression after a brief light exposure. These data demonstrate that some characteristics of the CRT are altered slowly with chronological aging, whereas others occur rapidly with the onset of senescence.  (+info)

Developmental regulation of genes mediating murine brain glucose uptake. (46/31363)

We examined the molecular mechanisms that mediate the developmental increase in murine whole brain 2-deoxyglucose uptake. Northern and Western blot analyses revealed an age-dependent increase in brain GLUT-1 (endothelial cell and glial) and GLUT-3 (neuronal) membrane-spanning facilitative glucose transporter mRNA and protein concentrations. Nuclear run-on experiments revealed that these developmental changes in GLUT-1 and -3 were regulated posttranscriptionally. In contrast, the mRNA and protein levels of the mitochondrially bound glucose phosphorylating hexokinase I enzyme were unaltered. However, hexokinase I enzyme activity increased in an age-dependent manner suggestive of a posttranslational modification that is necessary for enzymatic activation. Together, the postnatal increase in GLUT-1 and -3 concentrations and hexokinase I enzymatic activity led to a parallel increase in murine brain 2-deoxyglucose uptake. Whereas the molecular mechanisms regulating the increase in the three different gene products may vary, the age-dependent increase of all three constituents appears essential for meeting the increasing demand of the maturing brain to fuel the processes of cellular growth, differentiation, and neurotransmission.  (+info)

Developmental expression of sodium entry pathways in rat nephron. (47/31363)

During the past several years, sites of expression of ion transport proteins in tubules from adult kidneys have been described and correlated with functional properties. Less information is available concerning sites of expression during tubule morphogenesis, although such expression patterns may be crucial to renal development. In the current studies, patterns of renal axial differentiation were defined by mapping the expression of sodium transport pathways during nephrogenesis in the rat. Combined in situ hybridization and immunohistochemistry were used to localize the Na-Pi cotransporter type 2 (NaPi2), the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), the thiazide-sensitive Na-Cl cotransporter (NCC), the Na/Ca exchanger (NaCa), the epithelial sodium channel (rENaC), and 11beta-hydroxysteroid dehydrogenase (11HSD). The onset of expression of these proteins began in post-S-shape stages. NKCC2 was initially expressed at the macula densa region and later extended into the nascent ascending limb of the loop of Henle (TAL), whereas differentiation of the proximal tubular part of the loop of Henle showed a comparatively retarded onset when probed for NaPi2. The NCC was initially found at the distal end of the nascent distal convoluted tubule (DCT) and later extended toward the junction with the TAL. After a period of changing proportions, subsegmentation of the DCT into a proximal part expressing NCC alone and a distal part expressing NCC together with NaCa was evident. Strong coexpression of rENaC and 11HSD was observed in early nascent connecting tubule (CNT) and collecting ducts and later also in the distal portion of the DCT. Ontogeny of the expression of NCC, NaCa, 11HSD, and rENaC in the late distal convolutions indicates a heterogenous origin of the CNT. These data present a detailed analysis of the relations between the anatomic differentiation of the developing renal tubule and the expression of tubular transport proteins.  (+info)

The effects of age and sex steroids on the macrophage population in the ovary of the chicken, Gallus domesticus. (48/31363)

The role of macrophages in the function of the hen ovary has not yet been described, although these cells may be an important regulator of ovarian function in mammals. The aim of this study was to determine the changes in the frequency of macrophages during ageing and follicular atresia, and the effects of sex steroids on the macrophage population in the hen ovary. Cryostat sections of ovarian tissues of immature, young laying and old laying hens and those of immature hens treated with or without diethylstilboestrol (DES) or progesterone were immunostained for macrophage cells using mouse anti-chicken macrophage monoclonal antibody. Macrophages were observed under a light microscope and counted using a computer assisted image analyser. The frequency of macrophages in both the stroma and theca of primary follicles was significantly greater in young laying hens than in immature and old laying hens and these cells were more frequent in old laying hens than in immature hens (P < 0.01). Macrophages were more frequent in atretic follicles than in normal follicles (P < 0.01). The number of macrophages in both the stroma and theca of primary follicles of DES-treated birds was significantly greater than in those of progesterone-treated and control birds (P < 0.01). Progesterone had no significant effect on the population of macrophages. These results suggest that macrophages in the ovary increase in association with sexual maturation of birds and atresia of follicles and decrease during ageing. Oestrogen may be one of the factors that affect the population of macrophages in the hen ovary.  (+info)