Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism. (1/5)

Thermodynamic-based constraints on biochemical fluxes and concentrations are applied in concert with mass balance of fluxes in glycogenesis and glycogenolysis in a model of hepatic cell metabolism. Constraint-based modeling methods that facilitate predictions of reactant concentrations, reaction potentials, and enzyme activities are introduced to identify putative regulatory and control sites in biological networks by computing the minimal control scheme necessary to switch between metabolic modes. Computational predictions of control sites in glycogenic and glycogenolytic operational modes in the hepatocyte network compare favorably with known regulatory mechanisms. The developed hepatic metabolic model is used to computationally analyze the impairment of glucose production in von Gierke's and Hers' diseases, two metabolic diseases impacting glycogen metabolism. The computational methodology introduced here can be generalized to identify downstream targets of agonists, to systematically probe possible drug targets, and to predict the effects of specific inhibitors (or activators) on integrated network function.  (+info)

Glycogen phosphorylase and its converter enzymes in haemolysates of normal human subjects and of patients with type VI glycogen-storage disease. A study of phosphorylase kinase deficiency. (2/5)

1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  (+info)

The polymorphic locus for glycogen storage disease VI (liver glycogen phosphorylase) maps to chromosome 14. (3/5)

Human liver glycogen phosphorylase deficiency, also known as glycogen storage disease type VI (GSD VI) or Hers disease, is characterized by hepatomegaly and reduced or absent glycogenolytic response to the injection of glucagon. The recently isolated cDNA encoding the liver isozyme of glycogen phosphorylase was used to map the gene and identify restriction-fragment polymorphisms in normal Caucasians as a prerequisite for detecting linked GSD VI abnormalities. Results of restriction-enzyme analysis using a downstream fragment of the liver glycogen phosphorylase cDNA indicated the existence of a single gene copy per haploid genome. Hybridization of this downstream liver phosphorylase probe to dual laser-excited, sorted human chromosomes localized the gene to human chromosome 14. When the downstream probe was tested on genomic DNA cut with seven different restriction enzymes, a single MspI restriction-fragment-length polymorphism (RFLP) was observed in a single individual. In contrast, similar Southern blots performed with an upstream portion of the cDNA encoding liver phosphorylase revealed common RFLPs for four of eight enzymes tested, with minor polymorphic allele frequencies ranging from 33% to 44%. One of the four enzymes (TaqI) revealed two independent polymorphisms. If random distribution of these haplotypes among normal and disease loci, is assumed, approximately 92% of fetuses at risk for Hers disease will be informative when tested with the upstream liver phosphorylase probe.  (+info)

Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. (4/5)

Deficiency of glycogen phosphorylase in the liver gives rise to glycogen-storage disease type VI (Hers disease; MIM 232700). We report the identification of the first mutations in PYGL, the gene encoding the liver isoform of glycogen phosphorylase, in three patients with Hers disease. These are two splice-site mutations and two missense mutations. A mutation of the 5' splice-site consensus of intron 14 causes the retention of intron 14 and the utilization of two illegitimate 5' splice sites, whereas a mutation of the 3' splice-site consensus of intron 4 causes the skipping of exon 5. Two missense mutations, N338S and N376K, both cause nonconservative replacements of amino acids that are absolutely conserved even in yeast and bacterial phosphorylases. We also report corrections of the PYGL coding sequence, sequence polymorphisms, and a partial PYGL gene structure with introns in the same positions as in PYGM, the gene of the muscle isoform of phosphorylase. Our findings demonstrate that PYGL mutations cause Hers disease, and they may improve laboratory diagnosis of deficiencies of the liver phosphorylase system.  (+info)

Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI. (5/5)

Glycogen storage disease type VI (GSD6) defines a group of disorders that cause hepatomegaly and hypoglycemia with reduced liver phosphorylase activity. The course of these disorders is generally mild, but definitive diagnosis requires invasive procedures. We analyzed a Mennonite kindred with an autosomal recessive form of GSD6 to determine the molecular defect and develop a non-invasive diagnostic test. Linkage analysis was performed using genetic markers flanking the liver glycogen phosphorylase gene ( PYGL ), which was suspected to be the cause of the disorder on biochemical grounds. Mennonite GSD6 was linked to the PYGL locus with a multipoint LOD score of 4.7. The PYGL gene was analyzed for mutations by sequencing genomic DNA. Sequencing of genomic DNA revealed a splice site abnormality of the intron 13 splice donor. Confirmation of the genomic mutation was performed by sequencing RT-PCR products, which showed heterogeneous PYGL mRNA lacking all or part of exon 13 in affected persons. This study is the first to demonstrate that a mutation in the PYGL gene can cause GSD6. This mutation is estimated to be present on 3% of Mennonite chromosomes and the disease affects 0.1% of that population. Determination of this mutation provides a basis for the development of a simple and non-invasive diagnostic test for the disease and the carrier state in this population and confirms biochemical data showing the importance of this gene in glucose homeostasis.  (+info)