The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. (49/6430)

Hsp16.3, the alpha-crystallin-related small heat shock protein of Mycobacterium tuberculosis that is maximally expressed during the stationary phase and is a major membrane protein, has been reported to form specific trimer-of-trimers structure and to act as an effective molecular chaperone (Chang Z et al., 1996, J. Biol Chem 271:7218-7223). However, little is known about its action mechanism. In this study, Hsp16.3 conformational intermediates with dramatically increased chaperone activities were detected after treatment with very low concentrations of guanidine hydrochloride (0.05 M), urea (0.3 M), or mild heating (30 degrees C). The intermediates showed a significant increase in their capacity to bind the hydrophobic probe 1-anilino-8-naphthalene sulfonate (ANS), indicating an increased exposure of hydrophobic surfaces. Interestingly, the greatest chaperone activities of Hsp16.3 were observed in the presence of 0.3 M guanidine HCl or when heated to 35 degrees C. CD spectroscopy studies revealed no significant changes in protein secondary and tertiary structures at these mild treatments. Our in vitro studies also indicate that long-time-heated Hsp16.3, heated even to temperatures as high as 85 degrees C, has almost the same, if not a slightly greater, chaperone activities as the native protein when cooled to room temperature and its secondary structures also almost recovered. Together, these results suggest that Hsp16.3 modulates its chaperone activity by exposing hydrophobic surfaces and that the protein structure is highly stable and flexible, thus highly adapted for its function.  (+info)

A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions. (50/6430)

The stability of proteins is known to be affected significantly in the presence of high concentration of salts and is highly pH dependent. Extensive studies have been carried out on the stability of proteins in the presence of simple electrolytes and evaluated in terms of preferential interactions and increase in the surface tension of the medium. We have carried out an in-depth study of the effects of a series of carboxylic acid salts: ethylene diamine tetra acetate, butane tetra carboxylate, propane tricarballylate, citrate, succinate, tartarate, malonate, and gluconate on the thermal stability of five different proteins that vary in their physico-chemical properties: RNase A, cytochrome c, trypsin inhibitor, myoglobin, and lysozyme. Surface tension measurements of aqueous solutions of the salts indicate an increase in the surface tension of the medium that is very strongly correlated with the increase in the thermal stability of proteins. There is also a linear correlation of the increase in thermal stability with the number of carboxylic groups in the salt. Thermal stability has been found to increase by as much as 22 C at 1 M concentration of salt. Such a high thermal stability at identical concentrations has not been reported before. The differences in the heat capacities of denaturation, deltaCp for RNase A, deduced from the transition curves obtained in the presence of varying concentrations of GdmCl and that of carboxylic acid salts as a function of pH, indicate that the nature of the solvent medium and its interactions with the two end states of the protein control the thermodynamics of protein denaturation. Among the physico-chemical properties of proteins, there seems to be an interplay of the hydrophobic and electrostatic interactions that lead to an overall stabilizing effect. Increase in surface free energy of the solvent medium upon addition of the carboxylic acid salts appears to be the dominant factor in governing the thermal stability of proteins.  (+info)

Thermodynamic stability of ribonuclease A in alkylurea solutions and preferential solvation changes accompanying its thermal denaturation: a calorimetric and spectroscopic study. (51/6430)

The effect of methylurea, N,N'-dimethylurea, ethylurea, and butylurea as well as guanidine hydrochloride (GuHCl), urea and pH on the thermal stability, structural properties, and preferential solvation changes accompanying the thermal unfolding of ribonuclease A (RNase A) has been investigated by differential scanning calorimetry (DSC), UV, and circular dichroism (CD) spectroscopy. The results show that the thermal stability of RNase A decreases with increasing concentration of denaturants and the size of the hydrophobic group substituted on the urea molecule. From CD measurements in the near- and far-UV range, it has been observed that the tertiary structure of RNase A melts at about 3 degrees C lower temperature than its secondary structure, which means that the hierarchy in structural building blocks exists for RNase A even at conditions at which according to DSC and UV measurements the RNase A unfolding can be interpreted in terms of a two-state approximation. The far-UV CD spectra also show that the final denatured states of RNase A at high temperatures in the presence of different denaturants including 4.5 M GuHCl are similar to each other but different from the one obtained in 4.5 M GuHCl at 25 degrees C. The concentration dependence of the preferential solvation change delta r23, expressed as the number of cosolvent molecules entering or leaving the solvation shell of the protein upon denaturation and calculated from DSC data, shows the same relative denaturation efficiency of alkylureas as other methods.  (+info)

WW: An isolated three-stranded antiparallel beta-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. (52/6430)

The objective of this study was to evaluate the suitability of the WW domain as a desirable model system to understand the folding and stability of an isolated three-stranded antiparallel beta-sheet structure. The WW domain was subjected to thermal and chaotropic denaturation/reconstitution utilizing a variety of biophysical methods. This three-stranded sheet folds reversibly and cooperatively utilizing both urea and GdnHCl as denaturants; however, the denatured state retains structure in the form of a hydrophobic cluster involving at least one aromatic side chain. In contrast to chaotropic denaturation, thermal denaturation appears to be more complete and may be a two state process. The suitability of the WW domain for future studies aimed at understanding the kinetics and thermodynamics of antiparallel beta-sheet folding clearly emerges from this initial study. The most exciting and significant result in this manuscript is the finding that the chaotropic denatured state of WW has a hydrophobic cluster as discerned by near-UV CD evidence. The role that the denatured state plays in the folding and stability of a three-stranded beta-sheets, and its capacity for preventing aggregation may be particularly important and is the subject of ongoing studies.  (+info)

The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. (53/6430)

We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state.  (+info)

Nucleolar protein B23 has molecular chaperone activities. (54/6430)

Protein B23 is an abundant, multifunctional nucleolar phosphoprotein whose activities are proposed to play a role in ribosome assembly. Szebeni et al. (1997) showed stimulation of nuclear import in vitro by protein B23 and suggested that this effect was due to a molecular chaperone-like activity. Protein B23 was tested for chaperone activities using several protein substrates. The temperature-dependent and -independent aggregation of the HIV-1 Rev protein was measured using a zero angle light scattering (turbidity) assay. Protein B23 inhibited the aggregation of the Rev protein, with the amount of inhibition proportional to the concentration of B23 added. This activity was saturable with nearly complete inhibition when the molar ratio of B23:Rev was slightly above one. Protein B23 also protected liver alcohol dehydrogenase (LADH), carboxypeptidase A, citrate synthase, and rhodanese from aggregation during thermal denaturation and preserved the enzyme activity of LADH under these conditions. In addition, protein B23 was able to promote the restoration of activity of LADH previously denatured with guanidine-HCl. Protein B23 preferentially bound denatured substrates and exposed hydrophobic regions when complexed with denatured proteins. Thus, by several criteria, protein B23 behaves like a molecular chaperone; these activities may be related to its role in ribosome biogenesis.  (+info)

Rat liver serine dehydratase. Bacterial expression and two folding domains as revealed by limited proteolysis. (55/6430)

A pCW vector harboring rat liver serine dehydratase cDNA was expressed in Escherichia coli. The expressed level was about 5-fold higher in E. coli BL21 than in JM109 cell extract; the former lacked two kinds of proteases. Immunoblot analysis revealed the occurrence of a derivative other than serine dehydratase in the JM109 cell extract. The recombinant enzyme was purified to homogeneity. Staphylococcus aureus V8 protease and trypsin cleaved the enzyme at Glu-206 and Lys-220, respectively, with a concomitant loss of enzyme activity. Spectrophotometrically, the nicked enzyme showed a approximately 50% reduced capacity for binding of the coenzyme pyridoxal phosphate and no spectral change of circular dichroism in the region at 300-480 nm, whereas circular dichroism spectra of both enzymes in the far-UV region were similar, suggesting that proteolysis impairs the coenzyme binding without an accompanying gross change of the secondary structure. Whereas the nicked enzyme behaved like the intact enzyme on Sephadex G-75 column chromatography, it was dissociated into two fragments on the column containing 6 M urea. Upon the removal of urea, both fragments spontaneously refolded. These results suggest that serine dehydratase consists of two folding domains connected by a region that is very susceptible to proteases.  (+info)

A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. (56/6430)

Recently it was found that Methylobacterium extorquens AM1 contains both tetrahydromethanopterin (H4MPT) and tetrahydrofolate (H4F) as carriers of C1 units. In this paper we report that the aerobic methylotroph contains a methenyl H4MPT cyclohydrolase (0.9 U x mg-1 cell extract protein) and a methenyl H4F cyclohydrolase (0.23 U x mg-1). Both enzymes, which were specific for their substrates, were purified and characterized and the encoding genes identified via the N-terminal amino acid sequence. The purified methenyl H4MPT cyclohydrolase with a specific activity of 630 U x mg-1 (Vmax = 1500 U x mg-1; Km = 30 microm) was found to be composed of two identical subunits of molecular mass 33 kDa. Its sequence was approximately 40% identical to that of methenyl H4MPT cyclohydrolases from methanogenic archaea. The methenyl H4F cyclohydrolase with a specific activity of 100 U x mg-1 (Vmax = 330 U x mg-1; Km = 80 microm) was found to be composed of two identical subunits of molecular mass 22 kDa. Its sequence was not similar to that of methenyl H4MPT cyclohydrolases or to that of other methenyl H4F cyclohydrolases. Based on the specific activities in cell extract and from the growth properties of insertion mutants it is suggested that the methenyl H4MPT cyclohydrolase might have a catabolic, and the methenyl-H4F cyclohydrolase an anabolic function in the C1-unit metabolism of M. extorquens AM1.  (+info)