Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. (1/17075)

1 Guinea-pig vasa deferentia were continuously superfused after labelling the transmitter stores with [3H](-)-noradrenaline. Release of [3H]-(-)-noradrenaline was induced by transmural nerve stimulation. 2 Prostglandin E2 (14 nM) drastically reduced the release of [3H]-(-)-noradrenaline, while tetraethylammonium (2 mM), rubidium (6 mM), phenoxybenzamine (3 muM) each in the presence or absence of Uptake 1 or 2 blockade, and prolonged pulse duration (from 0.5 to 2.0 ms) all significantly increased the release of [3H]-(-)-noradrenaline per nerve impulse. 3 The inhibitory effect of prostaglandin E2 on evoked release of [3H]-(-)-noradrenaline was significantly reduced by tetraethylammonium, rubidium and prolonged pulse duration, whilst it was actually enhanced by phenoxybenzamine. This indicates that increased release of noradrenaline per nerve impulse does not per se counteract the inhibitory effect of prostaglandin E2. 4 It is concluded that tetraethylammonium, rubidium and prolonged pulse duration counteracted the inhibitory effect of prostaglandin E2 on T3H]-(-)-noradrenaline release by promoting calcium influx during the nerve action potential. The results are consistent with, and add more weight to the view that prostaglandins inhibit the release of noradrenaline by restriction of calcium availability.  (+info)

A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 degrees C and in ileum at 29 degrees C and 37 degrees C. (2/17075)

1 The affinity of 17 compounds for muscarine-sensitive acetylcholine receptors in atrial pacemaker cells and ileum of the guinea-pig has been measured at 29 degrees C in Ringer-Locke solution. Measurements were also made at 37 degrees C with 7 of them. 2 Some of the compounds had much higher affinity for the receptors in the ileum than for those in the atria. For the most selective compound, 4-diphenylacetoxy-N-methylpiperidine methiodide, the difference was approximately 20-fold. The receptors in the atria are therefore different the structure from those in the ileum. 3 The effect of temperature on affinity are not the same for all the compounds, tested indicating different enthalpies and entropies of adsorption and accounting for some of the difficulty experienced in predicting the affinity of new compounds.  (+info)

Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley. (3/17075)

Fusariotoxin T-2, a trichothecene, was tentatively identified in barley samples which caused field outbreaks of mycotoxicosis in British Columbia. Geese died when fed the contaminated barley experimentally but mice were little affected after long term feeding. The methods used in the laboratory for trichothecene extraction and identification of T-2 toxin are described.  (+info)

Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. (4/17075)

Membrane potential was changed uniformly in segments, 0.7-1.0 mm long, of guinea pig papillary muscles excised from the right ventricle by using extracellular polarizing current pulses applied across two electrically insulated cf preparations superfused with Tyrode's solution at maximum diastolic membrane potentials ranging from-35.2+/-7.5 (threshold) to +4.0+/-9.2 mV. The average maximum dV/dt of RAD ranged from 17.1 to 18.0 V/sec within a membrane potential range of -40 to +20 mV. Raising extracellular Ca2+ concentration [Ca2+]0 from 1.8 to 6.8 mM, or application of isoproterenol (10(-6)g/ml) enhanced the rate of RAD, but lowering [Ca2+]0 to 0.4 mM or exposure to MnCl2 (6 mM) abolished RAD. RAD were enhanced by lowering extracellular K+ concentration [K+]0 from 5.4 to 1.5 mM. RAD were suppressed in 40% of fibers by raising [K+]0 to 15.4 mM, and in all fibers by raising [K+]0 to 40.4 mM. This suppression was due to increased [K+]0 and not to K-induced depolarization because it persisted when membrane potential was held by means of a conditioning hyperpolarizing puled gradually after maximum repolarization. These observations suggest that the development of RAD in depolarized myocardium is associated with a time-dependent decrease in outward current (probably K current) and with increase in the background inward current, presumably flowing through the slow cha-nel carrying Ca or Na ions, or both.  (+info)

Perinatal nephropathies. (5/17075)

The purpose of this paper is to review the development of the mammalian kidney and to assess the influence that various perinatal manipulations may have on the developmental process either morphologically or functionally. Immature kidneys in general have less functional capacity than adult kidneys and a low rate of glomerular filtration, perhaps related to renal blood flow, which appears to limit the disposition of a fluid or solute load. Tubular reabsorption is also limited leading to the urinary loss of glucose, amino acids, bicarbonate and phosphate. Although the relatively low function of the immature kidney is a normal part of development, its capacity to respond under conditions of stress may be less adequate than in adults. An additional concern is that a variety of perinatal manipulations, such as the incidental or accidental ingestion of a chemical, may lead to varying degrees of altered morphogenesis or functional development of the kidney. Chemical induced renal anomalies may be of several types, but in typical teratology experiments hydronephrosis may be the most frequent observation. The functional consequences of these renal malformations may be lethal or inconsequential or while an animal may be able to survive and develop normally in the presence of a renal malformation, it is possible that a stressful situation would unmask a functional malformation which could compromise survival. Thus, some renal abnormalities may be subtle enough to go unnoticed without experimental tests. Without such tests it is impossible to evaluate the effect of functional alterations on successful adaptation.  (+info)

Activity in saline of phthalylated or succinylated derivatives of mycobacterial water-soluble adjuvant. (6/17075)

A water-soluble fraction (WSA) of the cell wall can substitute for mycobacterial cells in Freund complete adjuvant. However, when WSA is administered in saline instead of in a water-in-oil emulsion, its adjuvant activity is very weak, and under certain experimental conditions it can even inhibit the humoral immune response. The data reported in the present study show that after treatment by phthalic or succinic anhydride the adjuvant activity of WSA was markedly changed, since high levels of circulating antibodies were produced when these derivatives were administered with an antigen in an aqueous medium. Moreover, the antigenic determinants of WSA were modified and acylated WSA had no tuberculin-like activity.  (+info)

Bradykinin promotes ischemic norepinephrine release in guinea pig and human hearts. (7/17075)

We previously reported that bradykinin (BK; 1-1000 nM) facilitates norepinephrine (NE) release from cardiac sympathetic nerves. Because BK production increases in myocardial ischemia, endogenous BK could foster NE release and associated arrhythmias. We tested this hypothesis in guinea pig and human myocardial ischemia models. BK administration (100 nM) markedly enhanced exocytotic and carrier-mediated NE overflow from guinea pig hearts subjected to 10- and 20-min ischemia/reperfusion, respectively. Ventricular fibrillation invariably occurred after 20-min global ischemia; BK prolonged its duration 3-fold. The BK B2 receptor antagonist HOE140 (30 nM) blocked the effects of BK, whereas the B1 receptor antagonist des-Arg9-Leu8-BK (1 microM; i.e., 2.5 x pA2) did not. When serine proteinase inhibitors (500 KIU/ml aprotinin and 100 microg/ml soybean trypsin inhibitor) were used to prevent the formation of endogenous BK, NE overflow and reperfusion arrhythmias were diminished. In contrast, when kininase I and II inhibitors (DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid and enalaprilat, each 1 microM) were used to prevent the degradation of endogenous BK, NE overflow and reperfusion arrhythmias were enhanced. B2 receptor blockade abolished these effects but was ineffective if kininases were not inhibited. B2 receptor stimulation, by either exogenous or endogenous BK, also markedly enhanced carrier-mediated NE release in the human myocardial ischemia model; conversely, inhibition of BK biosynthesis diminished ischemic NE release. Because atherosclerotic heart disease impairs endothelial BK production, in myocardial ischemia BK could accumulate at sympathetic nerve endings, thus augmenting exocytotic and carrier-mediated NE release and favoring coronary vasoconstriction and arrhythmias.  (+info)

Comparison of functional antagonism between isoproterenol and M2 muscarinic receptors in guinea pig ileum and trachea. (8/17075)

The ability of the M2 muscarinic receptor to mediate an inhibition of the relaxant effects of forskolin and isoproterenol was investigated in guinea pig ileum and trachea. In some experiments, trachea was first treated with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) mustard to inactivate M3 receptors. The contractile response to oxotremorine-M was measured subsequently in the presence of both histamine (10 microM) and isoproterenol (10 nM). Under these conditions, [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido[2,3b]-[1,4]benzodiazepine-6-one (AF-DX 116) antagonized the contractile response to oxotremorine-M in a manner consistent with an M3 mechanism. However, when the same experiment was repeated using forskolin (4 microM) instead of isoproterenol, the response to oxotremorine-M exhibited greater potency and was antagonized by AF-DX 116 in a manner consistent with an M2 mechanism. We also measured the effects of pertussis toxin treatment on the ability of isoproterenol to inhibit the contraction elicited by a single concentration of either histamine (0.3 microM) or oxotremorine-M (40 nM) in both the ileum and trachea. Pertussis toxin treatment had no significant effect on the potency of isoproterenol for inhibiting histamine-induced contractions in the ileum and trachea. In contrast, pertussis toxin treatment enhanced the relaxant potency of isoproterenol against oxotremorine-M-induced contractions in the ileum but not in the trachea. Also, pertussis toxin treatment enhanced the relaxant potency of forskolin against oxotremorine-M-induced contractions in the ileum and trachea. We investigated the relaxant potency of isoproterenol when very low, equi-effective (i.e., 20-34% of maximal response) concentrations of either histamine or oxotremorine-M were used to elicit contraction. Under these conditions, isoproterenol exhibited greater relaxant potency against histamine in the ileum but exhibited similar relaxant potencies against histamine and oxotremorine-M in the trachea. Following 4-DAMP mustard treatment, a low concentration of oxotremorine-M (10 nM) had no contractile effect in either the ileum or trachea. Nevertheless, in 4-DAMP mustard-treated tissue, oxotremorine-M (10 nM) reduced the relaxant potency of isoproterenol against histamine-induced contractions in the ileum, but not in the trachea. We conclude that in the trachea the M2 receptor mediates an inhibition of the relaxant effects of forskolin, but not isoproterenol, and the decreased relaxant potency of isoproterenol against contractions elicited by a muscarinic agonist relative to histamine is not due to activation of M2 receptors but rather to the greater contractile stimulus mediated by the M3 receptor compared with the H1 histamine receptor.  (+info)