Induction of AT-specific DNA-interstrand crosslinks by bizelesin in genomic and simian virus 40 DNA. (1/15816)

Bizelesin is a bifunctional AT-specific DNA alkylating drug. Our study characterized the ability of bizelesin to induce interstrand crosslinks, a potential lethal lesion. In genomic DNA of BSC-1 cells, bizelesin formed from approx. 0.3 to 6.03+/-0.85 interstrand crosslinks per 106 base pairs, at 5-100 nM drug concentration, respectively, comparable to the number of total adducts previously determined in the same system (J.M. Woynarowski, M.M. McHugh, L.S. Gawron, T.A. Beerman, Biochemistry 34 (1995) 13042-13050). Bizelesin did not induce DNA-protein crosslinks or strand breaks. A model defined target, intracellular simian virus 40 (SV40) DNA, was employed to map at the nucleotide level sites of bizelesin adducts, including potential interstrand crosslinks. Preferential adduct formation was observed at AT tracts which are abundant in the SV40 matrix associated region and the origin of replication. Many sites, including each occurrence of 5'-T(A/T)4A-3', co-mapped on both DNA strands suggesting interstrand crosslinks, although monoadducts were also formed. Bizelesin adducts in naked SV40 DNA were found at similar sites. The localization of bizelesin-induced crosslinks in AT-rich tracts of replication-related regions is consistent with the potent anti-replicative properties of bizelesin. Given the apparent lack of other types of lesions in genomic DNA, interstrand crosslinks localized in AT-rich tracts, and to some extent perhaps also monoadducts, are likely to be lethal effects of bizelesin.  (+info)

Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. (2/15816)

Herpes simplex virus type 1 (HSV-1) has many attractive features that suggest its utility for gene transfer to neurons. However, viral cytotoxicity and transient transgene expression limit practical applications even in the absence of viral replication. Mutant viruses deleted for the immediate early (IE) gene, ICP4, an essential transcriptional transactivator, are toxic to many cell types in culture in which only the remaining IE genes are expressed. In order to test directly the toxicity of other IE gene products in neurons and develop a mutant background capable of longterm transgene expression, we generated mutants deleted for multiple IE genes in various combinations and tested their relative cytotoxicity in 9L rat gliosarcoma cells, Vero monkey kidney cells, and primary rat cortical and dorsal root neurons in culture. Viral mutants deleted simultaneously for the IE genes encoding ICP4, ICP22 and ICP27 showed substantially reduced cytotoxicity compared with viruses deleted for ICP4 alone or ICP4 in combination with either ICP22, ICP27 or ICP47. Infection of neurons in culture with these triple IE deletion mutants substantially enhanced cell survival and permitted transgene expression for over 21 days. Such mutants may prove useful for efficient gene transfer and extended transgene expression in neurons in vitro and in vivo.  (+info)

T-cell lymphoma in a savanna monkey (Cercopithecus aethiops) probably related to simian T-cell leukemia virus infection. (3/15816)

Lymphoma was seen in an 11-year-old female savanna monkey (Ceropithecus aethiops). The superficial inguinal and visceral lymph nodes were markedly enlarged, and their architecture was completely effaced by neoplastic cells. The neoplastic cells, which were highly pleomorphic, resembled those in adult T-cell lymphoma-leukemia in humans. Ultrastructurally the neoplastic cells were characterized by nuclear irregularity and clustered dense bodies, and almost all cells showed positivity for CD3. The animal had been reared with her family, and her mother and 2 brothers had antibodies reactive to human T-cell leukemia virus. This virus serologically cross-reacts with simian T-cell leukemia virus, which may be the causative agent of the present neoplasm.  (+info)

A lipid modified ubiquitin is packaged into particles of several enveloped viruses. (4/15816)

An anti-ubiquitin cross-reactive protein which migrates more slowly (6.5 kDa) by SDS-PAGE than ubiquitin was identified in African swine fever virus particles. This protein was extracted into the detergent phase in Triton X-114 phase separations, showing that it is hydrophobic, and was radiolabelled with both [3H]palmitic acid and [32P]orthophosphate. This indicates that the protein has a similar structure to the membrane associated phosphatidyl ubiquitin described in baculovirus particles. A similar molecule was found in vaccinia virus and herpes simplex virus particles, suggesting that it may be a component of uninfected cell membranes, which is incorporated into membrane layers in virions during morphogenesis.  (+info)

Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. (5/15816)

Adenovirus (Ad) enters target cells by receptor-mediated endocytosis, escapes to the cytosol, and then delivers its DNA genome into the nucleus. Here we analyzed the trafficking of fluorophore-tagged viruses in HeLa and TC7 cells by time-lapse microscopy. Our results show that native or taxol-stabilized microtubules (MTs) support alternating minus- and plus end-directed movements of cytosolic virus with elementary speeds up to 2.6 micrometer/s. No directed movement was observed in nocodazole-treated cells. Switching between plus- and minus end-directed elementary speeds at frequencies up to 1 Hz was observed in the periphery and near the MT organizing center (MTOC) after recovery from nocodazole treatment. MT-dependent motilities allowed virus accumulation near the MTOC at population speeds of 1-10 micrometer/min, depending on the cell type. Overexpression of p50/dynamitin, which is known to affect dynein-dependent minus end-directed vesicular transport, significantly reduced the extent and the frequency of minus end-directed migration of cytosolic virus, and increased the frequency, but not the extent of plus end-directed motility. The data imply that a single cytosolic Ad particle engages with two types of MT-dependent motor activities, the minus end- directed cytoplasmic dynein and an unknown plus end- directed activity.  (+info)

Rubella virus-induced apoptosis varies among cell lines and is modulated by Bcl-XL and caspase inhibitors. (6/15816)

Rubella virus (RV) causes multisystem birth defects in the fetuses of infected women. To investigate the cellular basis of this pathology, we examined the cytopathic effect of RV in three permissive cell lines: Vero 76, RK13, and BHK21. Electron microscopy and the TUNEL assay showed that the cytopathic effect resulted from RV-induced programmed cell death (apoptosis) in all three cell lines, but the extent of apoptosis varied among these cells. At 48 h postinfection, the RK13 cell line showed the greatest number of apoptotic cells, the Vero 76 cell line was approximately 3-fold less, and BHK21 had very few. An increased multiplicity of infection and longer time postinfection were required for the BHK21 cell line to reach the level of apoptotic cells in Vero 76 at 48 h. Purified RV induced apoptosis in a dose-dependent fashion, but not UV-inactivated RV or virus-depleted culture supernatant. Specific inhibitors of the apoptosis-specific proteases caspases reduced RV-induced apoptosis and led to higher levels of RV components in infected cells. To address the role of regulatory proteins in RV-induced apoptosis, the antiapoptotic gene Bcl-2 or Bcl-XL was transfected into RK13 cells. Although a high level of Bcl-2 family proteins was expressed, no protection was observed from apoptosis induced by RV, Sindbis virus, or staurosporine in RK13 cells. In BHK21 cells, however, increased expression of Bcl-XL protected cells from apoptosis. The observed variability in apoptotic response to RV of these cell lines demonstrates that programmed cell death is dependent on the unique properties of each cell and may be indicative of how selective organ damage occurs in a congenital rubella syndrome fetus.  (+info)

CLIP-170 highlights growing microtubule ends in vivo. (7/15816)

A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin.  (+info)

Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase. (8/15816)

Twelve lipophilic 2,4-diamino-5-methyl-5-deazapteridine derivatives and trimethoprim were evaluated for activity against Mycobacterium tuberculosis and Mycobacterium avium in vitro. Six of the compounds had MICs of < or =12.8 mg/L and < or =1.28 mg/L against M. tuberculosis and M. avium, respectively; trimethoprim MICs were >128 mg/L and >12.8 but < or =128 mg/L, respectively. Two compounds, with either a 2-methyl-5-methoxy phenyl or 2-methoxy-5-trifluoromethyl phenyl linked at the 6-position of the deazapteridine moiety by a CH2NH bridge, had MICs of < or =0.13 mg/L against M. avium; the two compounds also had apparent I50 values for dihydrofolate reductase of 2 and 8 nM, respectively, compared with an I50 of 400 nM with trimethoprim. Four of the compounds were selectively toxic to mycobacteria as compared with Vero cells. These results demonstrated that lipophilic antifolates can be synthesized which are more active against mycobacteria than trimethoprim and which possess selective toxicity.  (+info)