Hippocampal neurogenesis in adult Old World primates. (1/204)

The production of new hippocampal neurons in adulthood has been well documented in rodents. Recent studies have extended these findings to other mammalian species, such as tree shrews and marmoset monkeys. However, hippocampal neurogenesis has not been demonstrated in adult Old World primates. To investigate this possibility, we injected 11 adult Old World monkeys of different ages (5-23 years) with the thymidine analog bromodeoxyuridine and examined the fate of the labeled cells at different survival times by using neuronal and glial markers. In the young-adult and middle-aged monkeys, we found a substantial number of cells that incorporated bromodeoxyuridine and exhibited morphological and biochemical characteristics of immature and mature neurons. New cells located in the dentate gyrus expressed a marker of immature granule neurons, Turned On After Division 64 kDa protein, as well as markers of mature granule neurons including neuron specific enolase, neuronal nuclei, and the calcium-binding protein calbindin. Fewer new cells expressed the astroglial marker glial fibrillary acidic protein. Evidence of neurogenesis was observed in the oldest monkeys (23 years) as well, but it appeared to be less robust. These results indicate that the adult brains of Old World monkeys produce new hippocampal neurons. Adult macaque monkeys may provide a useful primate model for studying the functional significance of adult neurogenesis.  (+info)

Continuation of neurogenesis in the hippocampus of the adult macaque monkey. (2/204)

We present evidence for continuous generation of neurons, oligodendrocytes, and astrocytes in the hippocampal dentate gyrus of adult macaque monkeys, using immunohistochemical double labeling for bromodeoxyuridine and cell-type-specific markers. We estimate that the relative rate of neurogenesis is approximately 10 times less than that reported in the adult rodent dentate gyrus. Nevertheless, the generation of these three cell types in a discreet brain region suggests that a multipotent neural stem cell may be retained in the adult primate hippocampus. This demonstration of adult neurogenesis in nonhuman Old World primates-with their phylogenetic proximity to humans, long life spans, and elaborate cognitive abilities-establishes the macaque as an unexcelled animal model to experimentally investigate issues of neurogenesis in humans and offers new insights into its significance in the adult brain.  (+info)

Evolution of class I alcohol dehydrogenase genes in catarrhine primates: gene conversion, substitution rates, and gene regulation. (3/204)

The three class I alcohol dehydrogenases (ADHs) in humans comprise homo- and heterodimers of three subunits (alpha, beta, and gamma) with greater than 90% sequence identity. These are encoded by distinct genes (ADH1, ADH2, and ADH3, respectively) and are all expressed in the liver. In baboons, only the beta ADH subunit is expressed in liver. A second class I ADH is expressed in the kidney; we isolated, cloned, and sequenced the cDNA corresponding to this ADH and conclude that it is of the gamma ADH lineage. We also amplified and sequenced the 5' noncoding regions of all three class I baboon ADH genes and the rhesus monkey ADH1 gene and compared their nucleotide sequences with the corresponding human sequences. There is clear evidence that the evolution of these genes has been reticulate. At least three gene conversion events, affecting the coding and 3' noncoding regions of the genes, are inferred from compatibility and partition matrices and phylogenetic analysis of the sequences. Our estimation of the evolutionary history of these genes provides a framework for the investigation of relative substitution rates and functional variation among the sequences. Relative-rate tests, designed to account for the reticulate evolution of these genes, indicate no difference in substitution rate either between genes encoding different subunits or between human and Old World monkey lineages. The human and baboon gamma ADH sequences do not show clear differences at functionally important sites within the coding region, but they do differ at a number of sites in regions previously proposed to be regulatory sites for transcriptional control. This variation may explain the different patterns of gene expression in humans and baboons.  (+info)

Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). (4/204)

The most common etiology for Prader-Willi syndrome and Angelman syndrome is de novo interstitial deletion of chromosome 15q11-q13. Deletions and other recurrent rearrangements of this region involve four common 'hotspots' for breakage, termed breakpoints 1-4 (BP1-BP4). Construction of an approximately 4 Mb YAC contig of this region identified multiple sequence tagged sites (STSs) present at both BP2 and BP3, suggestive of a genomic duplication event. Interphase FISH studies demonstrated three to five copies on 15q11-q13, one copy on 16p11.1-p11.2 and one copy on 15q24 in normal controls, while analysis on two Class I deletion patients showed loss of approximately three signals at 15q11-q13 on one homolog. Multiple FISH signals were also observed at regions orthologous to both human chromosomes 15 and 16 in non-human primates, including Old World monkeys, suggesting that duplication of this region may have occurred approximately 20 million years ago. A BAC/PAC contig for the duplicated genomic segment (duplicon) demonstrated a size of approximately 400 kb. Surprisingly, the duplicon was found to contain at least seven different expressed sequence tags representing multiple genes/pseudogenes. Sequence comparison of STSs amplified from YAC clones uniquely mapped to BP2 or BP3 showed two different copies of the duplicon within BP3, while BP2 comprised a single copy. The orientation of BP2 and BP3 are inverted relative to each other, whereas the two copies within BP3 are in tandem. The presence of large duplicated segments on chromosome 15q11-q13 provides a mechanism for homologous unequal recombination events that may mediate the frequent rearrangements observed for this chromosome.  (+info)

DNA analyses support the hypothesis that infanticide is adaptive in langur monkeys. (5/204)

Although the killing of dependent infants by adult males is a widespread phenomenon among primates, its causes and consequences still remain hotly debated. According to the sexual selection hypothesis, infanticidal males will gain a reproductive advantage provided that only unrelated infants are killed and that the males increase their chances of siring the next infants. Alternatively, the social pathology hypothesis interprets infanticide as a result of crowded living conditions and, thus, as not providing any advantage. Based on DNA analyses of wild Hanuman langurs (Presbytis entellus) we present the first evidence that male attackers were not related to their infant victims. Furthermore, in all cases the presumed killers were the likely fathers of the subsequent infants. Our data, therefore, strongly support the sexual selection hypothesis interpreting infanticide as an evolved, adaptive male reproductive tactic.  (+info)

Isolation and partial characterization of a lentivirus from talapoin monkeys (Myopithecus talapoin). (6/204)

We have identified a novel lentivirus prevalent in talapoin monkeys (Myopithecus talapoin), extending previous observations of human immunodeficiency virus-1 cross-reactive antibodies in the serum of these monkeys. We obtained a virus isolate from one of three seropositive monkeys initially available to us. The virus was tentatively named simian immunodeficiency virus from talapoin monkeys (SIVtal). Despite the difficulty of isolating this virus, it was readily passed between monkeys in captivity through unknown routes of transmission. The virus could be propagated for short terms in peripheral blood mononuclear cells of talapoin monkeys but not in human peripheral blood mononuclear cells or human T cell lines. The propagated virus was used to infect a naive talapoin monkey, four rhesus macaques (M. mulatta), and two cynomolgus macaques (M. fascicularis). All animals seroconverted and virus could be reisolated during a short period after experimental infection. A survey of SIVtal-infected captive talapoin monkeys revealed a relative decrease in CD4(+) cell numbers in chronically (>2 years) infected animals. No other signs of immunodeficiency were observed in any of the infected animals. PCR amplification followed by DNA sequencing of two fragments of the polymerase gene revealed that SIVtal is different from the presently known lentiviruses and perhaps most related to the SIV from Sykes monkeys.  (+info)

The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. (7/204)

Trichromacy in all Old World primates is dependent on separate X-linked MW and LW opsin genes that are organized into a head-to-tail tandem array flanked on the upstream side by a locus control region (LCR). The 5' regions of these two genes show homology for only the first 236 bp, although within this region, the differences are conserved in humans, chimpanzees, and two species of cercopithecoid monkeys. In contrast, most New World primates have only a single polymorphic X-linked opsin gene; all males are dichromats and trichromacy is achieved only in those females that possess a different form of this gene on each X chromosome. By sequencing the upstream region of this gene in a New World monkey, the marmoset, we have been able to demonstrate the presence of an LCR in an equivalent position to that in Old World primates. Moreover, the marmoset sequence shows extensive homology from the coding region to the LCR with the upstream sequence of the human LW gene, a distance of >3 kb, whereas homology with the human MW gene is again limited to the first 236 bp, indicating that the divergent MW sequence identifies the site of insertion of the duplicated gene. This is further supported by the presence of an incomplete Alu element on the upstream side of this insertion point in the MW gene of both humans and a cercopithecoid monkey, with additional Alu elements present further upstream. Therefore, these Alu elements may have been involved in the initial gene duplication and may also be responsible for the high frequency of gene loss and gene duplication within the opsin gene array. Full trichromacy is present in one species of New World monkey, the howler monkey, in which separate MW and LW genes are again present. In contrast to the separate genes in humans, however, the upstream sequences of the two howler genes show homology with the marmoset for at least 600 bp, which is well beyond the point of divergence of the human MW and LW genes, and each sequence is associated with a different LCR, indicating that the duplication in the howler monkey involved the entire upstream region. [The sequence data described in this paper have been submitted to GenBank under accession nos. AF155218, AF156715, and AF156716.]  (+info)

Molecular evolution of the CMT1A-REP region: a human- and chimpanzee-specific repeat. (8/204)

The CMT1A-REP repeat consists of two copies of a 24-kb sequence on human chromosome 17p11.2-12 that flank a 1.5-Mb region containing a dosage-sensitive gene, peripheral nerve protein-22 (PMP22). Unequal meiotic crossover mediated by misalignment of proximal and distal copies of the CMT1A-REP in humans leads to a 1.5-Mb duplication or deletion associated with two common peripheral nerve diseases, Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). Previous molecular hybridization studies with CMT1A-REP sequences suggested that two copies of the repeat are also found in the chimpanzee, raising the possibility that this unique repeat arose during primate evolution. To further characterize the structure and evolutionary synthesis of the CMT1A-REP repeat, fluorescent in situ hybridization (FISH) analysis and heterologous PCR-based assays were carried out for a series of primates. Genomic DNA was analyzed with primers selected to differentially amplify the centromeric and telomeric ends of the human proximal and distal CMT1A-REP elements and an associated mariner (MLE) sequence. All primate species examined (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, gibbon, baboon, rhesus monkey, green monkey, owl monkey, and galago) tested positive for a copy of the distal element. In addition to humans, only the chimpanzee was found to have a copy of the proximal CMT1A-REP element. All but one primate species (galago) tested positive for the MLE located within the CMT1A-REP sequence. These observations confirm the hypothesis that the distal CMT1A-REP element is the ancestral sequence which was duplicated during primate evolution, provide support for a human-chimpanzee clade, and suggest that insertion of the MLE into the CMT1A-REP sequence occurred in the ancestor of anthropoid primates.  (+info)