Ialpha exon-replacement mice synthesize a spliced HPRT-C(alpha) transcript which may explain their ability to switch to IgA. Inhibition of switching to IgG in these mice. (1/855)

Antibody class switching is regulated by transcription of unrearranged C(H) genes to produce germline (GL) transcripts which direct the choice of isotype and are required for switching. However, their role is unknown. GL transcripts are initiated at the I exons located upstream of each switch region. Although deletion of the I exon by gene targeting prevents switch recombination to that CH gene, the Ialpha exon can be replaced by an entirely different DNA segment, a minigene driven by the phosphoglycerate kinase (PGK) promoter and encoding hypoxanthine phosphoribosyl transferase (HPRT), oriented in the sense direction, without reducing antibody class switching to IgA. To understand why HPRT substitution of the Ialpha exon does not disrupt switch recombination, we have analyzed the structure of the transcript from the targeted allele in these mice. We identify a spliced transcript in which the HPRT exons are spliced to the C(alpha) gene segments, resulting in a structure similar to normal GL transcripts. The abundance of this transcript is similar to that of the normal alpha GL RNA. We also demonstrate that switching to the four IgG subclasses in B cells from these mice is reduced in comparison to wild-type mice. We discuss the possibility that the strong PGK promoter inserted at the Ig alpha locus may interfere with interaction of the promoters for gamma GL transcripts with the 3' IgH enhancer.  (+info)

Cathepsin S required for normal MHC class II peptide loading and germinal center development. (2/855)

Major histocompatibility complex (MHC) class II molecules acquire antigenic peptides after degradation of the invariant chain (Ii), an MHC class II-associated protein that otherwise blocks peptide binding. Antigen-presenting cells of mice that lack the protease cathepsin S fail to process Ii beyond a 10 kDa fragment, resulting in delayed peptide loading and accumulation of cell surface MHC class II/10 kDa Ii complexes. Although cathepsin S-deficient mice have normal numbers of B and T cells and normal IgE responses, they show markedly impaired antibody class switching to IgG2a and IgG3. These results indicate cathepsin S is a major Ii-processing enzyme in splenocytes and dendritic cells. Its role in humoral immunity critically depends on how antigens access the immune system.  (+info)

Ig heavy chain expression and class switching in vitro from an allele lacking the 3' enhancers DNase I-hypersensitive hs3A and hs1,2. (3/855)

The murine Ig heavy chain (IgH) 3' regulatory region contains four enhancers: hs3A, hs1,2, hs3B, and hs4. Various studies have suggested a role for these enhancers in regulating IgH expression and class switching. Here we assess the role of hs3A and hs1,2 in these processes by exploiting a naturally occurring deletion of these enhancers from the expressed, C57BL/6 allele of the F1 pre-B cell line, 70Z/3. Equivalent mu expression in 70Z/3 and 18-81 (which has an intact 3' region) indicated that hs3A and hs1,2 were not essential for mu expression at the pre-B cell stage. To further examine the role of hs3A and hs1,2 in IgH function at the plasma cell stage, we fused 70Z/3 with the plasmacytoma NSO. Electromobility shift assay analysis of the 70Z/3-NSO hybrids revealed a transcription factor complement conducive to the activation of the 3' enhancers. Despite the lack of enhancers, hs3A and hs1,2, the level of mu RNA and protein in the 70Z/3-NSO fusion hybrids was substantially elevated relative to its pre-B parent and comparable with that observed in a number of mu-producing spleen cell hybridomas. Additionally, ELISAspot assays showed that the 70Z/3-NSO hybrid underwent spontaneous class switching in culture to IgG1 at a frequency comparable with that of most hybridomas. These results indicate that hs3A and hs1,2 are not essential for high levels of IgH expression or for spontaneous class switching in a plasma cell line.  (+info)

IL-5 induces IgG1 isotype switch recombination in mouse CD38-activated sIgD-positive B lymphocytes. (4/855)

Mouse B cells express CD38, whose ligation by anti-CD38 Ab induces their proliferation and protection from apoptosis. We previously showed that stimulation of mouse splenic B cells with IL-5 together with CS/2, an anti-mouse CD38 mAb, induces production of IgG1 and IgM. Here we examined the role of IL-5 and CS/2 in the expression of germline gamma1 transcripts and the generation of reciprocal products forming DNA circles as byproducts of mu-gamma1 switch recombination. By itself, CS/2 induced significant expression of germline gamma1 transcripts in splenic naive B cells, whereas IL-5 neither induced nor enhanced germline gamma1 expression. Increased cellular content of reciprocal product, which is characteristic of mu-gamma1 recombination, was not observed after culturing B cells with CS/2, but increased reciprocal product, along with high levels of lgG1 secretion, was found when B cells were cultured with CS/2 plus IL-5. Although IL-4 did not, by itself, induce mu-gamma1 recombination in B cells stimulated with CS/2, in conjunction with CS/2 plus IL-5, IL-4 dramatically enhanced sterile gamma1 transcription and IgG1 production. These results demonstrate that CD38 ligation induces only germline gamma1 transcription and that IL-5 promotes both mu-gamma1 switch recombination and lgG1 secretion in an IL-4-independent manner.  (+info)

Qualitative and quantitative requirements for CD4+ T cell-mediated antiviral protection. (5/855)

CD4+ Th cells deliver the cognate and cytokine signals that promote the production of protective virus-neutralizing IgG by specific B cells and are also able to mediate direct antiviral effector functions. To quantitatively and qualitatively analyze the antiviral functions of CD4+ Th cells, we generated transgenic mice (tg7) expressing an MHC class II (I-Ab)-restricted TCR specific for a peptide derived from the glycoprotein (G) of vesicular stomatitis virus (VSV). The elevated precursor frequency of naive VSV-specific Th cells in tg7 mice led to a markedly accelerated and enhanced class switching to virus-neutralizing IgG after immunization with inactivated VSV. Furthermore, in contrast to nontransgenic controls, tg7 mice rapidly cleared a recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G) from peripheral organs. By adoptive transfer of naive tg7 CD4+ T cells into T cell-deficient recipients, we found that 105 transferred CD4+ T cells were sufficient to induce isotype switching after challenge with a suboptimal dose of inactivated VSV. In contrast, naive transgenic CD4+ T cells were unable to adoptively confer protection against peripheral infection with Vacc-IND-G. However, tg7 CD4+ T cells that had been primed in vitro with VSV-G peptide were able to adoptively transfer protection against Vacc-IND-G. These results demonstrate that the antiviral properties of CD4+ T cells are governed by the differentiation status of the CD4+ T cell and by the type of effector response required for virus elimination.  (+info)

Position-dependent inhibition of class-switch recombination by PGK-neor cassettes inserted into the immunoglobulin heavy chain constant region locus. (6/855)

The Ig heavy chain (IgH) constant region (CH) genes are organized from 5' to 3' in the order Cmicro, Cdelta, Cgamma3, Cgamma1, Cgamma2b, Cgamma2a, Cepsilon, and Calpha. Expression of CH genes downstream of Cdelta involves class-switch recombination (CSR), a process that is targeted by germ-line transcription (GT) of the corresponding CH gene. Previously, we demonstrated that insertion of a PGK-neor cassette at two sites downstream of Calpha inhibits, in cultured B cells, GT of and CSR to a subset of CH genes (including Cgamma3, Cgamma2a, Cgamma2b, and Cepsilon) that lie as far as 120 kb upstream. Here we show that insertion of the PGK-neor cassette in place of sequences in the Igamma2b locus inhibits GT of and CSR to the upstream Cgamma3 gene, but has no major effect on the downstream Cgamma2a and Cepsilon genes. Moreover, replacement of the Cepsilon exons with a PGK-neor cassette in the opposite transcriptional orientation also inhibits, in culture, GT of and CSR to the upstream Cgamma3, Cgamma2b, and Cgamma2a genes. As with the PGK-neor insertions 3' of Calpha studied previously, the Cgamma1 and Calpha genes were less affected by these mutations both in culture and in mice, whereas the Cgamma2b gene appeared less affected in vivo. Our findings support the existence of a long-range 3' IgH regulatory region required for GT of and CSR to multiple CH genes and suggest that PGK-neor cassette insertion into the locus short circuits the ability of this region to facilitate GT of dependent CH genes upstream of the insertion.  (+info)

Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. (7/855)

We have reported previously that in vitro generated dendritic cells (DC) can directly regulate B cell responses. Recently, germinal center DC (GCDC) were identified within B cell follicles. Due to their particular localization, we have tested in the present study whether GCDC could contribute to key events characteristic of the GC reaction. Our present results demonstrate that 1) ex vivo GCDC induce a dramatic GC B cell expansion upon CD40 and IL-2 activation and drive plasma cell differentiation, 2) this property is shared by GCDC and blood DC, but not by Langerhans cells, 3) IL-12 production by GCDC is critical in GC B cell expansion and differentiation, and 4) importantly, GCDC also induce IL-10-independent isotype switching toward IgG1. These observations support the novel concept that GCDC directly contribute to the germinal center reaction.  (+info)

Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. (8/855)

Partly because of the lack of a suitable in vitro model, the trigger(s) and the mechanism(s) of somatic hypermutation in Ig genes are largely unknown. We have analyzed the hypermutation potential of human CL-01 lymphocytes, our monoclonal model of germinal center B cell differentiation. These cells are surface IgM+ IgD+ and, in the absence of T cells, switch to IgG, IgA, and IgE in response to CD40:CD40 ligand engagement and exposure to appropriate cytokines. We show here that CL-01 cells can be induced to effectively mutate the expressed VHDJH-C mu, VHDJH-C delta, VHDJH-C gamma, VHDJH-C alpha, VHDJH-C epsilon, and V lambda J lambda-C lambda transcripts before and after Ig class switching in a stepwise fashion. In these cells, induction of somatic mutations required cross-linking of the surface receptor for Ag and T cell contact through CD40:CD40 ligand and CD80: CD28 coengagement. The induced mutations showed intrinsic features of Ig V(D)J hypermutation in that they comprised 110 base substitutions (97 in the heavy chain and 13 in the lambda-chain) and only 2 deletions and targeted V(D)J, virtually sparing CH and C lambda. These mutations were more abundant in secondary VHDJH-C gamma than primary VHDJH-C mu transcripts and in V(D)J-C than V lambda J lambda-C lambda transcripts. These mutations were also associated with coding DNA strand polarity and showed an overall rate of 2.42 x 10(-4) base changes/cell division in VHDJH-CH transcripts. Transitions were favored over transversions, and G nucleotides were preferentially targeted, mainly in the context of AG dinucleotides. Thus, in CL-01 cells, Ig somatic hypermutation is readily inducible by stimuli different from those required for class switching and displays discrete base substitution modalities.  (+info)