The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. (1/4249)

The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  (+info)

Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. (2/4249)

Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  (+info)

Identification of a new Pyk2 target protein with Arf-GAP activity. (3/4249)

Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a stable complex with Pyk2 and that activation of Pyk2 leads to tyrosine phosphorylation of Pap in living cells. Immunofluorescence experiments demonstrate that Pap is localized in the Golgi apparatus and at the plasma membrane, where it is colocalized with Pyk2. In addition, in vitro recombinant Pap exhibits strong GTPase-activating protein (GAP) activity towards the small GTPases Arf1 and Arf5 and weak activity towards Arf6. Addition of recombinant Pap protein to Golgi preparations prevented Arf-dependent generation of post-Golgi vesicles in vitro. Moreover, overexpression of Pap in cultured cells reduced the constitutive secretion of a marker protein. We propose that Pap functions as a GAP for Arf and that Pyk2 may be involved in regulation of vesicular transport through its interaction with Pap.  (+info)

Intracellular sodium modulates the expression of angiotensin II subtype 2 receptor in PC12W cells. (4/4249)

Although the angiotensin II subtype 2 receptor (AT2-R) is expressed abundantly in the adrenal medulla, its physiological significance has not yet been determined. To obtain fundamental knowledge of the regulation of AT2-R expression in the adrenal medulla, we investigated the effects of modulating several ion channels on AT2-R expression in PC12W cells. Experiments were performed after 24 hours of serum depletion under subconfluent conditions. After 48 hours of treatment with various agonists or antagonists, the receptor density and mRNA level of AT2-Rs were quantified by 125I-[Sar1, Ile8]angiotensin II binding and Northern blot analysis. Ouabain (10 to 100 nmol/L) and insulin (10 to 100 nmol/L) dose-dependently increased receptor density and mRNA level. Analysis of the binding characteristics revealed that the ouabain-dependent increase in AT2-R levels was due to an increase in binding capacity without a change in the Kd value. These increases were blocked by lowering the Na+ concentration in the medium. A low concentration of the sodium ionophore monensin (10 nmol/L), the K+-channel blocker quinidine (10 micromol/L), and the ATP-sensitive K+-channel blockers tolbutamide (100 micromol/L) and glybenclamide (10 micromol/L) also significantly increased receptor density, but the ATP-sensitive K+-channel agonist cromakalim (100 micromol/L) decreased receptor density significantly (P<0.01). Nifedipine (10 micromol/L) decreased basal receptor density and completely blocked the increase in receptor density caused by these agents. The increase in receptor density caused by an increase in intracellular Na+ was accompanied by an increase in mRNA level, whereas the ATP-sensitive K+-channel blockers did not change mRNA level. Nifedipine slightly decreased mRNA level. These results suggest that AT2-R expression is sensitively regulated by intracellular cation levels. The change in intracellular Na+ level transcriptionally regulates AT2-R expression, whereas the K+-channel blocker-dependent upregulation appears to be at least in part posttranslational.  (+info)

Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. (5/4249)

We previously reported that rat pheochromocytoma PC12 cells express the neuronal differentiated phenotype under hyperoxia through the production of reactive oxygen species (ROS). In the present study, we found that in this phenotype, Bcl-2, an apoptosis inhibitor, affects mitogen-activated protein (MAP)-kinase activity, which is known as a key enzyme of the signal-transduction cascade for differentiation. When PC12 cells were cultured under hyperoxia, a rapid increase in MAP-kinase activity, including that of both p42 and p44, was observed. Although the activity level then decreased quickly, activity higher than the control level was observed for 48 h. PD98059, an inhibitor of MAP kinase, suppressed the hyperoxia-induced neurite extensions, suggesting the involvement of MAP-kinase activity in the mechanism of differentiation induced by ROS. An elevation of Bcl-2 expression was observed after culturing PC12 cells for 24 h under hyperoxia. This Bcl-2 elevation was not affected by treatment with PD98059, suggesting that it did not directly induce neurite extension under hyperoxia. However, the blockade of the Bcl-2 elevation by an antisense oligonucleotide inhibited the sustained MAP-kinase activity and neurite extensions under hyperoxia. Further, in PC12 cells highly expressing Bcl-2, the sustained MAP-kinase activity and neurite extensions under hyperoxia were enhanced. These results suggested that MAP kinase is activated through the production of ROS, and the subsequent elevation of Bcl-2 expression sustains the MAP-kinase activity, resulting in the induction of the neuronal-differentiation phenotype of PC12 cells under hyperoxia.  (+info)

Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. (6/4249)

Elementary Ca2+ release signals in nerve growth factor- (NGF-) differentiated PC12 cells and hippocampal neurons, functionally analogous to the "Ca2+ sparks" and "Ca2+ puffs" identified in other cell types, were characterized by confocal microscopy. They either occurred spontaneously or could be activated by caffeine and metabotropic agonists. The release events were dissimilar to the sparks and puffs described so far, as many arose from clusters of both ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (InsP3Rs). Increasing either the stimulus strength or loading of the intracellular stores enhanced the frequency of and coupling between elementary release sites and evoked global Ca2+ signals. In the PC12 cells, the elementary Ca2+ release preferentially occurred around the branch points. Spatio-temporal recruitment of such elementary release events may regulate neuronal activities.  (+info)

Microvessels from Alzheimer's disease brains kill neurons in vitro. (7/4249)

Understanding the pathogenesis of Alzheimer's disease is of widespread interest because it is an increasingly prevalent disorder that is progressive, fatal, and currently untreatable. The dementia of Alzheimer's disease is caused by neuronal cell death. We demonstrate for the first time that blood vessels isolated from the brains of Alzheimer's disease patients can directly kill neurons in vitro. Either direct co-culture of Alzheimer's disease microvessels with neurons or incubation of cultured neurons with conditioned medium from microvessels results in neuronal cell death. In contrast, vessels from elderly nondemented donors are significantly (P<0.001) less lethal and brain vessels from younger donors are not neurotoxic. Neuronal killing by either direct co-culture with Alzheimer's disease microvessels or conditioned medium is dose- and time-dependent. Neuronal death can occur by either apoptotic or necrotic mechanisms. The microvessel factor is neurospecific, killing primary cortical neurons, cerebellar granule neurons, and differentiated PC-12 cells, but not non-neuronal cell types or undifferentiated PC-12 cells. Appearance of the neurotoxic factor is decreased by blocking microvessel protein synthesis with cycloheximide. The neurotoxic factor is soluble and likely a protein, because its activity is heat labile and trypsin sensitive. These findings implicate a novel mechanism of vascular-mediated neuronal cell death in Alzheimer's disease.  (+info)

Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. (8/4249)

Transgenic rabbits carrying gene constructs encoding human nerve growth factor beta (hNGF-beta) cDNA were generated. Expression of hNGF-beta mRNA was restricted to the mammary gland of lactating rabbits. Western Blot analysis revealed a polypeptide of 13.2 kDa in the milk of transgenic animals. hNGF-beta was purified from the milk by a two-step chromatographic procedure. Electrospray mass spectroscopy analysis of purified hNGF-beta depicted a molecular weight of 13,261 Da per subunit. The biological activity of the hNGF-beta was tested using PC12W2 cells and cultures of dorsal root ganglion neurons from chicken embryos. Crude defatted milk from transgenic animals and purified hNGF-beta demonstrated full biological activity when compared to commercial recombinant hNGF-beta.  (+info)