Thermodynamics of the reconstitution of tuna cytochrome c from two peptide fragments. (1/217)

Two peptide fragments from tuna cytochrome c (cyt c), N-fragment (residues 1-44 containing the heme) and C-fragment (residues 45-103), combine to form a 1:1 fragment complex. This was clearly proved by ion-spray mass spectrometry. It was found from CD and NMR spectra that the structure of the fragment complex formed is similar to that of an intact cyt c, although each isolated fragment itself is unstructured. Binding constants and enthalpies upon the complex formation were directly observed by isothermal titration calorimetry. Thermodynamic parameters (deltaG(o)b, deltaHb, deltaS(o)b, and deltaC(b)p)) associated with the complex formation were determined at various pHs and temperatures. DeltaHb was found to be almost independent of pH values. The change in heat capacity accompanying the complex formation (deltaC(b)p) was directly determined from the temperature dependence of deltaHb. In addition, the change in heat capacity and enthalpy upon tuna cyt c unfolding were determined by differential scanning calorimetry. Thermodynamic parameters for the unfolding/dissociation process of the fragment complex were compared with those for cyt c unfolding at pH 3.9 and 303 K. In a comparison of two unfolding processes, the heat capacity change of each was very close to the other, while both the unfolding enthalpy and entropy of the fragment complex were larger than those of tuna cyt c. These thermodynamic data suggest that the internal interactions between polar groups (hydrogen bonding) and nonpolar groups (van der Waals interactions) are preserved in the fragment complex as well as in the native state of cyt c.  (+info)

Environmental factors and chemical agents affecting the growth of the pathogenic marine ciliate Uronema nigricans. (2/217)

The scuticociliate Uronema nigricans is an opportunistically parasitic marine ciliate known to cause disease in some aquacultural environments with epizootics documented from marine larval rearing systems, marine aquaria and in southern bluefin tuna Thunnus macoyii growout enclosures. This study examined growth responses of laboratory cultures of the ciliate and prey bacteria to variations in temperature and salinity, and the efficacy of potential chemotherapeutants for control of U. nigricans infections. Differences in ciliate growth responses were marginal at temperatures of 10 to 25 degrees C and at salinities between 15 and 35 ppt, though 3.5 ppt or less was lethal. Ciliates were found to be sensitive to fluctuations in bacterial densities, which may be a factor in the seasonal occurrence of the ciliate-related disease in tuna. Commonly used chemotherapeutants such as formalin, malachite green and hydrogen peroxide were all effective against the ciliate during in vitro trials.  (+info)

Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. (3/217)

Dietary fish oil induces hepatic peroxisomal and microsomal fatty acid oxidation by peroxisome proliferator-activator receptor alpha activation, whereas it down-regulates lipogenic gene expression by unknown mechanism(s). Because sterol regulatory element-binding proteins (SREBPs) up-regulated lipogenic genes, investigation was made on the effects of fish oil feeding on SREBPs and sterol regulatory element (SRE)-dependent gene expression in C57BL/6J mice. Three forms of SREBPs, SREBP-1a, -1c, and -2, are expressed in liver, and their truncated mature forms activate transcription of sterol-regulated genes. C57BL/6J mice were divided into three groups; the first group was given a high carbohydrate diet, and the other two groups were given a high fat diet (60% of total energy), with the fat in the form of safflower oil or fish oil, for 5 months. Compared with safflower oil feeding, fish oil feeding decreased triglyceride and cholesterol concentrations in liver. There were no differences in amount of SREBP-1 and -2 in both precursor and mature forms between carbohydrate- and safflower oil-fed mice. However, compared with safflower oil feeding, fish oil feeding reduced the amounts of precursor SREBP-1 in membrane fraction by 90% and of mature SREBP-1 in liver nuclei by 57%. Fish oil feeding also reduced precursor SREBP-2 by 65% but did not alter the amount of mature SREBP-2. Compared with safflower oil feeding, fish oil feeding decreased liver SREBP-1c mRNA level by 86% but did not alter SERBP-1a mRNA. Consistent with decrease of mature SREBP-1, compared with safflower oil feeding, fish oil feeding down-regulated the expression of liver SRE-dependent genes, such as low density lipoprotein receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, 3-hydroxy-3-methylglutaryl-CoA synthase, fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase-1. These data suggested that in liver, fish oil feeding down-regulates the mature form of SREBP-1 by decreasing SREBP-1c mRNA expression, with corresponding decreases of mRNAs of cholesterologenic and lipogenic enzymes.  (+info)

Ontogenetic changes in characteristics required for endothermy in juvenile black skipjack tuna (Euthynnus lineatus). (4/217)

To characterize better the development of endothermy in tunas, we assessed how the abilities to generate heat and to conserve heat within the aerobic, slow-twitch (red) myotomal muscle using counter-current heat exchangers (retia) change with size in juvenile black skipjack tuna (Euthynnus lineatus) above and below the hypothesized minimum size for endothermy of 207 mm fork length (FL). Early juvenile scombrids (10-77 mm FL) collected off the Pacific coast of Panama were raised to larger sizes at the Inter-American Tropical Tuna Commission Laboratory at Achotines Bay, Panama. Evidence of central and lateral rete blood vessels was found in E. lineatus as small as 95.9 mm FL and 125 mm FL, respectively. In larger E. lineatus juveniles (up to 244 mm FL), the capacity for heat exchange increased with fork length as a result of increases in rete length, rete width and the number of vessel rows. The amount (g) of red muscle increased exponentially with fork length in both E. lineatus (105-255 mm FL) and a closely related ectothermic species, the sierra Spanish mackerel Scomberomorus sierra (151-212 mm FL), but was greater in E. lineatus at a given fork length. The specific activity (international units g(-)(1)) of the enzyme citrate synthase in red muscle, an index of tissue heat production potential, increased slightly with fork length in juvenile E. lineatus (84. 1-180 mm FL) and S. sierra (122-215 mm FL). Thus, total red muscle heat production capacity (red muscle citrate synthase activity per gram times red muscle mass in grams) increased with fork length, primarily because of the increase in red muscle mass. Below 95.9 mm FL, E. lineatus cannot maintain red muscle temperature (T(m)) above the ambient water temperature (T(a)) because juveniles of this size lack retia. Above 95.9 mm FL, the relationship between T(x) (T(m)-T(a)) and FL for E. lineatus diverges from that for the ectothermic S. sierra because of increases in the capacities for both heat production and heat retention that result in the development of endothermy.  (+info)

Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). (5/217)

Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.  (+info)

Swimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). (6/217)

The swimming kinematics of two active pelagic fishes from the family Scombridae were compared to test the hypothesis that the kawakawa tuna (Euthynnus affinis) uses the thunniform mode of locomotion, in which the body is held more rigid and undergoes less lateral movement in comparison with the chub mackerel (Scomber japonicus), which uses the carangiform swimming mode. This study, the first quantitative kinematic comparison of size-matched scombrids, confirmed significantly different swimming kinematics in the two species. Ten kawakawa (15.1-25.5 cm fork length, FL) and eight chub mackerel (14.0-23.4 cm FL), all juveniles, were videotaped at 120 Hz while swimming at several speeds up to their maximum sustained speed at 24 degrees C. Computerized motion analysis was used to digitize specific points on the body in sequential video frames, and kinematic variables were quantified from the progression of the points over time. At a given speed, kawakawa displayed a significantly greater tailbeat frequency, but lower stride length, tailbeat amplitude and propulsive wavelength, than chub mackerel when size effects were accounted for. Midline curvatures subdivided on the basis of X-rays into individual vertebral elements were used to quantify axial bending in a subset of the fish studied. Maximum intervertebral lateral displacement and intervertebral flexion angles were significantly lower along most of the body in kawakawa than in chub mackerel, indicating that the kawakawa undergoes less axial flexion than does the chub mackerel, resulting in lower tailbeat amplitudes. However, lateral movement at the tip of the snout, or yaw, did not differ significantly interspecifically. Despite these differences, the net cost of transport was the same in the two species, and the total cost was higher in the kawakawa, indicating that the tuna juveniles are not more efficient swimmers.  (+info)

New isoforms of cytochrome c oxidase subunit IV in tuna fish. (7/217)

In the present study, the cDNA sequences of cytochrome c oxidase subunit IV isoforms from tuna fish are reported. The cDNAs share 57% identity among each other and the deduced amino acid sequences of the mature proteins 56% identity. Until now, only in yeast are two isoforms of the corresponding subunit V known, which are expressed in response to the oxygen supply. The hypothetical function of the new isoforms in fish for adaptation to different oxygen partial pressures in tissues of higher organisms is discussed.  (+info)

Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of semen. (8/217)

The aim of the present study was to characterize the effects of feeding tuna oil on the lipid and fatty acid composition of boar spermatozoa and to relate changes in composition to boar semen characteristics. Ten boars were paired by age and allocated to one of two diets (five boars per diet). The diets, which were offered for 6 weeks, consisted of a basal diet that was either unsupplemented or supplemented with 30 g tuna oil kg(-1) diet. Adding tuna oil to the diet increased the ether extract concentration of the diets fed from 65 to 92 g kg(-1) dry matter and supplied 10.5 g long chain polyunsaturated (n-3) fatty acids per 100 g total fatty acids. There were no changes in semen fatty acid composition after 3 weeks of feeding tuna oil. However, after 5 and 6 weeks, the proportions (g per 100 g total fatty acids) of 22:6(n-3) in sperm phospholipid fatty acids were increased from 34.5 to 42.9 g by feeding tuna oil and 22:5(n-6) decreased from 29.8 to 17.9 g. No changes were observed in other sperm lipids or seminal plasma phospholipids as a result of the diets fed. Feeding tuna oil increased the proportion of spermatozoa with progressive motility and with a normal acrosome score and reduced the proportion of spermatozoa with abnormal morphologies.  (+info)