Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. (1/486)

Invasive fungal disease often plays an important role in the morbidity and mortality of immunocompromised patients. The poor sensitivity of current fungal blood culture and histological practices has led to the development of highly sensitive and specific molecular techniques, such as the PCR. Sequence variability of the internal transcribed spacer 2 (ITS2) region of fungi is potentially useful in rapid and accurate diagnosis of clinical fungal isolates. PCR with fungus-specific primers targeted toward conserved sequences of the 5.8S and 28S ribosomal DNA (rDNA) results in amplification of the species-specific ITS2 regions, which are variable in amplicon length. We have made use of the ABI PRISM 310 genetic analyzer and the ABI PRISM 310 GeneScan analysis software for the determination of variable size differences of the ITS2 region of clinically important fungi, including Candida and non-Candida yeasts, Aspergillus species, and a variety of dermatophytes. No cross-reaction occurred when samples were tested against human and bacterial genomic DNA. We have found that most clinically significant fungal isolates can be differentiated by this method, and it therefore serves to be a promising tool for the rapid (<7 h) diagnosis of fungemia and other invasive fungal infections.  (+info)

The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. (2/486)

R2 elements are non-LTR retrotransposons that insert in the 28S rRNA genes of arthropods. Partial sequence data from many species have previously suggested that these elements have been vertically inherited since the origin of this phylum. Here, we compare the complete sequences of nine R2 elements selected to represent the diversity of arthropods. All of the elements exhibited a uniform structure. Identification of their conserved sequence features, combined with our biochemical studies, allows us to make the following inferences concerning the retrotransposition mechanism of R2. While all R2 elements insert into the identical sequence of the 28S gene, it is only the location of the initial nick in the target DNA that is rigidly conserved across arthropods. Variation at the R2 5' junctions suggests that cleavage of the second strand of the target site is not conserved within or between species. The extreme 5' and 3' ends of the elements themselves are also poorly conserved, consistent with a target primed reverse transcription mechanism for attachment of the 3' end and a template switch model for the attachment of the 5' end. Comparison of the approximately 1,000-aa R2 ORF reveals that it can be divided into three domains. The central 450-aa domain can be folded by homology modeling into a tertiary structure resembling the fingers, palm, and thumb subdomains of retroviral reverse transcriptases. The carboxyl terminal end of the R2 protein appears to be the endonuclease domain, while the amino-terminal end contains zinc finger and c-myb-like DNA-binding motifs.  (+info)

Effect of transforming RNA on the synthesis of a protein with a secretory signal sequence in vitro. (3/486)

U5 small nuclear RNA itself can act as a clastogenic and transforming agent when transfected into cells. In the previous work, the 3' half of the U5 small nuclear RNA first stem structure (designated RNA3S) was capable of driving normal cells into tumorigenic cells when expressed with a poly(A) tail (RNA3S+). This transformation critically depended upon the polypurine sequence GGAGAGGAA in RNA3S+. In this work, we first examined the pre-beta-lactamase and luciferase (model secretory and nonsecretory proteins) translation with the in vitro synthesized RNA3S in rabbit reticulocyte lysate. The capped RNA3S with a poly(A) tail suppressed the translation. In addition, the polypurine sequence played a crucial role in affecting the secretory protein synthesis, indicating a primary action of RNA3S+. Further studies revealed that the oligodeoxynucleotides, corresponding to the polypurine and its antisense sequences, directly contacted 28 S rRNA in ribosome and 7SL RNA in signal recognition particle, respectively, and differentially affected the nascent chain elongation of secretory protein synthesis. These results suggest that RNA3S+ blocks a physiological regulatory function played by signal recognition particle and the ribosome in the secretory protein synthesis and support the idea that the transformation might result from a repressed cellular activity.  (+info)

A morphological and molecular perspective of Trichoderma viride: is it one or two species? (4/486)

Trichoderma (Ascomycetes, Hypocreales) strains that have warted conidia are traditionally identified as T. viride, the type species of Trichoderma. However, two morphologically distinct types of conidial warts (I and II) have been found. Because each type corresponds to a unique mitochondrial DNA pattern, it has been questioned whether T. viride comprises more than one species. Combined molecular data (sequences of the internal transcribed spacer 1 [ITS-1] and ITS-2 regions and of part of the 28S rRNA gene along with results of restriction fragment length polymorphism analysis of the endochitinase gene and PCR fingerprinting), morphology, physiology, and colony characteristics distinguish type I and type II as different species. Type I corresponds to "true" T. viride, the anamorph of Hypocrea rufa. Type II represents a new species, T. asperellum, which is, in terms of molecular characteristics, close to the neotype of T. hamatum.  (+info)

Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an 'intron' bearing a hidden break site. (5/486)

Splitting and apparent splicing of ribosomal RNA, both previously unknown in vertebrates, were found in rodents of the genus Ctenomys. Instead of being formed by a single molecule of 4.4 kb, 28S rRNA is split in two molecules of 2.6 and 1.8 kb. A hidden break, mapping within a 106 bp 'intron' located in the D6 divergent region, is expressed in mature ribosomes of liver, lung, heart and spleen, as well as in primary fibroblast cultures. Testis-specific processing eliminates the intron and concomitantly the break site, producing non-split 28S rRNA molecules exclusively in this organ. The intron is flanked by two 9 bp direct repeats, revealing the acquisition by insertion of a novel rRNA processing strategy in the evolution of higher organisms.  (+info)

Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. (6/486)

The non-long terminal repeat (LTR) retrotransposon, R2, encodes a sequence-specific endonuclease responsible for its insertion at a unique site in the 28S rRNA genes of arthropods. Although most non-LTR retrotransposons encode an apurinic-like endonuclease upstream of a common reverse transcriptase domain, R2 and many other site-specific non-LTR elements do not (CRE1 and 2, SLACS, CZAR, Dong, R4). Sequence comparison of these site-specific elements has revealed that the region downstream of their reverse transcriptase domain is conserved and shares sequence features with various prokaryotic restriction endonucleases. In particular, these non-LTR elements have a Lys/Arg-Pro-Asp-X12-14aa-Asp/Glu motif known to lie near the scissile phosphodiester bonds in the protein-DNA complexes of restriction enzymes. Site-directed mutagenesis of the R2 protein was used to provide evidence that this motif is also part of the active site of the endonuclease encoded by this element. Mutations of this motif eliminate both DNA-cleavage activities of the R2 protein: first-strand cleavage in which the exposed 3' end is used to prime reverse transcription of the RNA template and second-strand cleavage, which occurs after reverse transcription. The general organization of the R2 protein appears similar to the type IIS restriction enzyme, FokI, in which specific DNA binding is controlled by a separate domain located amino terminal to the cleavage domain. Previous phylogenetic analysis of their reverse transcriptase domains has indicated that the non-LTR elements identified here as containing restriction-like endonucleases are the oldest lineages of non-LTR elements, suggesting a scenario for the evolution of non-LTR elements.  (+info)

Up-regulation of telomerase in primary cultured rat hepatocytes. (7/486)

Telomerase is a unique reverse transcriptase involved in the maintenance of telomeric DNA, which is generally undetectable in normal human somatic cells. However, it has been found in organs of normal adult rodents including the liver. In order to elucidate relevant control mechanisms operating in normal somatic cells, we examined telomerase activity in primary cultured rat hepatocytes. During culture under serum-free conditions, rat hepatocytes rapidly lose the ability of organ-specific expression of serum albumin, apolipoprotein A-I, and hepatocyte nuclear factor 4, and the capacity for cytochrome P-450 induction by xenobiotics. The telomerase activity was found to be concomitantly increased about 2. 5-fold at 48 h and 3-fold at 72 h. Northern blot and RT-PCR analyses with primary cultured hepatocytes revealed the associated accumulation of rat telomerase RNA subunits (TR), and the mRNAs for a telomerase reverse transcriptase (TERT) and a telomerase-associated protein (TEP1). The activity of hepatocyte telomerase, which was elevated during the primary culture, increased further when the cells were stimulated with hepatocyte growth factor. In this case, however, the levels of TR, TERT, and TEP1 mRNA did not show any detectable changes.  (+info)

Characterization of recombinant and plant-derived mistletoe lectin and their B-chains. (8/486)

Mistletoe lectin I (pML) and its isoforms ML II and III constitute the active principle in extract preparations from mistletoe, commonly used as immunomodulator in adjuvant tumour therapy. The heterodimeric disulfide-linked cytotoxic protein is classified as type II ribosome inactivating protein (RIP). Recently, the sequence coding for the mistletoe lectin prepro-protein was identified and the existence of a single intron-free gene was shown [Eck, J., Langer, M., Mockel, B., Baur, A., Rothe, M., Zinke, H. & Lentzen, H. (1999) Eur. J. Biochem. 264, 775-784]. The aim of this study was to prepare pure and homogeneous rMLB-chain as well as rML heterodimer for studying the carbohydrate binding specificity of recombinant versus natural protein and its contribution to the observed cytotoxic effect. Expression in E. coli resulted in the production of insoluble protein (inclusion bodies). A procedure for generating correctly folded, biochemically and biologically active rMLB was established starting from the insoluble single chain. Carbohydrate binding and specificity of pMLB and rMLB were analysed by a competitive enzyme linked lectin assay (ELLA). Asialofetuin was able to compete with binding of both chains (50% at 0.8 microM). The specificity of the B-chains to lactose was more distinct with halfmaximal competition at 4.9 mM (pMLB) and > 90 mM (rMLB), respectively. Furthermore, in a coassociation process rMLA- and rMLB inclusion bodies were associated in one step by defined dilution yielding active rML-heterodimer. The activities of recombinant (rML) and plant derived mistletoe lectin (pML) were compared. Cytotoxicity was determined using MOLT-4 cells and enzymatic rRNA N-glycosidase activity was measured in a coupled transcription/translation assay. The IC50 values of the two heterodimers were similar in both assays; rMLB-chain did not show any cytotoxic effect. In the ELLA with lactose as a competitor 50% competition of binding to asialofetuin was achieved at 1.6 mM (rML) and 1.8 mM (pML). Hence, using three different assays we found no significant differences between the recombinant protein and the glycosylated form of ML. Comparing the biological activities of the single chains with those of the heterodimer we conclude, that both, lectin activity and the rRNA N-glycosidase activity, are prerequisites for the cytotoxic effects on target cells.  (+info)