Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. (1/295)

Proteus mirabilis, a motile gram-negative bacterium, is a principal cause of urinary tract infections in patients with functional or anatomical abnormalities of the urinary tract or those with urinary catheters in place. Thus far, virulence factors including urease, flagella, haemolysin, various fimbriae, IgA protease and a deaminase have been characterized based on the phenotypic traits conferred by these proteins. In this study, an attempt was made to identify new virulence genes of P. mirabilis that may not have identifiable phenotypes using the recently described technique of signature-tagged mutagenesis. A pool of chromosomal transposon mutants was made through conjugation and kanamycin/tetracycline selection; random insertion was confirmed by Southern blotting of chromosomal DNA isolated from 16 mutants using the aphA gene as a probe. From the total pool, 2.3% (9/397) auxotrophic mutants and 3.5% (14/397) swarming mutants were identified by screening on minimal salts agar and Luria agar plates, respectively. Thirty per cent of the mutants, found to have either no tag or an unamplifiable tag, were removed from the input pool. Then 10(7) c.f.u. from a 96-mutant pool (approximately 10(5) c.f.u. of each mutant) were used as an input pool to transurethrally inoculate seven CBA mice. After 2 d infection, bacteria were recovered from the bladders and kidneys and yielded about 10(5) c.f.u. as an output pool. Dot blot analysis showed that two of the 96 mutants, designated B2 and B5, could not be hybridized by signature tags amplified from the bladder output pool. Interrupted genes from these two mutants were cloned and sequenced. The interrupted gene in B2 predicts a polypeptide of 37.3 kDa that shares amino acid similarity with a putative protease or collagenase precursor. The gene in B5 predicts a polypeptide of 32.6 kDa that is very similar to that encoded by ORF284 of the rpoN operon controlling expression of nitrogen-regulated genes from several bacterial species. The virulence of the two mutants was tested further by co-challenging CBA mice with each mutant and the parental strain. After 1 week of infection, the B2 and B5 mutants were recovered in numbers 100-fold and 1000-fold less than the parental strain, respectively. Using an in vitro assay, it was shown that the B2 mutant had significantly less (P = 0.0001) extracellular protease activity than the wild-type strain. These findings demonstrate that signature-tagged mutagenesis is a viable approach to identify bacterial genes associated with the ability to infect the urinary tract.  (+info)

tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin. (2/295)

In previous studies we demonstrated that mutations in the genes cysB, cysE, and cls (nov) affect resistance of Escherichia coli to novobiocin (J. Rakonjac, M. Milic, and D. J. Savic, Mol. Gen. Genet. 228:307-311, 1991; R. Ivanisevic, M. Milic, D. Ajdic, J. Rakonjac, and D. J. Savic, J. Bacteriol. 177:1766-1771, 1995). In this work we expand this list with mutations in rpoN (the gene for RNA polymerase subunit sigma54) and the tRNA synthetase genes alaS, argS, ileS, and leuS. Similarly to resistance to the penicillin antibiotic mecillinam, resistance to novobiocin of tRNA synthetase mutants appears to depend upon the RelA-mediated stringent response. However, at this point the overlapping pathways of mecillinam and novobiocin resistance diverge. Under conditions of stringent response induction, either by the presence of tRNA synthetase mutations or by constitutive production of RelA protein, inactivation of the cls gene diminishes resistance to novobiocin but not to mecillinam.  (+info)

The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma54-dependent Pu promoter of the TOL plasmid. (3/295)

The gene cluster adjacent to the sequence of rpoN (encoding sigma factor sigma54) of Pseudomonas putida has been studied with respect to the C source regulation of the Pu promoter of the upper TOL (toluene catabolism) operon. The region includes four open reading frames (ORFs), two of which (named ptsN and ptsO genes) encode proteins similar to components of the phosphoenolpyruvate:sugar phosphotransferase system. Each of the four genes was disrupted with a nonpolar insertion, and the effects in the inhibition caused by glucose on Pu activity were inspected with a lacZ reporter system. Although cells lacking ORF102, ORF284, and ptsO did not display any evident phenotype under the conditions tested, the loss of ptsN, which encodes the IIANtr protein, made Pu unresponsive to repression by glucose. The ptsN mutant had rates of glucose/gluconate consumption identical to those of the wild type, thus ruling out indirect effects mediated by the transport of the carbohydrate. A site-directed ptsN mutant in which the conserved phospho-acceptor site His68 of IIANtr was replaced by an aspartic acid residue made Pu blind to the presence or absence of glucose, thus supporting the notion that phosphorylation of IIANtr mediates the C source inhibition of the promoter. These data substantiate the existence of a molecular pathway for co-regulation of some sigma54 promoters in which IIANtr is a key protein intermediate.  (+info)

Mutant forms of Salmonella typhimurium sigma54 defective in transcription initiation but not promoter binding activity. (4/295)

Transcription initiation with sigma54-RNA polymerase holoenzyme (sigma54-holoenzyme) has absolute requirements for an activator protein and ATP hydrolysis. sigma54's binding to core RNA polymerase and promoter DNA has been well studied, but little is known about its role in the subsequent steps of transcription initiation. Following random mutagenesis, we isolated eight mutant forms of Salmonella typhimurium sigma54 that were deficient in transcription initiation but still directed sigma54-holoenzyme to the promoter to form a closed complex. Four of these mutant proteins had amino acid substitutions in region I, which had been shown previously to be required for sigma54-holoenzyme to respond to the activator. From the remaining mutants, we identified four residues in region III which when altered affect the function of sigma54 at some point after closed-complex formation. These results suggest that in addition to its role in core and DNA binding, region III participates in one or more steps of transcription initiation that follow closed-complex formation.  (+info)

Characterisation of holoenzyme lacking sigmaN regions I and II. (5/295)

The sigma-N (sigmaN) protein associates with bacterial core RNA polymerase to form a holoenzyme that is silent for transcription in the absence of enhancer-binding activator proteins. Here we show that the acidic Region II of sigmaN from Klebsiella pneumoniae is dispensable for polymerase isomerisation and trans-cription under conditions where the inhibited state of the holoenzyme is relieved by removal of sigmaN Region I sequences. Holoenzymes lacking Region I or Regions I+II were equally susceptible to the order of addition-dependent inhibition or stabilisation of DNA binding afforded by in trans Region I sequences. Region I+II-deleted [sigma] formed a holoenzyme with a DNA-binding activity more susceptible to inhibition by non-specific DNA than that lacking Region I. Region II sequences appear more closely associated with formation of a holoenzyme and [sigma] proficient in DNA binding than with changes in holoenzyme conformation needed for unmasking a single-strand DNA-binding activity used for open complex for-mation. Region II may therefore function to optimise DNA interactions for an efficient sigma cycle.  (+info)

A fork junction DNA-protein switch that controls promoter melting by the bacterial enhancer-dependent sigma factor. (6/295)

Results of binding assays using DNA fork junction probes indicate that sigma 54 contains multiple determinants that regulate melting to allow RNA polymerase to remain in closed promoter complexes in order to respond to enhancers. Gel mobility shift studies indicate that the -12 promoter element and parts of sigma 54 act together to form a molecular switch that controls melting. The DNA sequences and the sigma 54 N-terminus help direct polymerase to the location within the -12 promoter element where melting will initiate. However, the fork junction that would lead to melting does not form, due to the action of an inhibitory DNA element. Such unregulated melting is inhibited further by the lack of availability of the single-strand binding elements, which are needed to spread opening from the junction to the transcription start site. Thus, in the absence of looping enhancer protein, proper regulation is maintained as the sigma 54 polymerase remains bound in an inactive state. These complex protein-DNA interactions allow the controls over protein recruitment and DNA melting to be separated, enhancing the diversity of accessible mechanisms of transcription regulation.  (+info)

Mutations affecting motifs of unknown function in the central domain of nitrogen regulatory protein C. (7/295)

The positive control function of the bacterial enhancer-binding protein NtrC resides in its central domain, which is highly conserved among activators of sigma54 holoenzyme. Previous studies of a small set of mutant forms specifically defective in transcriptional activation, called NtrC repressor [NtrC(Rep)] proteins, had enabled us to locate various functional determinants in the central domain. In this more comprehensive survey, the DNA encoding a major portion of the central domain was randomly mutagenized and mutated ntrC genes were introduced into the cell via multicopy expression plasmids. DNA sequencing of 95 isolates identified by a preliminary phenotypic screen revealed that the lesions in them caused 55 distinct single amino acid substitutions at 44 different positions. Assays of glnA transcription in vivo and in vitro yielded two conclusions. First, of the 41 mutant proteins that could be purified, 17 (1 known, 16 new) showed no detectable activity in either assay, thus qualifying them as true NtrC(Rep) proteins. These contained residue changes in six of the seven highly conserved regions in the central domain, including two never studied before. Second, some mutant proteins were inactive in vivo but were either marginally or fully active in vitro. Their surprising lack of activity in vivo may be accounted for by high levels of expression, which apparently decreased activation by these mutant proteins but not by wild-type NtrC (NtrCWT). Of particular interest were a subset of these proteins that exhibited greater transcriptional activation than NtrCWT at low concentrations. Their elevated activation capacities remain to be explained.  (+info)

Functions of the sigma(54) region I in trans and implications for transcription activation. (8/295)

Control of transcription frequently involves the direct interaction of activators with RNA polymerase. In bacteria, the formation of stable open promoter complexes by the sigma(54) RNA polymerase is critically dependent on sigma(54) amino Region I sequences. Their presence correlates with activator dependence, and removal allows the holoenzyme to engage productively with melted DNA independently of the activator. Using purified Region I sequences and holoenzymes containing full-length or Region I-deleted sigma(54), we have explored the involvement of Region I in transcription activation. Results show that Region I in trans inhibits a reversible conformational change in the holoenzyme believed to be polymerase isomerization. Evidence is presented indicating that the holoenzyme (and not the promoter DNA per se) is one interacting target used by Region I in preventing polymerase isomerization. Activator overcomes this inhibition in a reaction requiring nucleotide hydrolysis. Region I in trans is able to inhibit activated transcription by the holoenzyme containing full-length sigma(54). Inhibition appeared to be noncompetitive with respect to the activator, suggesting that a direct activator interaction occurs with parts of the holoenzyme outside Region I. Stabilization of isomerized holoenzyme bound to melted DNA by Region I in trans occurs largely independently of the initiating nucleotide, suggesting a role for Region I in maintaining the open complex.  (+info)