The heritability of malocclusion: Part 1--Genetics, principles and terminology. (9/620)

The relative contribution of genes and the environment to the aetiology of malocclusion has been a matter of controversy throughout the twentieth century. Genetic mechanisms are clearly predominant during embryonic craniofacial morphogenesis, but environment is also thought to influence dentofacial morphology postnatally, particularly during facial growth. Orthodontic and orthopaedic techniques are used in the treatment of malocclusion and other dentofacial deformities, but with limited effectiveness. The key to the determination of the aetiology of malocclusion, and its treatability lies in the ability to differentiate the effect of genes and environment on the craniofacial skeleton in a particular individual. Our ability to do this is limited by our lack of knowledge on the genetic mechanisms that control facial growth and lack of scientific evidence for the influence of environmental factors on human craniofacial morphogenesis.  (+info)

Do you care? A national register for cleft lip and palate patients. (10/620)

The Cleft Palate Index and, more recently, the Craniofacial Anomalies Register--CARE--have been in operation since 1982. This paper summarizes its development and plans for the future. CARE is a multidisciplinary committee involving all specialties involved in the treatment of this group of patients therefore it should and can be well placed to co-ordinate the cleft data arising from these patients.  (+info)

Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. (11/620)

The Dlx5 gene encodes a Distal-less-related DNA-binding homeobox protein first expressed during early embryonic development in anterior regions of the mouse embryo. In later developmental stages, it appears in the branchial arches, the otic and olfactory placodes and their derivatives, in restricted brain regions, in all extending appendages and in all developing bones. We have created a null allele of the mouse Dlx5 gene by replacing exons I and II with the E. coli lacZ gene. Heterozygous mice appear normal. Beta-galactosidase activity in Dlx5+/- embryos and newborn animals reproduces the known pattern of expression of the gene. Homozygous mutants die shortly after birth with a swollen abdomen. They present a complex phenotype characterised by craniofacial abnormalities affecting derivatives of the first four branchial arches, severe malformations of the vestibular organ, a delayed ossification of the roof of the skull and abnormal osteogenesis. No obvious defect was observed in the patterning of limbs and other appendages. The defects observed in Dlx5-/- mutant animals suggest multiple and independent roles of this gene in the patterning of the branchial arches, in the morphogenesis of the vestibular organ and in osteoblast differentiation.  (+info)

Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. (12/620)

Mice homozygous for a targeted deletion of the homeobox gene Goosecoid (Gsc) have multiple craniofacial defects. To understand the mechanisms responsible for these defects, the behavior of Gsc-null cells was examined in morula aggregation chimeras. In these chimeras, Gsc-null cells were marked with beta-galactosidase (beta-gal) activity using the ROSA26 lacZ allele. In addition, mice with a lacZ gene that had been introduced into the Gsc locus were used as a guide to visualize the location of Gsc-expressing cells. In Gsc-null<->wild-type chimeras, tissues that would normally not express Gsc were composed of both Gsc-null and wild-type cells that were well mixed, reflecting the overall genotypic composition of the chimeras. However, craniofacial tissues that would normally express Gsc were essentially devoid of Gsc-null cells. Furthermore, the nasal capsules and mandibles of the chimeras had defects similar to Gsc-null mice that varied in severity depending upon the proportion of Gsc-null cells. These results combined with the analysis of Gsc-null mice suggest that Gsc functions cell autonomously in mesenchyme-derived tissues of the head. A developmental analysis of the tympanic ring bone, a bone that is always absent in Gsc-null mice because of defects at the cell condensation stage, showed that Gsc-null cells had the capacity to form the tympanic ring condensation in the presence of wild-type cells. However, analysis of the tympanic ring bones of 18.5 d.p.c. chimeras suggests that Gsc-null cells were not maintained. The participation of Gsc-null cells in the tympanic ring condensation of chimeras may be an epigenetic phenomenon that results in a local environment in which more precursor cells are present. Thus, the skeletal defects observed in Gsc-null mice may reflect a regional reduction of precursor cells during embryonic development.  (+info)

Dlx5 regulates regional development of the branchial arches and sensory capsules. (13/620)

We report the generation and analysis of mice homozygous for a targeted deletion of the Dlx5 homeobox gene. Dlx5 mutant mice have multiple defects in craniofacial structures, including their ears, noses, mandibles and calvaria, and die shortly after birth. A subset (28%) exhibit exencephaly. Ectodermal expression of Dlx5 is required for the development of olfactory and otic placode-derived epithelia and surrounding capsules. The nasal capsules are hypoplastic (e.g. lacking turbinates) and, in most cases, the right side is more severely affected than the left. Dorsal otic vesicle derivatives (e. g. semicircular canals and endolymphatic duct) and the surrounding capsule, are more severely affected than ventral (cochlear) structures. Dlx5 is also required in mandibular arch ectomesenchyme, as the proximal mandibular arch skeleton is dysmorphic. Dlx5 may control craniofacial development in part through the regulation of the goosecoid homeobox gene. goosecoid expression is greatly reduced in Dlx5 mutants, and both goosecoid and Dlx5 mutants share a number of similar craniofacial malformations. Dlx5 may perform a general role in skeletal differentiation, as exemplified by hypomineralization within the calvaria. The distinct focal defects within the branchial arches of the Dlx1, Dlx2 and Dlx5 mutants, along with the nested expression of their RNAs, support a model in which these genes have both redundant and unique functions in the regulation of regional patterning of the craniofacial ectomesenchyme.  (+info)

Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. (14/620)

Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA(1)and TA(2)) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivation.  (+info)

A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. (15/620)

The Yemenite deaf-blind hypopigmentation syndrome was first observed in a Yemenite sister and brother showing cutaneous hypopigmented and hyperpigmented spots and patches, microcornea, coloboma and severe hearing loss. A second case, observed in a girl with similar skin symptoms and hearing loss but without microcornea or coloboma, was reported as a mild form of this syndrome. Here we show that a SOX10 missense mutation is responsible for the mild form, resulting in a loss of DNA binding of this transcription factor. In contrast, no SOX10 alteration could be found in the other, severe case of the Yemenite deaf-blind hypopigmentation syndrome. Based on genetic, clinical, molecular and functional data, we suggest that these two cases represent two different syndromes. Moreover, as mutations of the SOX10 transcription factor were previously described in Waardenburg-Hirschsprung disease, these results show that SOX10 mutations cause various types of neurocristopathy.  (+info)

Phenotype of adults with the 22q11 deletion syndrome: A review. (16/620)

22q11 deletion syndrome (22qDS) is due to microdeletions of chromosome region 22q11.2. Little is known about the phenotype of adults. We reviewed available case reports of adults (age >/=18 years) with 22qDS and compared the prevalence of key findings to those reported in a large European survey of 22qDS (497 children and 61 adults) [Ryan et al., 1997: J. Med. Genet. 34:798-804]. Fifty-five studies reported on 126 adults (83 women, 40 men, 3 unknown sex), mean age 29.6 years (SD = 8.7 years). Compared with the European survey, adults with 22qDS reviewed had a lower rate of CHD, 30% versus 75%; chi(2) = 88.65, df = 1, P < 0.0001, but higher rates of identified palate anomalies, 88% versus 15%; chi(2) = 37.45, df = 1, P < 0.0001, and learning difficulties, 94% versus 79%; chi(2) = 12.13, df = 1, P = < 0.0008. The most common finding reported was minor facial anomalies. Few reports provided details of minor physical anomalies. Psychiatric conditions were more prevalent, 36% versus 18%; chi(2)= 5.71, df = 1, P < 0.02, than in the survey: 60% of reviewed adults were transmitting parents (72% mothers) ascertained following diagnosis of affected offspring. They had lower rates of CHD, cleft palate, and psychiatric disorders but similar rates of learning disabilities, and other palate and facial anomalies compared with adults ascertained by other methods. The results suggest that learning disabilities and facial and palate anomalies may be key findings in 22qDS adults, but that ascertainment is a key factor in the observed phenotype. Comprehensive studies of adults with 22qDS identified independently of familial transmission are necessary to further delineate the phenotype of adults and to determine the natural history of the syndrome.  (+info)