Referenceless interleaved echo-planar imaging. (1/2188)

Interleaved echo-planar imaging (EPI) is an ultrafast imaging technique important for applications that require high time resolution or short total acquisition times. Unfortunately, EPI is prone to significant ghosting artifacts, resulting primarily from system time delays that cause data matrix misregistration. In this work, it is shown mathematically and experimentally that system time delays are orientation dependent, resulting from anisotropic physical gradient delays. This analysis characterizes the behavior of time delays in oblique coordinates, and a new ghosting artifact caused by anisotropic delays is described. "Compensation blips" are proposed for time delay correction. These blips are shown to remove the effects of anisotropic gradient delays, eliminating the need for repeated reference scans and postprocessing corrections. Examples of phantom and in vivo images are shown.  (+info)

Adaptation of bulk constitutive equations to insoluble monolayer collapse at the air-water interface. (2/2188)

A constitutive equation based on stress-strain models of bulk solids was adapted to relate the surface pressure, compression rate, and temperature of an insoluble monolayer of monodendrons during collapse at the air-water interface. A power law relation between compression rate and surface pressure and an Arrhenius temperature dependence of the steady-state creep rate were observed in data from compression rate and creep experiments in the collapse region. These relations were combined into a single constitutive equation to calculate the temperature dependence of the collapse pressure with a maximum error of 5 percent for temperatures ranging from 10 degrees to 25 degrees C.  (+info)

Variation in echogenicity of the basal ganglia: anisotropic effect. (3/2188)

We observed that the fetal brain demonstrates relatively increased echogenicity of the basal ganglia compared with the thalami and cortical brain parenchyma, which we did not observe on neonatal sonograms. We hypothesized that the difference in relative echogenicity was due to differences in imaging techniques and anisotropic effects for prenatal and postnatal brain images. In 18 consecutive neonates, we obtained coronal images of the basal ganglia and thalami through the anterior fontanelle and axial images through the anterolateral fontanelle with both 5 and 7.5 MHz transducers. Two observers determined whether increased echogenicity or conspicuity of the basal ganglia was present, comparing the axial and coronal planes. We observed relatively increased echogenicity of the basal ganglia in the axial plane in 11 of the 16 examinations in this series. Of these 11, the increased echogenicity effect was manifest only in the axial plane in seven neonates. In the four instances in which the increased basal ganglia echogenicity was seen in both the coronal and axial planes, the effect was better shown in axial plane in all four. We did not observe any cases of increased echogenicity of the basal ganglia only in the coronal plane. The increased echogenicity was more conspicuous with the lower frequency transducer in 10 of the 11 examinations. We believe that the change in echogenicity of the basal ganglia is predominantly an anisotropic effect. Observing that increased echogenicity of the basal ganglia can disappear or decrease when comparing images in the axial to the coronal plane or be better demonstrated with lower frequency transducers might be a means by which to distinguish this phenomenon from true pathologic processes of the neonatal brain.  (+info)

GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. (4/2188)

The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.  (+info)

The influence of large scanning eye movements on stereoscopic slant estimation of large surfaces. (5/2188)

The results of several experiments demonstrate that the estimated magnitude of perceived slant of large stereoscopic surfaces increases with the duration of the presentation. In these experiments, subjects were free to make eye movements. A possible explanation for the increase is that the visual system needs to scan the stimulus with eye movements (which take time) before it can make a reliable estimate of slant. We investigated the influence of large scanning eye movements on stereoscopic slant estimation of large surfaces. Six subjects estimated the magnitude of slant about the vertical or horizontal axis induced by large-field stereograms of which one half-image was transformed by horizontal scale, horizontal shear, vertical scale, vertical shear, divergence or rotation relative to the other half-image. The experiment was blocked in three sessions. Each session was devoted to one of the following fixation strategies: central fixation, peripheral (20 deg) fixation and active scanning of the stimulus. The presentation duration in each of the sessions was 0.5, 2 or 8 s. Estimations were done with and without a visual reference. The magnitudes of estimated slant and the perceptual biases were not significantly influenced by the three fixation strategies. Thus, our results provide no support for the hypothesis that the time used for the execution of large scanning eye movements explains the build-up of estimated slant with the duration of the stimulus presentation.  (+info)

An orientation anisotropy in the effects of scaling vertical disparities. (6/2188)

Garding et al. (Vis Res 1995;35:703-722) proposed a two-stage theory of stereopsis. The first uses horizontal disparities for relief computations after they have been subjected to a process called disparity correction that utilises vertical disparities. The second stage, termed disparity normalisation, is concerned with computing metric representations from the output of stage one. It uses vertical disparities to a much lesser extent, if at all, for small field stimuli. We report two psychophysical experiments that tested whether human vision implements this two-stage theory. They tested the prediction that scaling vertical disparities to simulate different viewing distances to the fixation point should affect the perceived amplitudes of vertically but not horizontally oriented ridges. The first used elliptical half-cylinders and the 'apparently circular cylinder' judgement task of Johnston (Vis Res 1991;31:1351-1360). The second experiment used parabolic ridges and the amplitude judgement task of Buckley and Frisby (Vis Res 1993;33:919-934). Both studies broadly confirmed the anisotropy prediction by finding that large scalings of vertical disparities simulating near distances had a strong effect on the perceived amplitudes of the vertically oriented stimuli but little effect on the horizontal ones. When distances > 25 cm were simulated there were no significant differential effects and various methodological reasons are offered for this departure from expectations.  (+info)

Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. (7/2188)

Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I.  (+info)

The pentaene macrolide antibiotic filipin prefers more rigid DPPC bilayers: a fluorescence pressure dependence study. (8/2188)

Filipin is a pentaene macrolide antibiotic which was previously shown to incorporate more extensively into DPPC bilayers below the main phase transition temperature than above this temperature. This result was extremely unusual because drugs tend to be expelled from ordered gel phases. However, such results could not be safely attributed to the phase change of the bilayer itself because the temperature was changing concomitantly. In this work we changed the bilayer phase isothermally (53 degrees C) by hydrostatic pressure variation and discovered that filipin has a slightly more extensive incorporation in the pure DPPC gel phase (P>ca. 54.4 MPa): Kp,lc approximately 3x10(3) vs. Kp,gel approximately 6x10(3). The presence of sterols (45% molar ergosterol or cholesterol) caused an increase in the partition coefficients, regardless of pressure, ergosterol having a more pronounced effect (Kp approximately 2x10(4)-6x10(4)). Kp was pressure dependent in both cases, but mainly with cholesterol (Kp approximately 2x10(3)-2x10(4)). At variance with cholesterol, when ergosterol was used, no phase transition was detected. This difference cannot be due to a more extended uptake of filipin by cholesterol-containing membranes, and so must be due to specific interactions with cholesterol. In agreement with this finding, we discovered that filipin is more tightly packed (lower partial molar volume) in the cholesterol-rich phase than in the ergosterol-rich phase. Our results also point to a 2:1 DPPC:cholesterol stoichiometry in the cholesterol-rich phase (17% molar cholesterol). All partition coefficients were calculated from steady-state fluorescence anisotropy measurements.  (+info)