Chronic lymphocytic leukemia preceded by cold agglutinin disease: intraclonal immunoglobulin light-chain diversity in V(H)4-34 expressing single leukemic B cells. (49/384)

Autoimmune phenomena may precede or accompany lymphoid malignancies, especially B-chronic lymphocytic leukemia (B-CLL). We report a patient with a 7-year history of primary (idiopathic) cold agglutinin (CA) disease in whom B-CLL subsequently developed. Immunophenotyping and single-cell reverse transcription-polymerase chain reaction (RT-PCR) were applied to investigate the origin and diversification of leukemic B cells. The obtained data indicate a memory cell-type origin of the B-CLL cells. Remarkably, the IgV(kappa) genes of the B-CLL cells showed intraclonal diversity, whereas the mutational pattern of their paired IgV(H) genes were invariant. Thus, the light-chain-restricted intraclonal diversity in individual leukemic B cells in this patient strongly indicates a differential regulation or selection of the ongoing mutational process. Of note, our findings suggest that this B-CLL had developed from the patient's CA-producing B-cell population.  (+info)

Interleukin-10-mediated regulatory T-cell responses to epitopes on a human red blood cell autoantigen. (50/384)

Regulatory T cells have been shown to control animal models of immune-mediated pathology by inhibitory cytokine production, but little is known about such cells in human disease. Here we characterize regulatory T-cell responses specific for a human red blood cell autoantigen in patients with warm-type autoimmune hemolytic anemia. Peripheral blood mononuclear cells from patients with autoimmune hemolytic anemia were found either to proliferate and produce interferon-gamma or to secrete the regulatory cytokine interleukin 10 when stimulated in vitro with a major red blood cell autoantigen, the RhD protein. Flow cytometric analysis confirmed that the majority of the responding cells were of the CD4(+) phenotype. Serial results from individual patients demonstrated that this bias toward proliferative or interleukin-10 responses was unstable over time and could reverse in subsequent samples. Epitope mapping studies identified peptides from the sequence of the autoantigen that preferentially induced interleukin-10 production, rather than proliferation, and demonstrated that many contain naturally processed epitopes. Responses to such peptides suppressed T-cell proliferation against the RhD protein, an inhibition that was mediated largely by interleukin 10 and dependent on cytotonic T lymphocyte-associated antigen (CTLA-4) costimulation. Antigenic peptides with the ability to stimulate specific regulatory cells may represent a new class of therapeutic agents for immune-mediated disease.  (+info)

Complement-mediated clearance of erythrocytes: mechanism and delineation of the regulatory roles of Crry and DAF. Decay-accelerating factor. (51/384)

The role of complement in the pathogenesis of autoimmune hemolytic anemia (AIHA) has been controversial and may depend on a number of factors, including the affinity and isotype of the pathogenic antibodies involved. We have recently shown that mouse erythrocytes deficient in the membrane C3 regulatory protein, complement receptor 1-related gene/protein y (Crry), but not decay-accelerating factor (DAF), were spontaneously eliminated in vivo by complement. Here, by generating a mouse deficient in both DAF and Crry, we further delineated the roles of Crry and DAF in regulating alternative and classical pathway C3 activation. By using immunoglobulin-, Fcgamma receptor (FcgammaR)-, C3-, C4-, and C5-deficient mice, we also determined the mechanism by which membrane C3 regulator-deficient erythrocytes are cleared from the circulation. Finally, we evaluated the relative importance of the Fc receptor versus the complement pathway in disposing antibody-opsonized DAF/Crry-deficient erythrocytes. We conclude that (1) Crry plays a more dominant role than DAF in regulating the alternative pathway of complement, whereas DAF and Crry are equally effective in preventing antibody-induced runaway complement activation on mouse erythrocytes; (2) DAF/Crry-deficient erythrocytes are eliminated by the alternative pathway of complement via complement receptor-mediated erythrophagocytosis in the spleen; and (3) when opsonized with an immunoglobulin G2a (IgG2a) autoantibody, Crry/DAF-deficient erythrocytes are eliminated more rapidly by complement than by the Fc receptor pathway. These results shed new light on the relative activities of Crry and DAF and underscore the critical roles of membrane C3 regulators in preventing spontaneous and antibody-induced erythrocyte damage in vivo.  (+info)

Liposomal clodronate as a novel agent for treating autoimmune hemolytic anemia in a mouse model. (52/384)

Autoimmune hemolytic anemia (AIHA) is a disease in which autoantibodies against red blood cells (RBCs) lead to their premature destruction. Most clinically significant autoantibodies are of the immunoglobulin G (IgG) type, which leads primarily to the uptake and destruction of RBCs by splenic and hepatic macrophages. Therapies such as corticosteroids and splenectomy are directed at interfering with this process. Liposomally encapsulated clodronate (dichloromethylene diphosphonate) has previously been found to be a potent antimacrophage agent. It selectively depletes animals of macrophages within 24 hours of administration by inducing apoptosis in these cells. Therefore, we hypothesized that liposomal clodronate would be a useful agent for treating AIHA. We tested this hypothesis in a mouse model of AIHA in which animals were given either anti-RBC antibodies or preopsonized RBCs. In either case, liposomal clodronate substantially decreased RBC destruction. This drug formulation was effective within hours by first blocking and then depleting phagocytic macrophages, and its action lasted for 1 to 2 weeks. Thus, in AIHA, liposomal clodronate therapy may act like a temporary, medicinal splenectomy. As such, it may prove useful in situations where rapid response to therapy is critical or other medical therapies are inadequate.  (+info)

Red cell antigens as functional molecules and obstacles to transfusion. (53/384)

Blood group antigens (BGAs) can act as functional molecules but also can evoke autoantibodies and alloantibodies, causing autoimmune hemolytic anemia, hemolytic disease of the newborn and hemolytic transfusion reactions. In Section I, Dr. Marilyn Telen discusses physiologic and pathologic functions of RBC BGA-bearing molecules. She reviews some associations of BGAs with RBC membrane integrity and hemolytic anemia; association of BGAs with enzymatic and transport functions; and adhesion molecules expressed by RBCs, especially with reference to their pathophysiological role in sickle cell disease. In Section II, Dr. Lawrence Petz discusses the problems of providing blood for patients who have RBC autoantibodies. He provides an algorithm for excluding the presence of "hidden" alloantibodies, when all units appear to be incompatible due to the autoantibody. He emphasizes that clinicians should be aware of these approaches and not accept "the least incompatible unit." In Section III, Dr. George Garratty describes two processes, in development, that produce RBCs that result in RBCs that can be described as "universal" donor or "stealth" RBCs. The first process involves changing group A, B, or AB RBCs into group O RBCs by removing the immunospecific sugars responsible for A and B specificity by using specific enzymes. The second process involves covering all BGAs on the RBC surface using polyethylene glycol (PEG). Results of in vitro and in vivo studies on these modified RBCs are discussed.  (+info)

Lipid synthesis in human erythroid cells: the effect of sickling. (54/384)

Human reticulocytes are capable of synthesizing membrane lipids from 14C-glycerol de novo. In both sickle and nonsickle reticulocytes the majority of 14C-glycerol was incorporated into phospholipids, primarily phosphatidylserine and phosphatidylcholine. Incorporation into sphingomyelin was minimal. The most abundant neutral lipid synthesized was triglyceride. In the absence of sickling, the rate of lipid synthesis in sickle reticulocytes was similar to that of nonsickle reticulocytes. With the induction of sickling under anoxic conditions sickle reticulocytes showed a prompt increase in the rate of lipid synthesis to an average of 69% above control values, while nonsickle reticulocytes under similar conditions decreased the rate of lipid synthesis. An increase in the rate of membrane lipid synthesis is associated in the mammalian erythroid cell with cell membrane damage. The findings further confirm that lesions of the erythroid cell membrane in sickle cell anemia are secondary to the sickling process itself.  (+info)

Depletion of cardiac norepinephrine during two forms of hemolytic anemia in the rat. (55/384)

Knowledge of the status of cardiac norepinephrine (NE) during anemia could lead to a better understanding of the role the sympathetic nervous system plays in cardiac function during anemia. Rats were made anemic by treatment with phenylhydrazine (PHZ). After the rapid onset of anemia, 60% of the stored NE in the heart was lost within 48 hours after treatment. Associated with the loss of cardiac NE was an increase in the wet weight of the heart, which reached a value 40% above control 48 hours after treatment. PHZ itself probably does not directly mediate this depletion of NE, since the vas deferens, brain and spleen had a normal store of NE at 48 hours. This contention was supported when rats, treated with PHZ, were transfused with normal rat red blood cells. This transfusion resulted in PHZ-treated rats which were not anemic. The hearts of these rats were not depleted of NE, but the hearts of the nontransfused, PHZ-treated controls were. Anemia also was induced by treating rats with anti-rat red blood cell serum. The hearts of these rats also were depleted of NE. These experiments show that during two forms of anemia there is a loss of NE from the sympathetic neurons innervating the heart. The effect of this on regulation of cardiac function remains to be determined.  (+info)

Rituximab for refractory childhood autoimmune hemolytic anemia. (56/384)

BACKGROUND: Chronic childhood autoimmune hemolytic anemia is an uncommon disorder that is associated with significant morbidity. Treatment with high dose steroids, splenectomy and frequent blood transfusions results in a myriad of complications including growth failure, bone demineralization, Cushing's syndrome, immunosuppression, and transfusional hemosiderosis. OBJECTIVES: To investigate the efficacy of the monoclonal anti-CD20 antibody, rituximab, in treating children with AIHA. METHODS: Four children with chronic AIHA, including two with prior splenectomy, who were dependent on high dose steroids and refractory to other immunosuppressive regimens were treated with four to six weekly doses of rituximab at a dose of 375 mg/m2. RESULTS: All four patients became transfusion-independent and were taken off prednisone completely. Adverse effects included infusion-related reactions that were mild, and infectious complications of Pneumocystis carinii pneumonia and varicella pneumonia. CONCLUSIONS: Treatment with rituximab appears promising for refractory AIHA; if may obviate the need for prednisone and may result in sustained disease remissions in some patients.  (+info)