Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. (9/623)

Exercise acutely stimulates muscle glucose transport and also brings about an adaptive increase in the capacity of muscle for glucose uptake by inducing increases in GLUT-4 and hexokinase.(1) Recent studies have provided evidence that activation of AMP protein kinase (AMPK) is involved in the stimulation of glucose transport by exercise. The purpose of this study was to determine whether activation of AMPK is also involved in mediating the adaptive increases in GLUT-4 and hexokinase. To this end, we examined the effect of incubating rat epitrochlearis muscles in culture medium for 18 h in the presence or absence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which enters cells and is converted to the AMP analog ZMP, thus activating AMPK. Exposure of muscles to 0.5 mM AICAR in vitro for 18 h resulted in an approximately 50% increase in GLUT-4 protein and an approximately 80% increase in hexokinase. This finding provides strong evidence in support of the hypothesis that the activation of AMPK that occurs in muscle during exercise is involved in mediating the adaptive increases in GLUT-4 and hexokinase.  (+info)

Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. (10/623)

Elevated glucose concentrations stimulate the transcription of the pre-proinsulin (PPI), L-type pyruvate kinase (L-PK), and other genes in islet beta cells. In liver cells, pharmacological activation by 5-amino-4-imidazolecarboxamide riboside (AICAR) of AMP-activated protein kinase (AMPK), the mammalian homologue of the yeast SNF1 kinase complex, inhibits the effects of glucose, suggesting a key signaling role for this kinase. Here, we demonstrate that AMPK activity is inhibited by elevated glucose concentrations in MIN6 beta cells and that activation of the enzyme with AICAR prevents the activation of the L-PK gene by elevated glucose. Furthermore, microinjection of antibodies to the alpha2- (catalytic) or beta2-subunits of AMPK complex, but not to the alpha1-subunit or extracellular stimulus-regulated kinase, mimics the effects of elevated glucose on the L-PK and PPI promoter activities as assessed by single-cell imaging of promoter luciferase constructs. In each case, injection of antibodies into the nucleus and cytosol, but not the nucleus alone, was necessary, indicating the importance of either a cytosolic phosphorylation event or the subcellular localization of the alpha2-subunits. Incubation with AICAR diminished, but did not abolish, the effect of glucose on PPI transcription. These data suggest that glucose-induced changes in AMPK activity are necessary and sufficient for the regulation of the L-PK gene by the sugar and also play an important role in the regulation of the PPI promoter.  (+info)

Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. (11/623)

Muscle contraction causes an increase in activity of 5'-AMP-activated protein kinase (AMPK). This study was designed to determine whether chronic chemical activation of AMPK will increase mitochondrial enzymes, GLUT-4, and hexokinase in different types of skeletal muscle of resting rats. In acute studies, rats were subcutaneously injected with either 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mg/g body wt) in 0.9% NaCl or with 0.9% NaCl alone and were then anesthetized for collection and freezing of tissues. AMPK activity increased in the superficial, white region of the quadriceps and in soleus muscles but not in the deep, red region of the quadriceps muscle. Acetyl-CoA carboxylase (ACC) activity, a target for AMPK, decreased in all three muscle types in response to AICAR injection but was lowest in the white quadriceps. In rats given daily, 1 mg/g body wt, subcutaneous injections of AICAR for 4 wk, activities of citrate synthase, succinate dehydrogenase, and malate dehydrogenase were increased in white quadriceps and soleus but not in red quadriceps. Cytochrome c and delta-aminolevulinic acid synthase levels were increased in white, but not red, quadriceps. Carnitine palmitoyl-transferase and hydroxy-acyl-CoA dehydrogenase were not significantly increased. Hexokinase was markedly increased in all three muscles, and GLUT-4 was increased in red and white quadriceps. These results suggest that chronic AMPK activation may mediate the effects of muscle contraction on some, but not all, biochemical adaptations of muscle to endurance exercise training.  (+info)

Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside. (12/623)

Alterations in the concentration of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase I, have been linked to the regulation of fatty acid oxidation in skeletal muscle. During contraction decreases in muscle malonyl-CoA concentration have been related to activation of AMP-activated protein kinase (AMPK), which phosphorylates and inhibits acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in malonyl-CoA formation. We report here that the activity of malonyl-CoA decarboxylase (MCD) is increased in contracting muscle. Using either immunopurified enzyme or enzyme partially purified by (NH(4))(2)SO(4) precipitation, 2-3-fold increases in the V(max) of MCD and a 40% decrease in its K(m) for malonyl-CoA (190 versus 119 micrometer) were observed in rat gastrocnemius muscle after 5 min of contraction, induced by electrical stimulation of the sciatic nerve. The increase in MCD activity was markedly diminished when immunopurified enzyme was treated with protein phosphatase 2A or when phosphatase inhibitors were omitted from the homogenizing solution and assay mixture. Incubation of extensor digitorum longus muscle for 1 h with 2 mm 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, a cell-permeable activator of AMPK, increased MCD activity 2-fold. Here, too, addition of protein phosphatase 2A to the immunopellets reversed the increase of MCD activity. The results strongly suggest that activation of AMPK during muscle contraction leads to phosphorylation of MCD and an increase in its activity. They also suggest a dual control of malonyl-CoA concentration by ACC and MCD, via AMPK, during exercise.  (+info)

5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. (13/623)

Insulin regulates the rate of expression of many hepatic genes, including PEPCK, glucose-6-phosphatase (G6Pase), and glucose-6-phosphate dehydrogenase (G6PDHase). The expression of these genes is also abnormally regulated in type 2 diabetes. We demonstrate here that treatment of hepatoma cells with 5-aminoimidazole-4-carboxamide riboside (AICAR), an agent that activates AMP-activated protein kinase (AMPK), mimics the ability of insulin to repress PEPCK gene transcription. It also partially represses G6Pase gene transcription and yet has no effect on the expression of G6PDHase or the constitutively expressed genes cyclophilin or beta-actin. Several lines of evidence suggest that the insulin-mimetic effects of AICAR are mediated by activation of AMPK. Also, insulin does not activate AMPK in H4IIE cells, suggesting that this protein kinase does not link the insulin receptor to the PEPCK and G6Pase gene promoters. Instead, AMPK and insulin may lie on distinct pathways that converge at a point upstream of these 2 gene promoters. Investigation of the pathway by which AMPK acts may therefore give insight into the mechanism of action of insulin. Our results also suggest that activation of AMPK would inhibit hepatic gluconeogenesis in an insulin-independent manner and thus help to reverse the hyperglycemia associated with type 2 diabetes.  (+info)

The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. (14/623)

We recently showed that an increased supply of purine nucleotides increased the growth rate of cultured fibroblasts. To understand the mechanism of the growth rate regulation, CHO K1 (a wild type of Chinese hamster ovary fibroblast cell line) and CHO ade (-)A (a cell line deficient in amidophosphoribosyltransferase, a rate-limiting enzyme of the de novo pathway) were cultured under various conditions. Moreover, a defective de novo pathway in CHO ade (-)A cells was exogenously restored by 5-amino-4-imidazole-carboxamide riboside, a precursor of the de novo pathway. The following parameters were determined: the growth rate of CHO fibroblasts, the metabolic rate of the de novo pathway, the enzyme activities of amidophosphoribosyltransferase and hypoxanthine phosphoribosyltransferase, the content of intracellular nucleotides, and the duration of each cell-cycle phase. We concluded the following: (i) Purine de novo synthesis, rather than purine salvage synthesis or pyrimidine synthesis, limits the growth rate. (ii) Purine nucleotides are synthesized preferentially by the salvage pathway as long as hypoxanthine is available for energy conservation. (iii) The GTP content depends on the intracellular ATP content. (iv) Biosynthesis of purine nucleotides increases the growth rate mainly through ATP production and promotion of the G(1)/S transition.  (+info)

Clinical, biochemical and molecular genetic correlations in adenylosuccinate lyase deficiency. (15/623)

Adenylosuccinate lyase (ADSL) deficiency (MIM 103050) is an autosomal recessive inborn error of purine synthesis characterized by the accumulation in body fluids of succinylaminoimidazolecarboxamide (SAICA) riboside and succinyladenosine (S-Ado), the dephosphorylated derivatives of the two substrates of the enzyme. Because ADSL-deficient patients display widely variable degrees of psychomotor retardation, we have expressed eight mutated ADSL enzymes as thioredoxin fusions and compared their properties with the clinical and biochemical characteristics of 10 patients. Three expressed mutated ADSL enzymes (M26L, R426H and T450S) were thermolabile, four (A2V, R141W, R303C and S395R) were thermostable and one (del206-218), was inactive. Thermolabile mutations decreased activities with SAICA ribotide (SAICAR) and adenylosuccinate (S-AMP) in parallel, or more with SAICAR than with S-AMP. Patients homozygous for one of these mutations, R426H, displayed similarly decreased ADSL activities in their fibroblasts, S-Ado:SAICA riboside ratios of approximately 1 in their cerebrospinal fluid and were profoundly retarded. With the exception of A2V, thermostable mutations decreased activity with S-AMP to a much more marked extent than with SAICAR. Two unrelated patients homozygous for one of the thermostable mutations, R303C, also displayed a much more marked decrease in the activity of fibroblast ADSL with S-AMP than with SAICAR, had S-Ado:SAICA riboside ratios between 3 and 4 in their cerebrospinal fluid and were mildly retarded. These results suggest that, in some cases, the genetic lesion of ADSL determines the ratio of its activities with S-AMP versus SAICAR, which in turn defines the S-Ado:SAICA riboside ratio and the patients' mental status.  (+info)

AMP-activated protein kinase counteracted the inhibitory effect of glucose on the phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes. (16/623)

The effect of AMP-activated protein kinase (AMPK) in the regulation of the phosphoenolpyruvate carboxykinase (PEPCK) gene expression was studied in isolated rat hepatocytes. Activation of AMPK by AICAR counteracted the inhibitory effect of glucose on the PEPCK gene expression, both at the mRNA and the transcriptional levels. It is proposed that a target for AMPK is involved in the inhibitory effect of glucose on PEPCK gene transcription.  (+info)