AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. (57/623)

Exercise improves insulin sensitivity. As AMP-activated protein kinase (AMPK) plays an important role in muscle metabolism during exercise, we investigated the effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) on insulin action in insulin-resistant high-fat-fed (HF) rats. Rats received a subcutaneous injection of 250 mg/kg AICAR (HF-AIC) or saline (HF-Con). The next day, euglycemic-hyperinsulinemic clamp studies were performed. Glucose infusion rate during the clamp was enhanced (50%) in HF-AIC compared with HF-Con rats. Insulin-stimulated glucose uptake was improved in white but not in red quadriceps, whereas glycogen synthesis was improved in both red and white quadriceps of HF-AIC rats. HF-AIC rats also showed increased insulin suppressibility of hepatic glucose output (HGO). AICAR-induced responses in both liver and muscle were accompanied by reduced malonyl-CoA content. Clamp HGO correlated closely with hepatic triglyceride content (r = 0.67, P < 0.01). Thus, a single dose of AICAR leads to an apparent enhancement in whole-body, muscle, and liver insulin action in HF rats that extends beyond the expected time of AMPK activation. Whether altered tissue lipid metabolism mediates AICAR effects on insulin action remains to be determined. Follow-up studies suggest that at least some of the post-AICAR insulin-enhancing effects also occur in normal rats. Independent of this, the results suggest that pharmacological activation of AMPK may have potential in treating insulin-resistant states and type 2 diabetes.  (+info)

AMP kinase activation ameliorates insulin resistance induced by free fatty acids in rat skeletal muscle. (58/623)

We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  (+info)

Intermittent increases in cytosolic Ca2+ stimulate mitochondrial biogenesis in muscle cells. (59/623)

Muscle contractions cause numerous disturbances in intracellular homeostasis. This makes it impossible to use contracting muscle to identify which of the many signals generated by contractions are responsible for stimulating mitochondrial biogenesis. One purpose of this study was to evaluate the usefulness of L6 myotubes, which do not contract, for studying mitochondrial biogenesis. A second purpose was to evaluate further the possibility that increases in cytosolic Ca2+ can stimulate mitochondrial biogenesis. Continuous exposure to 1 microM ionomycin, a Ca2+ ionophore, for 5 days induced an increase in mitochondrial enzymes but also caused a loss of myotubes, as reflected in an approximately 40% decrease in protein per dish. However, intermittent (5 h/day) exposure to ionomycin, or to caffeine or W7, which release Ca2+ from the sarcoplasmic reticulum, did not cause a decrease in protein per dish. Raising cytosolic Ca2+ intermittently with these agents induced significant increases in mitochondrial enzymes. EGTA blocked most of this effect of ionomycin, whereas dantrolene, which blocks Ca2+ release from the sarcoplasmic reticulum, largely prevented the increases in mitochondrial enzymes induced by W7 and caffeine. These findings provide evidence that intermittently raising cytosolic Ca2+ stimulates mitochondrial biogenesis in muscle cells.  (+info)

AICAR and phlorizin reverse the hypoglycemia-specific defect in glucagon secretion in the diabetic BB rat. (60/623)

Individuals with type 1 diabetes demonstrate a hypoglycemia-specific defect in glucagon secretion. To determine whether intraislet hyperinsulinemia plays a role in the genesis of this defect, glucagon-secretory responses to moderate hypoglycemia induced by either insulin or a novel combination of the noninsulin glucose-lowering agents 5-aminoimidazole-4-carboxamide (AICAR) and phlorizin were compared in diabetic BB rats (an animal model of type 1 diabetes) and nondiabetic BB rats. The phlorizin-AICAR combination was able to induce moderate and equivalent hypoglycemia in both diabetic and nondiabetic BB rats in the absence of marked hyperinsulinemia. Diabetic BB rats demonstrated impaired glucagon and epinephrine responses during insulin-induced hypoglycemia compared with nondiabetic rats. In contrast, both glucagon (9- to 10-fold increase) and epinephrine (5- to 6-fold increase) responses were markedly improved during phlorizin-AICAR hypoglycemia. Combining phlorizin, AICAR, and insulin attenuated the glucagon response to hypoglycemia by 70% in the diabetic BB rat. Phlorizin plus AICAR had no effect on counterregulatory hormones under euglycemic conditions. We conclude that alpha-cell glucagon secretion in response to hypoglycemia is not defective if intraislet hyperinsulinemia is prevented. This suggests that exogenous insulin plays a pivotal role in the etiology of this defect.  (+info)

AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. (61/623)

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-alpha 2 ( approximately 2.5-fold) and transcription of the uncoupling protein-3 (UCP3, approximately 4-fold) and hexokinase II (HKII, approximately 10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 micro g. g(-1). min(-1) for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.  (+info)

Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. (62/623)

Together, the biosyntheses of histidine, purines, and thiamine pyrophosphate (TPP) contain examples of convergent, divergent, and regulatory pathway integration. Mutations in two purine biosynthetic genes (purI and purH) affect TPP biosynthesis due to flux through the purine and histidine pathways. The molecular genetic characterization of purI mutants and their respective pseudorevertants resulted in the conclusion that <1% of the wild-type activity of the PurI enzyme was sufficient for thiamine but not for purine synthesis. The respective pseudorevertants were found to be informational suppressors. In addition, it was shown that accumulation of the purine intermediate aminoimidazole carboxamide ribotide inhibits thiamine synthesis, specifically affecting the conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine.  (+info)

Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. (63/623)

The AMP-activated protein kinase (AMPK) is the central component of a protein kinase cascade that plays a major role in energy sensing. AMPK is activated pharmacologically by 5-amino-4-imidazolecarboxamide (AICA) riboside monophosphate (ZMP), which mimics the effects of AMP on the AMPK cascade. Here we show that uptake of AICA riboside into cells, mediated by the adenosine transport system, is blocked by a number of protein kinase inhibitors. Under these conditions, ZMP does not accumulate to sufficient levels to stimulate AMPK. Our results demonstrate that careful interpretation is required when using AICA riboside in conjunction with protein kinase inhibitors to investigate the physiological role of AMPK.  (+info)

Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells. (64/623)

Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is important for fluid and electrolyte transport in many epithelia including the lung, the site of most cystic fibrosis-associated morbidity. CFTR is unique among ion channels in requiring ATP hydrolysis for its gating, suggesting that its activity is coupled to cellular metabolic status. The metabolic sensor AMP-activated kinase (AMPK) binds to and phosphorylates CFTR, co-localizes with it in various tissues, and inhibits CFTR currents in Xenopus oocytes (Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A. & Foskett, J. K. (2000) J. Clin. Invest. 105, 1711-1721). Here we demonstrate that this AMPK-CFTR interaction has functional implications in human lung epithelial cells. Pharmacologic activation of AMPK inhibited forskolin-stimulated CFTR short circuit currents in polarized Calu-3 cell monolayers. In whole-cell patch clamp experiments, the activation of endogenous AMPK either pharmacologically or by the overexpression of an AMPK-activating non-catalytic subunit mutant (AMPK-gamma1-R70Q) dramatically inhibited forskolin-stimulated CFTR conductance in Calu-3 and CFTR-expressing Chinese hamster ovary cells. Plasma membrane expression of CFTR, assessed by surface biotinylation, was not affected by AMPK activation. In contrast, the single channel open probability of CFTR was strongly reduced in cell-attached patch clamp measurements of Calu-3 cells transfected with the AMPK-activating mutant, an effect due primarily to a substantial prolongation of the mean closed time of the channel. As a metabolic sensor in cells, AMPK may be important in tuning CFTR activity to cellular energy charge, thereby linking transepithelial transport and the maintenance of cellular ion gradients to cellular metabolism.  (+info)