Negative regulation of c-kit-mediated cell proliferation by Fc gamma RIIB. (9/499)

Fc gamma RIIB are single-chain low-affinity receptors for IgG that bear an immunoreceptor tyrosine-based inhibition motif in their intracytoplasmic domain and that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They are widely expressed by cells of hematopoietic origin. We investigated here whether Fc gamma RIIB could also negatively regulate protein tyrosine kinase receptor (RTK)-dependent cell proliferation. As an experimental model, we used growth factor-dependent mast cells that constitutively express Fc gamma RIIB and c-kit, an RTK prototype. We found that anti-c-kit Abs mimicked the effect of stem cell factor and induced thymidine incorporation in Fc gamma RIIB-/-, but not in wild-type (wt) mast cells unless Fc gamma RIIB were blocked or anti-c-kit F(ab')2 were used. When coaggregated with c-kit by intact Abs in wt mast cells, Fc gamma RIIB inhibited thymidine incorporation, as well as cell proliferation, and inhibition was correlated with an arrest of cells in G1 during the cell cycle. The coaggregation of c-kit with Fc gamma RIIB did not affect ligand-induced c-kit phosphorylation and induced the tyrosyl-phosphorylation of Fc gamma RIIB, which selectively recruited the Src homology 2 domain-bearing inositol 5-phosphatase SHIP. Our results indicate that IgG Abs to growth factors or growth factor receptors may control RTK-dependent proliferation of a variety of cells that express Fc gamma RIIB.  (+info)

CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. (10/499)

CDw150, a receptor up-regulated on activated T or B lymphocytes, has a key role in regulating B cell proliferation. Patients with X-linked lymphoproliferative disease have mutations in a gene encoding a protein, DSHP/SAP, which interacts with CDw150 and is expressed in B cells. Here we show that CDw150 on B cells associates with two tyrosine-phosphorylated proteins, 59 kDa and 145 kDa in size. The 59-kDa protein was identified as the Src-family kinase Fgr. The 145-kDa protein is the inositol polyphosphate 5'-phosphatase, SH2-containing inositol phosphatase (SHIP). Both Fgr and SHIP interact with phosphorylated tyrosines in CDw150's cytoplasmic tail. Ligation of CDw150 induces the rapid dephosphorylation of both SHIP and CDw150 as well as the association of Lyn and Fgr with SHIP. CD95/Fas-mediated apoptosis is enhanced by signaling via CDw150, and CDw150 ligation can override CD40-induced rescue of CD95-mediated cell death. The ability of CDw150 to regulate cell death does not correlate with serine phosphorylation of the Akt kinase, but does correlate with SHIP tyrosine dephosphorylation. Thus, the CDw150 receptor may function to regulate the fate of activated B cells via SHIP as well as via the DSHP/SAP protein defective in X-linked lymphoproliferative disease patients.  (+info)

Costimulation reverses the defect in IL-2 but not effector cytokine production by T cells with impaired IkappaBalpha degradation. (11/499)

Although the transcriptional basis for states of unresponsiveness in primary T cells is unclear, tolerant B lymphocytes exhibit inhibition of both c-Jun N-terminal kinase induction and IkappaBalpha (inhibitor of NF-kappaBalpha) degradation, leading to lower levels of both nuclear AP-1 and NF-kappaB. Expression of an IkappaBalpha mutant resistant to signal-induced degradation in transgenic T cells caused markedly deficient effector cytokine (IL-4, IFN-gamma) production after primary TCR stimulation despite a detectable level of nuclear NF-kappaB. A TCR response element from the IFN-gamma promoter, despite lacking detectable NF-kappaB/Rel sites, was also unresponsive to TCR ligation. Nuclear induction of AP-1 proteins in response to T cell activation was diminished in transgenic T cells. Costimulation induced by anti-CD28 mAb increased IL-2 production, but failed to reverse the defects in effector cytokine production. Taken together, these data indicate that impaired NF-kappaB/Rel signaling in T cells interferes with the signal transduction pathways required for efficient induction of effector cytokine production.  (+info)

The TCR zeta-chain immunoreceptor tyrosine-based activation motifs are sufficient for the activation and differentiation of primary T lymphocytes. (12/499)

The TCR complex signals through a set of 10 intracytoplasmic motifs, termed immunoreceptor tyrosine-based activation motifs (ITAMs), contained within the gamma-, delta-, epsilon-, and zeta-chains. The need for this number of ITAMs is uncertain. Limited and contradictory studies have examined the ability of subsets of the TCR's ITAMs to signal into postthymic primary T lymphocytes. To study signaling by a restricted set of ITAMs, we expressed in transgenic mice a chimeric construct containing the IAs class II MHC extracellular and transmembrane domains linked to the cytoplasmic domain of the TCR zeta-chain. Tyrosine phosphorylation and receptor cocapping studies indicate that this chimeric receptor signals T cells independently of the remainder of the TCR. We show that CD4+ and CD8+ primary T cells, as well as naive and memory T cells, are fully responsive to stimulation through the IAs-zeta receptor. Further, IAs-zeta stimulation can induce primary T cell differentiation into CTL, Th1, and Th2 type cells. These results show that the zeta-chain ITAMs, in the absence of the gamma, delta, and epsilon ITAMs, are sufficient for the activation and functional maturation of primary T lymphocytes. It also supports the isolated use of the zeta-chain ITAMs in the development of surrogate TCRs for therapeutic purposes.  (+info)

Quantifying aggregation of IgE-FcepsilonRI by multivalent antigen. (13/499)

Aggregation of cell surface receptors by multivalent ligand can trigger a variety of cellular responses. A well-studied receptor that responds to aggregation is the high affinity receptor for IgE (FcepsilonRI), which is responsible for initiating allergic reactions. To quantify antigen-induced aggregation of IgE-FcepsilonRI complexes, we have developed a method based on multiparameter flow cytometry to monitor both occupancy of surface IgE combining sites and association of antigen with the cell surface. The number of bound IgE combining sites in excess of the number of bound antigens, the number of bridges between receptors, provides a quantitative measure of IgE-FcepsilonRI aggregation. We demonstrate our method by using it to study the equilibrium binding of a haptenated fluorescent protein, 2,4-dinitrophenol-coupled B-phycoerythrin (DNP25-PE), to fluorescein isothiocyanate-labeled anti-DNP IgE on the surface of rat basophilic leukemia cells. The results, which we analyze with the aid of a mathematical model, indicate how IgE-FcepsilonRI aggregation depends on the total concentrations of DNP25-PE and surface IgE. As expected, we find that maximal aggregation occurs at an optimal antigen concentration. We also find that aggregation varies qualitatively with the total concentration of surface IgE as predicted by an earlier theoretical analysis.  (+info)

A common signaling pathway via Syk and Lyn tyrosine kinases generated from capping of the sialomucins CD34 and CD43 in immature hematopoietic cells. (14/499)

The sialomucin CD34 is a useful marker for hematopoietic stem/progenitor cells. However, the role of CD34 remains poorly understood. Here we investigate the functions of CD34 and another sialomucin CD43 coexpressed on hematopoietic stem/progenitor cells. Stimulation of undifferentiated hematopoietic KG1a cells with anti-CD34 or anti-CD43 induced homotypic cytoadhesion, accompanied by formation of a long-lived cap of CD34 and CD43 respectively, which colocalized with F-actin. Stimulation with either antibody specifically increased tyrosine phosphorylation of the identical set of proteins of Lyn, Syk, pp60, pp69, and pp77 at the capping site. These events were similar to those observed in monocytic U937 cells ectopically expressing CD34. After stimulation of KG1a cells, coimmunoprecipitation of Lyn with pp69 and pp77 and of Syk with pp37 was detected in the membrane fraction. Blockade of antibody-induced cap formation by treatment with cytochalasin D leads to inhibition of tyrosine phosphorylation of Syk and pp77 and homotypic cytoadhesion. Moreover, normal human CD34(+) bone marrow cells showed cap formation of CD34 or CD43 after stimulation. These results suggest that crosslinking of either CD34 or CD43 activates the same signaling pathway for cytoadhesion through Lyn, Syk, and the novel tyrosine-phosphorylated proteins within hematopoiesis.  (+info)

Cytokine-induced apoptosis in epithelial HT-29 cells is independent of nitric oxide formation. Evidence for an interleukin-13-driven phosphatidylinositol 3-kinase-dependent survival mechanism. (15/499)

A combination of the pro-inflammatory cytokines interleukin (IL)-1alpha, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha induces nitric oxide synthase mRNA expression and nitric oxide (NO) generation in the human colon carcinoma cell line HT-29. This can be inhibited by pretreatment with IL-13 via a phosphatidylinositol (PI) 3-kinase-dependent mechanism (Wright, K., Ward, S. G., Kolios, G., and Westwick, J. (1997) J. Biol. Chem. 272, 12626-12633). Since NO has been implicated in regulating mechanisms leading to cell death, while activation of PI 3-kinase-dependent signaling cascades are thought to be involved with promoting cell survival events, we have investigated the outcome of these cytokine treatments on apoptosis and cell survival of HT-29 cells. Initiation of apoptosis can be achieved by the combinations of IFN-gamma/TNF-alpha, IFN-gamma/CD95, IL-1alpha/IFN-gamma, and IL-1alpha/IFN-gamma/TNF-alpha to varying extents. Induction of apoptotic markers by HT-29 cells in response to cytokine treatment is not dependent on NO production. Pretreatment with IL-13 protects against IL-1alpha/IFN-gamma/TNF-alpha- and IFN-gamma/TNF-alpha- as well as IFN-gamma/CD95-induced (but not IL-1alpha/IFN-gamma-induced) cell death. In addition, IFN-gamma/TNF-alpha and IL-1alpha/IFN-gamma/TNF-alpha stimulate activation of caspase-8 and caspase-3, which IL-13 pretreatment was able to partially inhibit and delay. IL-13 also stimulates activation of the major PI 3-kinase effector, protein kinase B. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit IL-13 stimulation of protein kinase B as well as the cell survival effects of IL-13. These data demonstrate that cytokine-induced apoptosis of HT-29 cells is NO-independent and that the activation of a PI 3-kinase-dependent signaling cascade by IL-13 is a key signal responsible for the inhibition of apoptosis.  (+info)

Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. (16/499)

To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.  (+info)