A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. (1/581)

The wiring patterns among various types of neurons via specific synaptic connections are the basis of functional logic employed by the brain for information processing. This study introduces a powerful method of analyzing the neuronal connectivity patterns by delivering a tracer selectively to specific types of neurons while simultaneously transsynaptically labeling their target neurons. We developed a novel genetic approach introducing cDNA for a plant lectin, wheat germ agglutinin (WGA), as a transgene under the control of specific promoter elements. Using this method, we demonstrate three examples of visualization of specific transsynaptic neural pathways: the mouse cerebellar efferent pathways, the mouse olfactory pathways, and the Drosophila visual pathways. This strategy should greatly facilitate studies on the anatomical and functional organization of the developing and mature nervous system.  (+info)

Role of surface proteins in Vibrio cholerae attachment to chitin. (2/581)

The role of surface proteins in Vibrio cholerae attachment to chitin particles in vitro was studied. Treatment of V. cholerae O1 ATCC 14034 and ATCC 14035 with pronase E reduced the attachment of bacteria to chitin particles by 57 to 77%. A statistically significant reduction was also observed when the attachment to chitin was evaluated in the presence of homologous Sarkosyl-insoluble membrane proteins (MPs) (67 to 84%), N-acetylglucosamine (GlcNAc) (62%), the sugar that makes up chitin, and wheat germ agglutinin (40 to 56%), a lectin that binds GlcNAc. The soluble oligomers N,N'-diacetylchitobiose or N,N', N"-triacetylchitotriose caused an inhibition of 14 to 23%. Sarkosyl-insoluble MPs able to bind chitin particles were isolated and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; two of these peptides (molecular sizes, 36 and 53 kDa) specifically bind GlcNAc.  (+info)

Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. (3/581)

In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.  (+info)

Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. (4/581)

Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.  (+info)

Isolation and characterization of linear polylactosamines containing one and two site-specifically positioned Lewis x determinants: WGA agarose chromatography in fractionation of mixtures generated by random, partial enzymatic alpha3-fucosylation of pure polylactosamines. (5/581)

We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Leppanen et al., Biochemistry, 36, 13729-13735, 1997).  (+info)

Binding of human neutrophils to cell-surface anchored Tamm-Horsfall glycoprotein in tubulointerstitial nephritis. (6/581)

BACKGROUND: Human Tamm-Horsfall glycoprotein (T-H) is a glycosylphosphatidylinositol-anchored protein exposed at the surface of distal nephron cells, and urinary T-H is the released soluble counterpart. The latter has been implicated in tubulointerstitial nephritis, and the proinflammatory potential has been related to its ability to bind in vitro human neutrophils (PMNs). We have examined the conditions required for the binding of neutrophils to cell-surface anchored T-H and the consequent effects. METHODS: A HeLa cell-line derivative permanently transformed with human T-H cDNA and expressing T-H at the cell surface was used throughout the study. The adhesion of PMNs to cells expressing T-H was analyzed by immunofluorescence microscopy before and after the opsonization of cells with anti-T-H antibodies. The oxidative burst induced by adhesion of PMNs to the cells was determined by the activation of myeloperoxidase. Quantitative and qualitative changes in the release of T-H under the adhesion of activated PMNs were determined by dot-blot and Western blot analysis. RESULTS: No binding of neutrophils to cell-surface-anchored T-H was observed. On the contrary, the opsonization of cells with anti-T-H antibodies resulted in a dramatic adhesion of neutrophils. Such an adhesion induced the oxidative burst of PMNs and a large increment in the release of T-H, as well as the release of the slightly faster migrating T-H form, which is normally retained intracellularly. CONCLUSIONS: These results support the notion that, after the autoimmune response, the adhesion of neutrophils to cell-surface T-H contributes to the pathogenesis of tubulointerstitial nephritis, favoring a further accumulation of T-H in the interstitium and inducing the loss of cell integrity via reactive oxygen metabolites generated by activated neutrophils.  (+info)

Wheat germ agglutinin induces NADPH-oxidase activity in human neutrophils by interaction with mobilizable receptors. (7/581)

Wheat germ agglutinin (WGA), a lectin with specificity for N-acetylglucosamine and sialic acid, was investigated with respect to its ability to activate the NADPH-oxidase of in vivo-exudated neutrophils (obtained from a skin chamber), and the activity was compared to that of peripheral blood neutrophils. The exudate cells responded to WGA, by both releasing reactive oxygen species into the extracellular milieu and producing oxygen metabolites intracellularly. The peripheral blood cells were unresponsive. To mimic the in vivo-exuded neutrophils with regards to receptor exposure, peripheral blood neutrophils were induced to mobilize their granules and vesicles to varying degrees (in vitro priming), prior to challenge with WGA. The oxidative response to WGA increased with increasing levels of granule mobilization, and the receptor(s) could be shown to reside in the secretory vesicles and/or the gelatinase granules in resting neutrophils. Several WGA-binding glycoproteins were detected in subcellular fractions containing these organelles. The extra- and intracellular NADPH-oxidase responses showed differences in sialic acid dependency, indicating that these two responses are mediated by different receptor structures.  (+info)

Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. (8/581)

In vitro, the nitrogen fixation capability of A. lipoferum is efficiently increased in the presence of wheat germ agglutinin (WGA). A putative WGA-binding receptor, a 32-kDa protein, was detected in the cell capsule. The stimulatory effect required N-acetyl-D-glucosamine dimer (GlcNAcdi) terminated sugar side chains of the receptor and was dependent on the number of GlcNAcdi links involved in receptor-WGA interface. Binding to the primary sugar binding sites on WGA had a larger stimulatory effect than binding to the secondary sites. The WGA-receptor complex generated stimulus led to elevated transcription of the nifH and nifA genes and of the glnBA gene cluster but not of the glnA gene from its own promoter. There may well be a signalling cascade contributing to the regulation of nitrogen fixation.  (+info)