DEF-1, a novel Src SH3 binding protein that promotes adipogenesis in fibroblastic cell lines. (1/5446)

The Src homology 3 (SH3) motif is found in numerous signal transduction proteins involved in cellular growth and differentiation. We have purified and cloned a novel protein, DEF-1 (differentiation-enhancing factor), from bovine brain by using a Src SH3 affinity column. Ectopic expression of DEF-1 in fibroblasts resulted in the differentiation of a significant fraction of the culture into adipocytes. This phenotype appears to be related to the induction of the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), since DEF-1 NIH 3T3 cells demonstrated augmented levels of PPARgamma mRNA and, when treated with activating PPARgamma ligands, efficient induction of differentiation. Further evidence for a role for DEF-1 in adipogenesis was provided by heightened expression of DEF-1 mRNA in adipose tissue isolated from obese and diabetes mice compared to that in tissue isolated from wild-type mice. However, DEF-1 mRNA was detected in multiple tissues, suggesting that the signal transduction pathway(s) in which DEF-1 is involved is not limited to adipogenesis. These results suggest that DEF-1 is an important component of a signal transduction process that is involved in the differentiation of fibroblasts and possibly of other types of cells.  (+info)

Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. (2/5446)

The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  (+info)

Tumor necrosis factor alpha stimulates lipolysis in adipocytes by decreasing Gi protein concentrations. (3/5446)

Prolonged treatment (12-24 h) of adipocytes with tumor necrosis factor alpha (TNFalpha) stimulates lipolysis. We have investigated the hypothesis that TNFalpha stimulates lipolysis by blocking the action of endogenous adenosine. Adipocytes were incubated for 48 h with TNFalpha, and lipolysis was measured in the absence or presence of adenosine deaminase. Without adenosine deaminase, the rate of glycerol release was 2-3-fold higher in the TNFalpha-treated cells, but with adenosine deaminase lipolysis increased in the controls to approximately that in the TNFalpha-treated cells. This suggests that TNFalpha blocks adenosine release or prevents its antilipolytic effect. Both N6-phenylisopropyl adenosine and nicotinic acid were less potent and efficacious inhibitors of lipolysis in treated cells. A decrease in the concentration of alpha-subunits of all three Gi subtypes was detected by Western blotting without a change in Gs proteins or beta-subunits. Gi2alpha was about 50% of control, whereas Gi1alpha and Gi3alpha were about 20 and 40% of control values, respectively. The time course of Gi down-regulation correlated with the stimulation of lipolysis. Furthermore, down-regulation of Gi by an alternative approach (prolonged incubation with N6-phenylisopropyl adenosine) stimulated lipolysis. These findings indicate that TNFalpha stimulates lipolysis by blunting endogenous inhibition of lipolysis. The mechanism appears to be a Gi protein down-regulation.  (+info)

Transgenic UCP1 in white adipocytes modulates mitochondrial membrane potential. (4/5446)

To test if mitochondrial uncoupling in white adipocytes is responsible for obesity resistance of the aP2-Ucp transgenic mice expressing ectopic uncoupling protein 1 (UCPI) in white fat, mitochondrial membrane potential (delta psi(m)) was estimated by flow cytometry in adipocytes isolated from gonadal fat. Ectopic UCP1 (approximately 0.8 mol UCP1/mol respiratory chain) decreased the delta psi(m) and rendered the potential sensitive to GDP and fatty acids. These ligands of UCP1 had no effect on delta psi(m) in white adipocytes from non-transgenic mice, suggesting that the function of endogenous UCP2 in adipocytes was not affected. The results support the hypothesis that mitochondrial uncoupling in white fat may prevent development of obesity.  (+info)

SNAP-23 participates in SNARE complex assembly in rat adipose cells. (5/5446)

SNARE proteins are required for vesicle docking and fusion in eukaryotic cells in processes as diverse as homotypic membrane fusion and synaptic vesicle exocytosis [SNARE stands for SNAP receptor, where SNAP is soluble NSF attachment protein]. The SNARE proteins syntaxin 4 and vesicle-associated membrane protein (VAMP) 2/3 also participate in the insulin-stimulated translocation of GLUT4 from intracellular vesicles to the plasma membrane in adipose cells. We now report the molecular cloning and characterization of rat SNAP-23, a ubiquitously expressed homologue of the essential neuronal SNARE protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Rat SNAP-23 is 86% and 98% identical respectively to human and mouse SNAP-23. Southern blot analysis reveals that the rat, mouse and human SNAP-23 genes encode species-specific isoforms of the same protein. Co-immunoprecipitation of syntaxin 4 and SNAP-23 shows association of these two proteins in rat adipose cell plasma membranes, and insulin stimulation does not alter the SNAP-23/syntaxin 4 complex. In addition, we demonstrate for the first time the participation of SNAP-23, along with syntaxin 4 and VAMP2/3, in the formation of 20S SNARE complexes prepared using rat adipose cell membranes and recombinant alpha-SNAP and NSF proteins. The stoichiometry of the SNARE complexes formed is essentially identical using membranes from either unstimulated or insulin-stimulated adipose cells. These data demonstrate that rat SNAP-23 associates with syntaxin 4 before insulin stimulation and is present in the SNARE complexes known to mediate the translocation of GLUT4 from intracellular vesicles to the plasma membrane of rat adipose cells.  (+info)

Regulation of fatty acid homeostasis in cells: novel role of leptin. (6/5446)

It is proposed that an important function of leptin is to confine the storage of triglycerides (TG) to the adipocytes, while limiting TG storage in nonadipocytes, thus protecting them from lipotoxicity. The fact that TG content in nonadipocytes normally remains within a narrow range, while that of adipocytes varies enormously with food intake, is consistent with a system of TG homeostasis in normal nonadipocytes. The facts that when leptin receptors are dysfunctional, TG content in nonadipocytes such as islets can increase 100-fold, and that constitutively expressed ectopic hyperleptinemia depletes TG, suggest that leptin controls the homeostatic system for intracellular TG. The fact that the function and viability of nonadipocytes is compromised when their TG content rises above or falls below the normal range suggests that normal homeostasis of their intracellular TG is critical for optimal function and to prevent lipoapoptosis. Thus far, lipotoxic diabetes of fa/fa Zucker diabetic fatty rats is the only proven lipodegenerative disease, but the possibility of lipotoxic disease of skeletal and/or cardiac muscle may require investigation, as does the possible influence of the intracellular TG content on autoimmune and neoplastic processes.  (+info)

Reversing adipocyte differentiation: implications for treatment of obesity. (7/5446)

Conventional treatment of obesity reduces fat in mature adipocytes but leaves them with lipogenic enzymes capable of rapid resynthesis of fat, a likely factor in treatment failure. Adenovirus-induced hyperleptinemia in normal rats results in rapid nonketotic fat loss that persists after hyperleptinemia disappears, whereas pair-fed controls regain their weight in 2 weeks. We report here that the hyperleptinemia depletes adipocyte fat while profoundly down-regulating lipogenic enzymes and their transcription factor, peroxisome proliferator-activated receptor (PPAR)gamma in epididymal fat; enzymes of fatty acid oxidation and their transcription factor, PPARalpha, normally low in adipocytes, are up-regulated, as are uncoupling proteins 1 and 2. This transformation of adipocytes from cells that store triglycerides to fatty acid-oxidizing cells is accompanied by loss of the adipocyte markers, adipocyte fatty acid-binding protein 2, tumor necrosis factor alpha, and leptin, and by the appearance of the preadipocyte marker Pref-1. These findings suggest a strategy for the treatment of obesity by alteration of the adipocyte phenotype.  (+info)

Caloric restriction leads to regional specialisation of adipocyte function in the rat. (8/5446)

The study analysed the responses of three metabolic parameters in five distinct adipose tissue depots to caloric restriction (4 weeks) in the rat. The aims were to evaluate whether specific adipose tissue depots were recruited for triacylglycerol (TAG) storage and/or mobilisation, and to determine to what extent specific adipose tissue depots exhibited preferences for the source of fatty acid (FA) for TAG storage. Caloric restriction led to a general enhancement of the response of lipoprotein lipase (LPL), FA synthesis and glucose utilisation to a meal. Effects were particularly marked in the parametrial, perirenal and interscapular depots compared with mesenteric and subcutaneous depots. There was no evidence that individual depots selectively expressed a preference for the pathways concerned with the generation of FA for storage (the exogenous (LPL) and the endogenous (synthesis) pathway). However, the temporal sequence of activation of these pathways differed in a manner consistent with a switch from preponderant use of FA produced via de novo synthesis during the very early phase of feeding towards later use of FA derived from circulating TAG. The overall excursions in insulin levels observed in the calorie-restricted rats were comparable to those found in free-feeding rats, but the magnitude and the rapidity of the individual metabolic responses of the adipocyte were augmented. The data are consistent with a general enhancement of insulin sensitivity and responsiveness in adipose tissue of calorie-restricted rats, together with adaptive regional specialisation of adipocyte function. These adaptations would be predicted to facilitate the immediate conservation of dietary nutrients by promoting their storage as the FA or glycerol moieties of adipose tissue TAG and thereby to ensure the regulated release of FA and glycerol from adipose tissue in accordance with the requirement for glucose conservation and/or production.  (+info)