Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. (1/8527)

Disulfide trapping studies have revealed that the pore-lining (P) segments of voltage-dependent sodium channels undergo sizable motions on a subsecond time scale. Such motions of the pore may be necessary for selective ion translocation. Although traditionally viewed as separable properties, gating and permeation are now known to interact extensively in various classes of channels. We have investigated the interaction of pore motions and voltage-dependent gating in micro1 sodium channels engineered to contain two cysteines within the P segments. Rates of catalyzed internal disulfide formation (kSS) were measured in K1237C+W1531C mutant channels expressed in oocytes. During repetitive voltage-clamp depolarizations, increasing the pulse duration had biphasic effects on the kSS, which first increased to a maximum at 200 msec and then decreased with longer depolarizations. This result suggested that occupancy of an intermediate inactivation state (IM) facilitates pore motions. Consistent with the known antagonism between alkali metals and a component of slow inactivation, kSS varied inversely with external [Na+]o. We examined the converse relationship, namely the effect of pore flexibility on gating, by measuring recovery from inactivation in Y401C+E758C (YC/EC) channels. Under oxidative conditions, recovery from inactivation was slower than in a reduced environment in which the spontaneous YC/EC cross-link is disrupted. The most prominent effects were slowing of a component with intermediate recovery kinetics, with diminution of its relative amplitude. We conclude that occupancy of an intermediate inactivation state facilitates motions of the P segments; conversely, flexibility of the P segments alters an intermediate component of inactivation.  (+info)

Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. (2/8527)

Mutations in alpha1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human alpha1A-2 subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.  (+info)

Individual subunits contribute independently to slow gating of bovine EAG potassium channels. (3/8527)

The bovine ether a go-go gene encodes a delayed rectifier potassium channel. In contrast to other delayed rectifiers, its activation kinetics is largely determined by the holding potential and the concentration of extracellular Mg2+, giving rise to slowly activating currents with a characteristic sigmoidal rising phase. Replacement of a single amino acid in the extracellular linker between transmembrane segments S3 and S4 (L322H) strongly reduced the prepulse dependence and accelerated activation by 1 order of magnitude. In addition, compared with the wild type, the half-activation voltage of this mutant was shifted by more than 30 mV to more negative potentials. We used dimeric and tetrameric constructs of the bovine eag1 gene to analyze channels with defined stoichiometry of mutated and wild-type subunits within the tetrameric channel complexes. With increasing numbers of mutated subunits, the channel activation was progressively accelerated, and the sigmoidicity of the current traces was reduced. Based on a quantitative analysis, we show that the slow gating, typical for EAG channels, is mediated by independent conformational transitions of individual subunits, which gain their voltage dependence from the S4 segment. At a given voltage, external Mg2+ increases the probability of a channel subunit to be in the slowly activating conformation, whereas mutation L322H strongly reduces this probability.  (+info)

Voltage and calcium use the same molecular determinants to inactivate calcium channels. (4/8527)

During sustained depolarization, voltage-gated Ca2+ channels progressively undergo a transition to a nonconducting, inactivated state, preventing Ca2+ overload of the cell. This transition can be triggered either by the membrane potential (voltage-dependent inactivation) or by the consecutive entry of Ca2+ (Ca2+-dependent inactivation), depending on the type of Ca2+ channel. These two types of inactivation are suspected to arise from distinct underlying mechanisms, relying on specific molecular sequences of the different pore-forming Ca2+ channel subunits. Here we report that the voltage-dependent inactivation (of the alpha1A Ca2+ channel) and the Ca2+-dependent inactivation (of the alpha1C Ca2+ channel) are similarly influenced by Ca2+ channel beta subunits. The same molecular determinants of the beta subunit, and therefore the same subunit interactions, influence both types of inactivation. These results strongly suggest that the voltage and the Ca2+-dependent transitions leading to channel inactivation use homologous structures of the different alpha1 subunits and occur through the same molecular process. A model of inactivation taking into account these new data is presented.  (+info)

Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. (5/8527)

The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.  (+info)

Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. (6/8527)

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.  (+info)

Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. (7/8527)

Using site-directed fluorescent labeling, we examined conformational changes in the S4 segment of each domain of the human skeletal muscle sodium channel (hSkM1). The fluorescence signals from S4 segments in domains I and II follow activation and are unaffected as fast inactivation settles. In contrast, the fluorescence signals from S4 segments in domains III and IV show kinetic components during activation and deactivation that correlate with fast inactivation and charge immobilization. These results indicate that in hSkM1, the S4 segments in domains III and IV are responsible for voltage-sensitive conformational changes linked to fast inactivation and are immobilized by fast inactivation, while the S4 segments in domains I and II are unaffected by fast inactivation.  (+info)

Distinct sensitivities of OmpF and PhoE porins to charged modulators. (8/8527)

The inhibition of the anion-selective PhoE porin by ATP and of the cation-selective OmpF porin by polyamines has been previously documented. In the present study, we have extended the comparison of the inhibitor-porin pairs by investigating the effect of anions (ATP and aspartate) and positively charged polyamines (spermine and cadaverine) on both OmpF and PhoE with the patch-clamp technique, and by comparing directly the gating kinetics of the channels modulated by their respective substrates. The novel findings reported here are (1) that the activity of PhoE is completely unaffected by polyamines, and (2) that the kinetic changes induced by ATP on PhoE or polyamines on OmpF suggest different mechanisms of inhibition. ATP induces a high degree of flickering in the PhoE-mediated current and appears to behave as a blocker of ion flow during its presumed transport through PhoE. Polyamines modulate the kinetics of openings and closings of OmpF, in addition to promoting a blocker-like flickering activity. The strong correlation between sensitivity to inhibitors and ion selectivity suggests that some common molecular determinants are involved in these two properties and is in agreement with the hypothesis that polyamines bind inside the pore of cationic porins.  (+info)