A kinetic study of ribulose bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum. (1/44858)

The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  (+info)

Nitric oxide stimulates the stress-activated protein kinase p38 in rat renal mesangial cells. (2/44858)

Nitric oxide (NO) has gained increased attention as a diffusible universal messenger that plays a crucial role in the pathogenesis of inflammatory and autoimmune diseases. Recently, we reported that exogenous NO is able to activate the stress-activated protein kinase (SAPK) cascade in mesangial cells. Here, we demonstrate that exposure of glomerular mesangial cells to compounds releasing NO, including spermine-NO and (Z)-1- (N-methyl-N-[6-(N-methylammoniohexyl)amino]diazen)-1-ium-1,2-diolate (MAHMA-NO), results in an activation of the stress-activated p38-mitogen-activated protein kinase (p38-MAPK) cascade as measured by the phosphorylation of the activator of transcription factor-2 (ATF2) in an immunocomplex kinase assay. Activation of the p38-MAPK cascade by a short stimulation (10 min) with the NO donor MAHMA-NO causes a large increase in ATF2 phosphorylation that is several times greater than that observed after stimulation with interleukin-1beta, a well-known activator of the p38-MAPK pathway. Time course studies reveal that MAHMA-NO causes rapid and maximal activation of p38-MAPK after 10 min of stimulation and that activation declines to basal levels within 60 min. The longer-lived NO donor spermine-NO causes a comparable rapid activation of the p38-MAPK pathway; however, the increased activation state of p38-MAPK was maintained for several hours before control values were reattained after 24 h of stimulation. Furthermore, the NO donors also activated the classical extracellular signal-regulated kinase (ERK) p44-MAPK cascade as shown by phosphorylation of the specific substrate cytosolic phospholipase A2 in an immunocomplex kinase reaction. Both MAHMA-NO and spermine-NO cause a rapid activation of p44-MAPK after 10 min of stimulation. Interestingly, there is a second delayed peak of p44-MAPK activation after 4-24 h of stimulation with NO donors. These results suggest that there is a differential activation pattern for stress-activated and mitogen-activated protein kinases by NO and that the integration of these signals may lead to specific cell responses.  (+info)

A Drosophila TNF-receptor-associated factor (TRAF) binds the ste20 kinase Misshapen and activates Jun kinase. (3/44858)

Two families of protein kinases that are closely related to Ste20 in their kinase domain have been identified - the p21-activated protein kinase (Pak) and SPS1 families [1-3]. In contrast to Pak family members, SPS1 family members do not bind and are not activated by GTP-bound p21Rac and Cdc42. We recently placed a member of the SPS1 family, called Misshapen (Msn), genetically upstream of the c-Jun amino-terminal (JNK) mitogen-activated protein (MAP) kinase module in Drosophila [4]. The failure to activate JNK in Drosophila leads to embryonic lethality due to the failure of these embryos to stimulate dorsal closure [5-8]. Msn probably functions as a MAP kinase kinase kinase kinase in Drosophila, activating the JNK pathway via an, as yet, undefined MAP kinase kinase kinase. We have identified a Drosophila TNF-receptor-associated factor, DTRAF1, by screening for Msn-interacting proteins using the yeast two-hybrid system. In contrast to the mammalian TRAFs that have been shown to activate JNK, DTRAF1 lacks an amino-terminal 'Ring-finger' domain, and overexpression of a truncated DTRAF1, consisting of only its TRAF domain, activates JNK. We also identified another DTRAF, DTRAF2, that contains an amino-terminal Ring-finger domain. Msn specifically binds the TRAF domain of DTRAF1 but not that of DTRAF2. In Drosophila, DTRAF1 is thus a good candidate for an upstream molecule that regulates the JNK pathway by interacting with, and activating, Msn. Consistent with this idea, expression of a dominant-negative Msn mutant protein blocks the activation of JNK by DTRAF1. Furthermore, coexpression of Msn with DTRAF1 leads to the synergistic activation of JNK. We have extended some of these observations to the mammalian homolog of Msn, Nck-interacting kinase (NIK), suggesting that TRAFs also play a critical role in regulating Ste20 kinases in mammals.  (+info)

Intracellular signalling: PDK1--a kinase at the hub of things. (4/44858)

Phosphoinositide-dependent kinase 1 (PDK1) is at the hub of many signalling pathways, activating PKB and PKC isoenzymes, as well as p70 S6 kinase and perhaps PKA. PDK1 action is determined by colocalization with substrate and by target site availability, features that may enable it to operate in both resting and stimulated cells.  (+info)

Bcl-2 regulates amplification of caspase activation by cytochrome c. (5/44858)

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. (6/44858)

The Met tyrosine kinase - the HGF receptor - induces cell transformation and metastasis when constitutively activated. Met signaling is mediated by phosphorylation of two carboxy-terminal tyrosines which act as docking sites for a number of SH2-containing molecules. These include Grb2 and p85 which couple the receptor, respectively, with Ras and PI 3-kinase. We previously showed that a Met mutant designed to obtain preferential coupling with Grb2 (Met2xGrb2) is permissive for motility, increases transformation, but - surprisingly - is impaired in causing invasion and metastasis. In this work we used Met mutants optimized for binding either p85 alone (Met2xPI3K) or p85 and Grb2 (MetPI3K/Grb2) to evaluate the relative importance of Ras and PI 3-kinase as downstream effectors of Met. Met2xPI3K was competent in eliciting motility, but not transformation, invasion, or metastasis. Conversely, MetP13K/Grb2 induced motility, transformation, invasion and metastasis as efficiently as wild type Met. Furthermore, the expression of constitutively active PI 3-kinase in cells transformed by the Met2xGrb2 mutant, fully rescued their ability to invade and metastasize. These data point to a central role for PI 3-kinase in Met-mediated invasiveness, and indicate that simultaneous activation of Ras and PI 3-kinase is required to unleash the Met metastatic potential.  (+info)

Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells. (7/44858)

Genotoxic stress triggers the activation of several sensor molecules, such as p53, JNK1/SAPK and c-Abl, and occasionally promotes the cells to apoptosis. We previously reported that JNK1/SAPK regulates genotoxic stress-induced apoptosis in p53-negative U937 cells by activating caspases. c-Abl is expected to act upstream of JNK1/SAPK activation upon treatment with genotoxic stressors, but its involvement in apoptosis development is still unclear. We herein investigated the kinase activities of c-Abl and JNK1/SAPK during apoptosis elicited by genotoxic anticancer drugs and tumor necrosis factor (TNF) in U937 cells and their apoptosis-resistant variant UK711 cells. We found that the activation of JNK1/SAPK and c-Abl correlated well with apoptosis development in these cell lines. Unexpectedly, however, the JNK1/SAPK activation preceded the c-Abl activation. Moreover, the caspase inhibitor Z-Asp suppressed c-Abl activation and the onset of apoptosis but not the JNK1/SAPK activation. Interestingly, c-Abl tyrosine kinase inhibition by CGP 57148 reduced apoptosis without interfering with JNK1/SAPK activation. These results indicate that c-Abl acts not upstream of JNK1/ SAPK but downstream of caspases during the development of p53-independent apoptosis and is possibly involved in accelerating execution of the cell death pathway.  (+info)

Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse. (8/44858)

Telomerase is a ribonucleoprotein enzyme that adds hexanucleotide repeats TTAGGG to the ends of chromosomes. Telomerase activation is known to play a crucial role in cell-immortalization and carcinogenesis. Telomerase is shown to have a correlation with cell cycle progression, which is controlled by the regulation of cyclins, cyclin dependent kinases (cdks) and cyclin dependent kinase inhibitors (cdkis). Abnormal expression of these regulatory molecules may cause alterations in cell cycle with uncontrolled cell growth, a universal feature of neoplasia. Skin cancer is the most prevalent form of cancer in humans and the solar UV radiation is its major cause. Here, we investigated modulation in telomerase activity and protein expression of cell cycle regulatory molecules during the development of UVB-induced tumors in SKH-1 hairless mice. The mice were exposed to 180 mjoules/cm2 UVB radiation, thrice weekly for 24 weeks. The animals were sacrificed at 4 week intervals and the studies were performed in epidermis. Telomerase activity was barely detectable in the epidermis of non-irradiated mouse. UVB exposure resulted in a progressive increase in telomerase activity starting from the 4th week of exposure. The increased telomerase activity either persisted or further increased with the increased exposure. In papillomas and carcinomas the enzyme activity was comparable and was 45-fold higher than in the epidermis of control mice. Western blot analysis showed an upregulation in the protein expression of cyclin D1 and cyclin E and their regulatory subunits cdk4 and cdk2 during the course of UVB exposure and in papillomas and carcinomas. The protein expression of cdk6 and ckis viz. p16/Ink4A, p21/Waf1 and p27/Kip1 did not show any significant change in UVB exposed skin, but significant upregulation was observed both in papillomas and carcinomas. The results suggest that telomerase activation may be involved in UVB-induced tumorigenesis in mouse skin and that increased telomerase activity may be associated with G1 phase of the cell cycle.  (+info)