Treatment of toenail onychomycosis with 2% butenafine and 5% Melaleuca alternifolia (tea tree) oil in cream. (1/38)

The prevalence of onychomycosis, a superficial fungal infection that destroys the entire nail unit, is rising, with no satisfactory cure. The objective of this randomized, double-blind, placebo-controlled study was to examine the clinical efficacy and tolerability of 2% butenafine hydrochloride and 5% Melaleuca alternifolia oil incorporated in a cream to manage toenail onychomycosis in a cohort. Sixty outpatients (39 M, 21 F) aged 18-80 years (mean 29.6) with 6-36 months duration of disease were randomized to two groups (40 and 20), active and placebo. After 16 weeks, 80% of patients using medicated cream were cured, as opposed to none in the placebo group. Four patients in the active treatment group experienced subjective mild inflammation without discontinuing treatment. During follow-up, no relapse occurred in cured patients and no improvement was seen in medication-resistant and placebo participants.  (+info)

In vitro activities of ketoconazole, econazole, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species. (2/38)

The in vitro activities of ketoconazole, econazole, miconazole, and tea tree oil against 54 Malassezia isolates were determined by agar and broth dilution methods. Ketoconazole was more active than both econazole and miconazole, which showed very similar activities. M. furfur was the least susceptible species. M. sympodialis, M. slooffiae, M. globosa, and M. obtusa showed similar susceptibilities to the four agents.  (+info)

Time-kill studies of tea tree oils on clinical isolates. (3/38)

Tea tree oil has recently emerged as an effective topical antimicrobial agent active against a wide range of organisms. Tea tree oil may have a clinical application in both the hospital and community, especially for clearance of methicillin-resistant Staphylococcus aureus (MRSA) carriage or as a hand disinfectant to prevent cross-infection with Gram-positive and Gramnegative epidemic organisms. Our study, based on the time-kill approach, determined the kill rate of tea tree oil against several multidrug-resistant organisms, including MRSA, glycopeptide-resistant enterococci, aminoglycoside-resistant klebsiellae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, and also against sensitive microorganisms. The study was performed with two chemically different tea tree oils. One was a standard oil and the other was Clone 88 extracted from a specially bred tree, which has been selected and bred for increased activity and decreased skin irritation. Our results confirm that the cloned oil had increased antimicrobial activity when compared with the standard oil. Most results indicated that the susceptibility pattern and Gram reaction of the organism did not influence the kill rate. A rapid killing time (less than 60 min) was achieved with both tea tree oils with most isolates, but MRSA was killed more slowly than other organisms.  (+info)

Percutaneous treatment of chronic MRSA osteomyelitis with a novel plant-derived antiseptic. (4/38)

BACKGROUND: Antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE, are an increasing problem world-wide, causing intractable wound infections. Complex phytochemical extracts such as tea tree oil and eucalypt-derived formulations have been shown to have strong bactericidal activity against MRSA in vitro. Polytoxinol (PT) antimicrobial, is the trade name of a range of antimicrobial preparations in solution, ointment and cream form. METHODS: We report the first use of this drug, administered percutaneously, via calcium sulphate pellets (Osteoset,TM), into bone, to treat an intractable MRSA infection of the lower tibia in an adult male. RESULTS AND DISCUSSION: Over a three month period his symptoms resolved with a healing response on x-ray and with a reduced CRP.  (+info)

Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. (5/38)

The essential oil of Melaleuca alternifolia (tea tree) has broad-spectrum antimicrobial activity. The mechanisms of action of tea tree oil and three of its components, 1,8-cineole, terpinen-4-ol, and alpha-terpineol, against Staphylococcus aureus ATCC 9144 were investigated. Treatment with these agents at their MICs and two times their MICs, particularly treatment with terpinen-4-ol and alpha-terpineol, reduced the viability of S. aureus. None of the agents caused lysis, as determined by measurement of the optical density at 620 nm, although cells became disproportionately sensitive to subsequent autolysis. Loss of 260-nm-absorbing material occurred after treatment with concentrations equivalent to the MIC, particularly after treatment with 1,8-cineole and alpha-terpineol. S. aureus organisms treated with tea tree oil or its components at the MIC or two times the MIC showed a significant loss of tolerance to NaCl. When the agents were tested at one-half the MIC, only 1,8-cineole significantly reduced the tolerance of S. aureus to NaCl. Electron microscopy of terpinen-4-ol-treated cells showed the formation of mesosomes and the loss of cytoplasmic contents. The predisposition to lysis, the loss of 260-nm-absorbing material, the loss of tolerance to NaCl, and the altered morphology seen by electron microscopy all suggest that tea tree oil and its components compromise the cytoplasmic membrane.  (+info)

In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. (6/38)

The in vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes (n = 106) and filamentous fungi (n = 78) was determined. Tea tree oil MICs for all fungi ranged from 0.004% to 0.25% and minimum fungicidal concentrations (MFCs) ranged from <0.03% to 8.0%. Time-kill experiments with 1-4 x MFC demonstrated that three of the four test organisms were still detected after 8 h of treatment, but not after 24 h. Comparison of the susceptibility to tea tree oil of germinated and non-germinated Aspergillus niger conidia showed germinated conidia to be more susceptible than non-germinated conidia. These data demonstrate that tea tree oil has both inhibitory and fungicidal activity.  (+info)

In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. (7/38)

A tea tree oil (TTO) preparation of defined chemical composition was studied, using a microbroth method, for its in vitro activity against 115 isolates of Candida albicans, other Candida species and Cryptococcus neoformans. The fungal strains were from HIV-seropositive subjects, or from an established type collection, including reference and quality control strains. Fourteen strains of C. albicans resistant to fluconazole and/or itraconazole were also assessed. The same preparation was also tested in an experimental vaginal infection using fluconazole-itraconazole-susceptible or -resistant strains of C. albicans. TTO was shown to be active in vitro against all tested strains, with MICs ranging from 0.03% (for C. neoformans) to 0.25% (for some strains of C. albicans and other Candida species). Fluconazole- and/or itraconazole-resistant C. albicans isolates had TTO MIC50s and MIC90s of 0.25% and 0.5%, respectively. TTO was highly efficacious in accelerating C. albicans clearance from experimentally infected rat vagina. Three post-challenge doses of TTO (5%) brought about resolution of infection regardless of whether the infecting C. albicans strain was susceptible or resistant to fluconazole. Overall, the use of a reliable animal model of infection has confirmed and extended our data on the therapeutic effectiveness of TTO against fungi, in particular against C. albicans.  (+info)

Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. (8/38)

The search for innovative therapeutic approaches based on the use of new substances is gaining more interest in clinical oncology. In this in vitro study the potential anti-tumoral activity of tea tree oil, distilled from Melaleuca alternifolia, was analyzed against human melanoma M14 WT cells and their drug-resistant counterparts, M14 adriamicin-resistant cells. Both sensitive and resistant cells were grown in the presence of tea tree oil at concentrations ranging from 0.005 to 0.03%. Both the complex oil (tea tree oil) and its main active component terpinen-4-ol were able to induce caspase-dependent apoptosis of melanoma cells and this effect was more evident in the resistant variant cell population. Freeze-fracturing and scanning electron microscopy analyses suggested that the effect of the crude oil and of the terpinen-4-ol was mediated by their interaction with plasma membrane and subsequent reorganization of membrane lipids. In conclusion, tea tree oil and terpinen-4-ol are able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumor cells.  (+info)