Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase. Implications for NADPH recognition and structural stability. (1/76)

Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  (+info)

Modelling flavin and substrate substituent effects on the activation barrier and rate of oxygen transfer by p-hydroxybenzoate hydroxylase. (2/76)

The simulation of enzymatic reactions, using computer models, is becoming a powerful tool in the most fundamental challenge in biochemistry: to relate the catalytic activity of enzymes to their structure. In the present study, various computed parameters were correlated with the natural logarithm of experimental rate constants for the hydroxylation of various substrate derivatives catalysed by wild-type para-hydroxybenzoate hydroxylase (PHBH) as well as for the hydroxylation of the native substrate (p-hydroxybenzoate) by PHBH reconstituted with a series of 8-substituted flavins. The following relative parameters have been calculated and tested: (a) energy barriers from combined quantum mechanical/molecular mechanical (QM/MM) (AM1/CHARMM) reaction pathway calculations, (b) gas-phase reaction enthalpies (AM1) and (c) differences between the HOMO and LUMO energies of the isolated substrate and cofactor molecules (AM1 and B3LYP/6-31+G(d)). The gas-phase approaches yielded good correlations, as long as similarly charged species are involved. The QM/MM approach resulted in a good correlation, even including differently charged species. This indicates that the QM/MM model accounts quite well for the solvation effects of the active site surroundings, which vary for differently charged species. The correlations obtained demonstrate quantitative structure activity relationships for an enzyme-catalysed reaction including, for the first time, substitutions on both substrate and cofactor.  (+info)

Antioxidative galloyl esters as enzyme inhibitors of p-hydroxybenzoate hydroxylase. (3/76)

Gallic acid and its esters were evaluated as enzyme inhibitors of recombinant p-hydroxybenzoate hydroxylase (PHBH), a NADPH-dependent flavin monooxygenase from Pseudomonas aeruginosa. n-Dodecyl gallate (DG) (IC(50)=16 microM) and (-)-epigallocatechin-3-O-gallate (EGCG) (IC(50)=16 microM), a major component of green tea polyphenols, showed the most potent inhibition, while product-like gallic acid did not inhibit the enzyme significantly (IC(50)>250 microM). Inhibition kinetics revealed that both DG and EGCG inhibited PHBH in a non-competitive manner (K(I)=18.1 and 14.0 microM, respectively). The enzyme inhibition was caused by specific binding of the antioxidative gallate to the enzyme, and by scavenging reactive oxygen species required for the monooxygenase reaction. Molecular modeling predicted that EGCG binds to the enzyme in the proximity of the FAD binding site via formation of three hydrogen bonds.  (+info)

Comparing protein-ligand interactions in solution and single crystals by Raman spectroscopy. (4/76)

By using a Raman microscope, we show that it is possible to probe the conformational states in protein crystals and crystal fragments under growth conditions (in hanging drops). The flavin cofactor in the enzyme para-hydroxybenzoate hydroxylase can assume two conformations: buried in the protein matrix ("in") or essentially solvent-exposed ("out"). By using Raman difference spectroscopy, we previously have identified characteristic flavin marker bands for the in and out conformers in the solution phase. Now we show that the flavin Raman bands can be used to probe these conformational states in crystals, permitting a comparison between solution and crystal environments. The in or out marker bands are similar for the respective conformers in the crystal and in solution; however, significant differences do exist, showing that the environments for the flavin's isoalloxazine ring are not identical in the two phases. Moreover, the Raman-band widths of the flavin modes are narrower for both in and out conformers in the crystals, indicating that the flavin exists in a more limited range of closely related conformational states in the crystal than in solution. In general, the ability to compare detailed Raman data for complexes in crystals and solution provides a means of bridging crystallographic and solution studies.  (+info)

Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358. (5/76)

The regulation of the p-hydroxybenzoate hydroxylase gene (pobA) of Pseudomonas putida WCS358 involved in the catabolism of p-hydroxybenzoic acid (PHB) to the central intermediate protocatechuate was studied. Protocatechuic acid (PCA) is then degraded via the beta-ketoadipate pathway to form tricarboxylic acid intermediates. In several Gram-negative bacteria pobA has been found genetically linked to a regulator called pobR which activates pobA expression in response to PHB. In this study the identification and characterization of the pobC-pobA locus of P. putida WCS358 is presented. The p-hydroxybenzoate hydroxylase (PobA) is highly identical to other identified PobA proteins, whereas the regulatory protein PobC did not display very high identity to other PobR proteins studied and belonged to the AraC family of regulatory proteins, hence it has been designated POBC: Using the pobA promoter transcriptionally fused to a promoterless lacZ gene it was observed that induction via PobC occurred very efficiently when PHB was present and to a lesser but still significant level also in the presence of PCA. This PobC-PCA response was genetically demonstrated by making use of pobC::Tn5 and pcaH::Tn5 mutants of strain WCS358 constructed in this study. In pobC mutants both the p-hydroxybenzoic and PCA response were not observed, whereas in the pcaH mutant, which lacks a functional protocatechuate 3,4-dioxygenase, the protocatechuic-acid-dependent pobA activation was still observed. Finally, the activation of pobA by PHB varied according to the concentration and it was observed that in the pcaR::Tn5 regulatory mutant of strain WCS358 the pobA promoter activity was reduced. PcaR is a regulator involved in the regulation of several loci of the beta-ketoadipate pathway, one of which is pcaK. It was postulated that the reduction of pobA activation in pcaR::Tn5 mutants was because there was no expression of the pcaK gene encoding the PHB transport protein resulting in lower levels of PHB present inside the cell.  (+info)

A study of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Improved purification, relative molecular mass, and amino acid composition. (6/76)

The purification procedure for p-hydroxybenzoate hydroxylase has been modified by replacement of the DEAE-cellulose (DE-32) column in the original procedure by a Sephadex--Cibacron-blue affinity column. In this way the yield of enzyme could be improved from 16% to about 40--50%. Preparative gel chromatography indicated that the enzyme does not exist as a monomeric species as earlier believed but mainly as a dimer. Sodium dodecyl sulfate gel electrophoresis of purified enzyme revealed a minimum relative molecular mass (Mr) of 43000--45000. Analytical gel chromatography, sedimentation equilibrium and sedimentation velocity experiments showed that the enzyme exists in solution mainly as a dimer but also in higher-order quaternary structures (presumably tetramer and hexamer). Temperature dependence of the distribution of the oligomers suggests that the association is of hydrophobic nature. The amino acid composition of the enzyme is also presented. The enzyme contains no disulfide but five sulfhydryl groups. In the native state of the enzyme only one sulfhydryl group is accessible to N-ethylmaleimide or 5,5'-dithiobis(2-nitrobenzoic acid). The iso-electric point of the enzyme was found to be 5.8.  (+info)

Protein and ligand dynamics in 4-hydroxybenzoate hydroxylase. (7/76)

para-Hydroxybenzoate hydroxylase catalyzes a two-step reaction that demands precise control of solvent access to the catalytic site. The first step of the reaction, reduction of flavin by NADPH, requires access to solvent. The second step, oxygenation of reduced flavin to a flavin C4a-hydroperoxide that transfers the hydroxyl group to the substrate, requires that solvent be excluded to prevent breakdown of the hydroperoxide to oxidized flavin and hydrogen peroxide. These conflicting requirements are met by the coordination of multiple movements involving the protein, the two cofactors, and the substrate. Here, using the R220Q mutant form of para-hydroxybenzoate hydroxylase, we show that in the absence of substrate, the large beta alpha beta domain (residues 1-180) and the smaller sheet domain (residues 180-270) separate slightly, and the flavin swings out to a more exposed position to open an aqueous channel from the solvent to the protein interior. Substrate entry occurs by first binding at a surface site and then sliding into the protein interior. In our study of this mutant, the structure of the complex with pyridine nucleotide was obtained. This cofactor binds in an extended conformation at the enzyme surface in a groove that crosses the binding site of FAD. We postulate that for stereospecific reduction, the flavin swings to an out position and NADPH assumes a folded conformation that brings its nicotinamide moiety into close contact with the isoalloxazine moiety of the flavin. This work clearly shows how complex dynamics can play a central role in catalysis by enzymes.  (+info)

Reaction of reduced flavins and flavoproteins with diphenyliodonium chloride. (8/76)

The reaction of diphenyliodonium chloride with free reduced flavins has been studied by stopped flow spectrophotometry under anaerobic conditions, and second order rate constants were determined as a function of pH. The reactive flavin species was identified as the reduced anion, based on an observed reaction pK of 6.7. The product mixture was independent of the initial concentration of reactant and contained approximately 20% oxidized flavin. The results can be modeled quantitatively on a modification of the mechanism proposed by Tew (Tew, D. G. (1993) Biochemistry 32, 10209-10215). The composition of the complex reaction mixture has been analyzed, and four flavin-phenyl adducts with distinctive absorbance and fluorescence characteristics have been identified, involving substitution at the flavin C4a, N5, and C8 positions. Inactivation of flavoprotein enzymes by diphenyliodonium has also been studied, and several examples were found where inactivation occurs readily, despite noninvolvement of radical intermediates in their reaction mechanisms. It can be concluded that inactivation by phenyliodonium species is not a valid indicator of catalytic mechanism involving radical intermediates. One of the several factors determining inactivation is maintenance of the enzyme flavin in the reduced form in the steady state of catalysis, the other factors being redox potential and accessibility of the inhibitor to the flavin active site.  (+info)