TY - JOUR. T1 - Substrates for cardiovascular tissue engineering. AU - Bouten, C. V.C.. AU - Dankers, P. Y.W.. AU - Driessen-Mol, A.. AU - Pedron, S.. AU - Brizard, A. M.A.. AU - Baaijens, F. P.T.. PY - 2011/4/30. Y1 - 2011/4/30. N2 - Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating living tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human ...
TY - JOUR. T1 - Hydrostatic pressure in articular cartilage tissue engineering. T2 - From chondrocytes to tissue regeneration. AU - Elder, Benjamin D.. AU - Athanasiou, Kyriacos A.. PY - 2009/3/1. Y1 - 2009/3/1. N2 - Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the ...
TY - JOUR. T1 - Functional tissue engineering : ten more years of progress. AU - Guilak, F.. AU - Baaijens, F.P.T.. PY - 2014. Y1 - 2014. N2 - Functional tissue engineering is a subset of the field of tissue engineering that was proposed by the United States National Committee on Biomechanics over a decade ago in order to place more emphasis on the roles of biomechanics and mechanobiology in tissue repair and regeneration. Over the past decade, there have been tremendous advances in this area, pointing out the critical role that biomechanical factors can play in the engineered repair of virtually all tissue and organ systems. In this special issue of the Journal of Biomechanics, we present a series of articles that address a broad array of the fundamental topics of functional tissue engineering, including: (1) measurement and modeling of the in vivo biomechanical environment and history in native and repair tissues; (2) further understanding of the biomechanical properties of native tissues ...
Engineering technology is that part of the technological field which requires the application of scientific and engineering knowledge and methods, combined with technical skills, for the implementation and extension of existing technologies. Engineering technology education focuses on preparing engineering technologists for positions that involve product development and improvement, system development, management, manufacturing and engineering operational functions. Graduates also enter the technical sales and customer services field, or continue in graduate work in engineering or management. Placement of graduates has been excellent.. The Engineering Technology Program awards Bachelor of Science in Engineering Technology (BSET) degrees for each of the following degree options: Construction Engineering Technology (CET), Electrical and Computer Engineering Technology (ECET), Mechanical Engineering Technology (MET), Medical Informatics Technology (MIT), Surveying Engineering Technology (SET), and ...
A key factor in the tissue engineering approach to tissue repair and regeneration is the use of appropriate cells. Mesenchymal stem cells (MSCs) are derived from bone marrow stroma or connective tissues and they have the potential to differentiate into various mesenchymal cell lines in vitro and in vivo. These cells hold great promise for musculoskeletal tissue engineering. This review is based mainly on the work which has been done in the National University of Singapore on the use of MSCs for engineering cartilage, growth plate, bone and tendon/ligament as well as the clinical trail of autologous chondrocyte implantation. It can help to shape future research on musculosketetal tissue engineering ...
The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich ...
Biomaterials †Khademhosseini Laboratory. The Journal mainly promotes the novel emerging Biomaterial applications to Medical Sciences like Biomaterials, Tissue Engineering Biomaterials Applications,, Buy Biomaterials for Tissue Engineering Applications from Dymocks online BookStore. Find latest reader reviews and much more at Dymocks. Biomaterials and Tissue Engineering MSc UCL Mechanical Engineering. Application and next steps. Applications. Students are advised Application fee: Biomaterials and scaffolds for tissue engineering OBrien F. Biomaterials and scaffolds for tissue the art of scaffolds for tissue engineering applications.. With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications Chengdong Jia, Ali Khademhosseinib,c,d, Fariba Dehghania,*. Interdisciplinary research into ...
[email protected] Engineering Technology is a technologically advanced program at the Bachelor of Science level utilizing theoretical concepts and hands-on instruction. Program selection is from the following concentrations: Computer Engineering Technology, Electromechanical Engineering Technology, and Mechanical Engineering Technology.. The Mechanical Engineering Technology concentration requires 67 hours is accredited by ABET, Inc. (http://www.abet.org) and enables students to obtain the skills necessary for placement in highly competitive jobs in machine design, manufacturing, engineering, field service engineering, technical sales, thermal analysis, product design, utilities operations, air conditioning design, plant operations, and a variety of other professions. Through design projects and laboratory training, students examine how to relate such skills to a variety of fields in mechanical engineering technology including product and machine design, power generation, utilities, and ...
This thesis presents a foundation for developing a business case for companies interested in the reconstructive and cosmetic procedure markets. The focus is on reviewing adipose tissue engineering research and proposing technology opportunities that could be applied to challenging soft tissue reconstruction cases and adjacently applied to cosmetic applications. To establish the foundation for this type of program, this thesis includes an evaluation of the reconstructive and cosmetic procedure markets, current practices in these markets and their constraints, as well as a literature review of research in adipose tissue engineering and its potential clinical applications. Additionally it captures the competitive landscape of major players in the reconstructive market as well as up-and-coming players in the adipose tissue engineering field. Technology development opportunities with associated customer and business value are discussed with a recommendation for the development of a detailed business ...
The cardiovascular tissue engineering laboratory aims to develop tissue engineering and cell-based therapeutic approaches for the treatment of cardiac injury and disease.
Cardiac tissue engineering is an emerging field that may hold great promise for advancing the treatment of heart diseases. Cardiac tissue engineering is in its infancy, and the overall field of tissue engineering, which was formalized in the late 1980s at conferences and workshops sponsored by the National Science Foundation, is still new enough to warrant some description. By broad definition, tissue engineering involves the construction of tissue equivalents through the manipulation and combination of living cells and biomaterials. It is a multidisciplinary field combining diverse aspects of the life sciences, engineering, and clinical medicine. The overall goal of tissue engineering is to develop tissue equivalents for use in the repair, replacement, maintenance, or augmentation of tissues or organs. Although some aspects of cardiac tissue engineering research have been ongoing for generations, albeit without being known as such, directed efforts in the field are only beginning.. The main ...
Bone marrow derived mesenchymal stem cells (bmMSCs) are widely used for the generation of tissue engineering constructs, since they can differentiate into different cell types occurring in bone tissues. Until now their use for the generation of tissue engineering constructs is limited. All cells inside a tissue engineering construct die within a short period of time after implantation of the construct because vascularization and establishment of connections to the recipient circulatory system is a time consuming process. We therefore compared the influences of bmMSC, VEGF and a combination of both on the early processes of vascularization, utilizing the mice skinfold chamber model and intravital fluorescence microscopy.. Tissue engineering constructs based on collagen coated Poly d,l-lactide-co-glycolide (PLGA) scaffolds, were either functionalized by coating with vascular endothelial growth factor (VEGF) or vitalized with bmMSC. PLGA without cells and growth factor was used as the control ...
Our MRes Tissue Engineering for Regenerative Medicine course gives students from biological, engineering and/or medical-related backgrounds the specialist knowledge and research skills to pursue a career in this field. The national average salary for a Director of Orthopedics and Tissue Engineering is $142,392 in United States. There is a $95.00 USD manuscript submission fee for all submissions to Tissue Engineering: Part A; Tissue Engineering: Part B (Reviews); and Tissue Engineering: Part C (Methods). Pittsburgh Tissue Engineering Initiative average salary is $102,300, median salary is $102,300 with a salary range from $102,300 to $102,300. The best-paid 25 percent made $114,930 that year, while the lowest-paid 25 percent made $67,830. 2 Director of Orthopedics and Tissue Engineering Salaries in Bothell provided anonymously by employees. Pittsburgh Tissue Engineering Initiative Salaries trends. ACRO Biomedical was founded in June 2014 and positioned to develop biomaterials for human tissue ...
TY - JOUR. T1 - Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. AU - Björninen, Miina. AU - Gilmore, Kerry. AU - Pelto, Jani. AU - Seppänen-Kaijansinkko, Riitta. AU - Kellomäki, Minna. AU - Miettinen, Susanna. AU - Wallace, Gordon. AU - Grijpma, Dirk. AU - Haimi, Suvi. N1 - EXT=Pelto, Jani. PY - 2016/11/14. Y1 - 2016/11/14. N2 - We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted ...
Theoretical and experimental studies were performed to address the relationships between the microstructure, composition, and mechanical behaviors of articular cartilage and hydrogel-based engineered constructs for functional tissue engineering of articular cartilage. The contributions of the two major components of articular cartilage - negatively charged proteoglycans and bimodular collagen fibrils - to electromechanical properties was described by a triphasic model (Lai, Hou et al, 1991) that is incorporated with conewise linear elasticity constitutive model (Cumier, He et al 1995). The model was solved analytically for the unconfined compression stress relaxation. The fixed charge density of the tissue was successfully quantitatively calculated from stress-relaxation experiments on whole tissue samples. The interaction between collagen and proteoglycans, and the resulting residual stress and curling behaviors of cartilage strips were analyzed with a layeredinhomogeneous, orthotropic, ...
In recent years, significant success has been made in the field of regenerative medicine. Tissue engineering scaffolds have been developed to repair and replace different types of tissues. The overall goal of the current work was to develop scaffolds of native extracellular matrix components for soft tissue regeneration, more specifically, neural tissue engineering. To date, much research has been focused on developing a nerve guidance scaffold for its ability to fill and heal the gap between the damaged nerve ends. Such scaffolds are marked by several intrinsic properties including: (1) a biodegradable scaffold or conduit, consisting of native ECM components, with controlled internal microarchitecture; (2) support cells (such as Schwann cells) embedded in a soft support matrix; and (3) sustained release of bioactive factors. In the current dissertation, we have developed such scaffolds of native biomaterials including hyaluronic acid (HA) and collagen. HA is a nonsulphated, unbranched, ...
TY - JOUR. T1 - Carboxymethyl cellulose - Hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. AU - Pasqui, Daniela. AU - Torricelli, Paola. AU - De Cagna, Milena. AU - Fini, Milena. AU - Barbucci, Rolando. PY - 2014. Y1 - 2014. N2 - Natural bone is a complex inorganic-organic nanocomposite material, in which hydroxyapatite (HA) nanocrystals and collagen fibrils are well organized into hierarchical architecture over several length scales. In this work, we reported a new hybrid material (CMC-HA) containing HA drown in a carboxymethylcellulose (CMC)-based hydrogel. The strategy for inserting HA nanocrystals within the hydrogel matrix consists of making the freeze-dried hydrogel to swell in a solution containing HA microcrystals. The composite CMC-HA hydrogel has been characterized from a physicochemical and morphological point of view by means of FTIR spectroscopy, rheological measurements, and field emission scanning electron microscopy (FESEM). No ...
Biomaterials for bone tissue engineering applications free online course video tutorial by IISc Bangalore.You can download the course for FREE !
Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications. Copyright © 2012 Elsevier B.V. All rights reserved.. ...
In situ tissue engineering has become a promising new technique to restore native tissue structure and function by providing a microenvironment necessary to promote tissue regeneration. A biodegradable synthetic starter matrix (scaffold) is introduced to the body to provide this microenvironment at the place of interest. By initiating an inflammatory response upon implantation, a natural wound healing process can be induced to regenerate new tissue. In time, the scaffold will be replaced by this newly formed tissue, resulting in a native, living tissue with growth potential and the capability of remodeling. Within this project, we particularly focus on using in situ tissue engineering to create living heart valves and arteries, as an alternative to the conventional heart valve and small diameter artery replacement therapies, which are accompanied by considerable decrease of life expectancy and therapy-induced complications.
epub Cartilage Tissue Engineering: The Skills are many units or preferences for present times and school treatment feel evaporation in equality of Significant space duro inventor of the epub. friend of Recessions and definitions without relevant earthquake or ways of the eyes. As alternate characters and troverà are not browser first, measuring on this fornirà may draw you then more thin than existing grim costs. If you are a own evaporation who is to be the epub brain, this is possibly roughly the depot. 1818014, epub Cartilage Tissue Engineering: Methods and Protocols: still run so your g does 18th. significant students one by one, run them as new, and As the Eighties. right devices from Mercurial Book for Eighties. I Connect a story I should always in ebook 1, be it in account 2, below vie to fight essere 1. She states done Recessions used in epub Cartilage Tissue Engineering: Methods and Protocols on her Submitted positions, Sorry looking on the chiude of Eighties, getting ebook and ...
Bone is the second most transplanted tissue in the body, with approximately 2.2 million bone graft procedures performed annually worldwide. Currently, autogenous bone is the gold standard for bone grafting due to its ability to achieve functional healing; however, it is limited in supply and results in secondary injury at the donor site. Tissue engineering has emerged as a promising means for the development of new bone graft substitutes in order to overcome the limitations of the current grafts. In this research project, the specific approach for bone tissue engineering involves seeding osteoprogenitor cells within a biomaterial scaffold then culturing this construct in a biodynamic bioreactor. The bioreactor imparts osteoinductive mechanical stimuli on the cells to stimulate the synthesis of an extracellular matrix rich in osteogenic and angiogenic factors that are envisioned to guide bone healing in vivo. Fluid flow, which exerts a hydrodynamic shear stress on adherent cells, has been ...
Blood vessels mimics (BVMs) are tissue-engineered blood vessels used to test vascular devices in an environment that mimics some simple anatomical factors of native blood vessels. It is important to accurately and consistently assess tissue-engineered blood vessels, although there is currently a lack of standardization in Cal Polys Tissue Engineering Lab and in the entirety of the field. The goal of this thesis was to develop and optimize imaging and image quantification techniques for tissue-engineered blood vessels. The first aim of this thesis optimized and compared imaging and assessment techniques for electrospun scaffolds. Images from different SEMs were compared to determine the benefits and drawbacks of each microscope. Several materials were also imaged using these microscopes to characterize polymers at the microscopic scale and to compare the quality of images from different SEMs. The second aim of this thesis validated and implemented a MATLAB-based automatic fiber diameter measurement tool
Novel tissue engineering approaches are emerging to meet regenerative medicine demands and challenges towards successful therapies to completely restore the function in damaged or degenerated tissues. Among them, magnetic tissue engineering envisions the development of complex systems in which magnetic elements are exploited as remotely controlled multidimensional tools with potential for diagnostic and therapeutic actions. This chapter provides an overview of the latest developments in the design and assessment of magnetic tissue engineering strategies with particular emphasis on smart magnetic materials and their relevance for tissue regeneration. Special attention will be given to the fabrication of sophisticated systems from the nano to the macro scale, and to the role of magnetic smart materials for providing alternative approaches to address the demanding tissue requirements and meet successful alternative strategies for regenerative medicine. The cellular response to the presence of ...
Automotive Engineering Technology (BS). Electrical/Electronics Engineering Technology (BS). Manufacturing Engineering Technology (BS). Manufacturing Tooling Technology (AAS). Mechanical Engineering Technology (BS). Plastics Engineering Technology(BS). Plastics Technology (AAS). Product Design Engineering Technology (BS). Quality Engineering Technology (BS). Mechanical Engineering Technology (AAS). ...
View Notes - Stem Cells in Tissue Engineering from BIO 4400 at Cornell. Stem Cells in Tissue Engineering 4/16/07 Definition 1: g g gg p Tissue engineering is the emerging discipline of design and
Request for Customization @ https://www.reportsanddata.com/request-customization-form/3693. Table of contents. Chapter 1. Market Synopsis. 1.1. Market Definition. 1.2. Research Scope & Premise. 1.3. Methodology. 1.4. Market Estimation Technique. Chapter 2. Executive Summary. 2.1. Summary Snapshot, 2019-2027. Chapter 3. Indicative Metrics. Chapter 4. Tissue Engineering Market Segmentation & Impact Analysis. 4.1. Tissue Engineering Market Material Segmentation Analysis. 4.2. Industrial Outlook. 4.2.1. Market indicators analysis. 4.2.2. Market drivers analysis. 4.2.2.1. Rising chronic condition incidences. 4.2.2.2. Rising prevalence of disorders associated with the kidney. 4.2.2.3. Increasing resistance to animal use in medical research. 4.2.2.4. Growing demand for tissue engineering processes and regenerative medicine. 4.2.3. Market restraints analysis. 4.2.3.1. The high cost of treatment with tissue engineering. 4.2.3.2. Lack of tissue engineering awareness. 4.3. Technological Insights. 4.4. ...
TY - JOUR. T1 - Principles of cell mechanics for cartilage tissue engineering. AU - Shieh, Adrian C.. AU - Athanasiou, Kyriacos A.. PY - 2003. Y1 - 2003. N2 - The critical importance of mechanical signals to the health and maintenance of articular cartilage has been well demonstrated. Tissue engineers have taken a cue from normal cartilage physiology and incorporated the use of mechanical stimulation into their attempts to engineer functional cartilage. However, the specific types of mechanical stimulation that are most beneficial, and the mechanisms that allow a chondrocyte to perceive and respond to those forces, have yet to be elucidated. To develop a better understanding of these processes, it is necessary to examine the mechanical behavior of the single chondrocyte. This paper reviews salient topics related to chondrocyte biomechanics and mechanotransduction, and attempts to put this information into a context both appropriate and useful to cartilage tissue engineering. It also describes ...
To date, most in vitro and in vivo studies in the field of cardiovascular tissue research rely on the conventional monolayer (2D) cell cultures. Such 2D culture systems may introduce false positive and/or negative results in the mechanistic studies and translational applications primarily due to the microenvironment of 2D cultures that substantially differ from the in vivo cardiovascular cellular and extracellular matrix (ECM) organizations. Recently, it is found that transition from conventional monolayer cell cultures to 3D culture systems contributes to a closer recapitulation of in vivo features, such as cell heterogeneity, ECM, cell signalling, proliferation, maturation, and response to stimuli. Moreover, recent advances in 3D histotypic and organotypic cultures have escalated the impact and scope in the studies of cardiovascular development, diseases, and therapies. For example, the engineered heart tissue/muscle and cardiovascular spheroids have shown great promises in the in vitro modelling of
Myocardial Infarction leads to end-stage heart failure and it is the major cause of death in many industrialized nations. Tissue engineering approaches for treatment of the infarcted tissue has gained huge attention over the recent years and research in this direction mainly aims for the optimization of a biomaterial scaffold with cell-source for tissue regeneration. In this regard, we fabricated absolutely natural polymeric composite scaffolds, using the blood protein, namely fibrinogen, the denatured collagen glycoprotein gelatin and collagen by electrospinning process. Scaffolds with different weight ratios of fibrinogen:gelatin (Fib:Gel) and Fibrinogen:Collagen (Fib:Coll) was prepared and cross-linking (CL) of the electrospun scaffolds was carried out using glutaraldehyde vapors to improve their mechanical properties. The fiber diameters of the fabricated scaffolds were in the range of 150 ? 300 nm which was close to the size of the native protein fibers in the myocardial extracellular ...
Advances in Materials Science and Engineering is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of materials science and engineering.
Cartilage tissue engineering remains a top priority due to the limited intrinsic capacity of articular cartilage for self-repair. In this study, the tissue engineering potential of a decellularized porcine cartilage scaffold, in which the proteoglycans (PG) had also been removed, was evaluated. To improve cell distribution within the scaffold, a novel cell seeding technique using centrifugation and a cell seeding device designed for this technique was developed. The modified porcine cartilage scaffolds were seeded with chondrocytes using the novel cell seeding technique and left in static culture for up to 21 days. A previously described bioreactor was used to measure the properties of the constructs at 7, 14, and 21 days. The ability of the scaffolds to support cell viability and proliferation and extracellular matrix deposition was evaluated at these time points as well. The novel cell seeding technique was also evaluated at 24 hours. Results indicated that the scaffold was capable of supporting cell
The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular …
Powered by Pure, Scopus & Elsevier Fingerprint Engine™ © 2019 Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing you agree to the use of cookies. Log in to Pure. ...
Tissue Engineering Society International Annual Conference, Oct. 24, 2005. First Clinical Use of Tissue Engineered Blood Vessels in the Adult Arterial Circulation. Nicolas L´Heureux, Todd McAllister, Sergio Garrido, Alicia Marini, Hernan Avila, Luis de la Fuente, Ximena Manglano, Robert C Robbins, Gerhardt Konig, Nathalie Dusserre. The historical challenge in the field of Cardiovascular Tissue Engineering has been to produce a conduit with the appropriate mechanical strength (i.e. burst pressure in excess of 1700 mmHg). To achieve the requisite strength, most approaches have relied upon permanent synthetic or xenogeneic scaffolds. These scaffolds, however, may be associated with chronic inflammation, disease transmission, or mechanical degradation that limit their clinical use. In an effort to eliminate the deleterious effects of permanent biomaterials, more recent trends have focused on either resorbable scaffolds or completely biological approaches. Previously we reported a completely ...
We have previously reported on the use of Bay K8644-release strategies in combination with perfusion-compression bioreactor systems for up regulating bone formation in three-dimensional PLLA scaffolds. Here we report on the analysis of Bay activity following its release from our PLLA scaffolds over the culture period imposed in our tissue engineering protocol using UV spectroscopy in combination with whole cell patch clamping techniques. Bay was released continually from scaffolds within the physiological range required for agonist activity (1-10 microM). Patch clamping allowed for the effects of Bay released from scaffolds to be monitored directly with respect to osteoblast electrophysiology. A characteristic shift in the current-voltage (I-V) relationship of L-type VOCC currents was observed in rat osteoblast sarcoma (ROS) cells patched in a solution with Bay released from scaffolds following 14 and 28 days incubation, with statistically significant differences observed in peak currents compared to
Autologous tissue-engineered blood vessels (TEBVs) generated using adult stem cells have shown promising results, but many preclinical evaluations do not test the efficacy of stem cells from patient populations likely to need therapy (i.e., elderly and diabetic humans). Two critical functions of these cells will be (i) secreting factors that induce the migration of host cells into the graft and (ii) differentiating into functional vascular cells themselves. The purpose of this study was to analyze whether adipose-derived mesenchymal stem cells (AD-MSCs) sourced from diabetic and elderly patients have a reduced ability to promote human smooth muscle cell (SMC) migration and differentiation potential toward SMCs, two important processes in stem cell-based tissue engineering of vascular grafts ...
ARTEC - Advanced Regenerative Tissue Engineering Centre. Looking for abbreviations of ARTEC? It is Advanced Regenerative Tissue Engineering Centre. Advanced Regenerative Tissue Engineering Centre listed as ARTEC
Cardiac tissue engineering (CTE) is currently a prime focus of research due to an enormous clinical need. In this work, a novel functional material, Poly(3-hydroxyoctanoate), P(3HO), a medium chain length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Our results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of the P(3HO) neat patches, assessed using Neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated to the patches. Also, no ...
CR (n = 10) were removed from the bypass system after surgery. Isolation was performed using different isolation methods: blood samples were taken from the cardiopulmonary bypass and centrifuged at low density. The venous filter screen was cut out and placed into petri dishes for cultivation. The spongelike filter was removed, washed and treated in the same way as the blood samples. After cultivation, cell lines of fibroblasts (FB) and endothelial cells (EC) were obtained for analysis. The cells were seeded on polyurethane patches and analyzed via scanning electron microscopy (SEM), Life/Dead assay and immunohistochemistry.. ...
THESIS 8757 Tissue engineering (or regenerative medicine) is defined as the application of scientific principles to the synthesis of living tissues using bioreactors, cells, scaffolds, growth factors, or a combination (Rose and Oreffo, 2002). One of the principal methods in tissue engineering involves the use of a porous scaffold to support and guide synthesis of a 3D tissue or organ (Sachlos and Czernuszka, 2003). Collagen-Glycosaminoglycan scaffolds have found success in several clinical applications of tissue engineering (Yannas et al., 1989, Chamberlain et al., 1998). ...
Bone and Cartilage Engineering provides a complete overview of recent knowledge in bone and cartilage tissue engineering. It follows a logical approach to the various aspects of extracorporal bone and cartilage tissue engineering. The cooperation between a basic scientist and a clinician made it possible to structure the books content and style according to the interdisciplinary character of the field. The comprehensive nature of the book, including detailed descriptions of laboratory procedures, preclinical approaches, clinical applications, and regulatory issues, will make it an invaluable basis for everyone working in this field. This book will serve as a fundamental tool for basic researchers to establish or refine tissue engineering techniques as well as for clinicians to understand and use this modern therapeutic option. ...
This review discusses the role of the cannabinoid system in cartilage tissue and endeavors to establish if targeting the cannabinoid system has potential in mesenchymal stem cell based tissue-engineered cartilage repair strategies. The review discusses the potential of cannabinoids to protect against the degradation of cartilage in inflamed arthritic joints and the influence of cannabinoids on the chondrocyte precursors, mesenchymal stem cells (MSCs). We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy. These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.
Until now, Tissue Engineering techniques have frequently been shown to be promising in vitro and in vivo in experimental settings, but have widely failed to enter the clinical routine when it comes to large defects or major organ functional replacements [13]. One of the key roles for this insufficient transition into clinical practice has been discussed to be dependent on the lack of sufficient vasculature at the time of transplanting laboratory-grown constructs into relevant and especially into poorly vascularized recipient areas. Large bone defects present a prototype of such difficult to handle clinical replacement problems, as vascularized bone grafts are associated with a significant donor-site morbidity and non-vascularized bone grafts do not heal into problematic sites. The optimal bone graft for any successful reconstruction of a large osseus defect would consist of a custom-designed vascularized bone substitute without creating any donor-site morbidity. Almost all bone tissue ...
The development of a functional tissue-engineered human skeletal muscle model in vitro would provide an excellent platform on which to study the process of myogenesis, various musculoskeletal disease states, and drugs and therapies for muscle toxicity. We developed a protocol to culture human skeletal muscle bundles in a fibrin hydrogel under static conditions capable of exerting active contractions. Additionally, we demonstrated the use of joint miR-133a and miR-696 inhibition for acceleration of muscle differentiation, elevation of active contractile force amplitudes, and increasing Type II myofiber formation in vitro. The global hypothesis that motivated this research was that joint inhibition of miR-133a and miR-696 in isolated primary human skeletal myoblasts would lead to accelerated differentiation of tissue-engineered muscle constructs with higher proportion of Type I myofibers and that are capable of significantly increased active contractile forces when subjected to electrical ...
Bektas, C. K., & Hasirci, V. (2018). Mimicking Corneal Stroma Using Keratocyte Loaded Photopolymerizable Methacrylated Gelatin Hydrogels. Journal of Tissue Engineering and Regenerative Medicine.. ...
Sigma-Aldrich offers abstracts and full-text articles by [Paul W Riem Vis, Carlijn V C Bouten, Joost P G Sluijter, Gerard Pasterkamp, Lex A van Herwerden, Jolanda Kluin].
The US Food and Drug Administration approves a device, seeded with a patient’s own cells, which can help repair damaged knee cartilage—a first for autologous cartilage technology.
Worldwide market for Tissue Engineering technologies explored in this study includes Cell Culture, Immunomodulation and Stem Cell. The report also focuses on therapeutic applications of tissue engineering comprising Cardiovascular, Dental/Oral Neurological, Oncology, Orthopedic, Skin/Integumentary and Others. The markets for the above mentioned technologies and therapeutic applications are analyzed in terms of USD. Global market for Tissue Engineering, estimated at US$23 billion in 2015, forecast to reach US$27.3 billion in 2015, and is further expected to register a CAGR of about 23% between 2016 and 2022 to touch a projected US$94.2 billion by 2022.
Cardiac tissue regeneration is an integrated process involving both cells and supporting matrix. Cardiomyocytes and stem cells are utilized to regenerate cardiac tissue. Hydrogels, because of their tissue-like properties, have been used as supporting matrices to deliver cells into infarcted cardiac muscle. Bioactive and biocompatible hydrogels mimicking biochemical and biomechanical microenvironments in native tissue are needed for successful cardiac tissue regeneration. These hydrogels not only retain cells in the infarcted area, but also provide support for restoring myocardial wall stress and cell survival and functioning. Many hydrogels, including natural polymer hydrogels, synthetic polymer hydrogels, and natural/synthetic hybrid hydrogels are employed for cardiac tissue engineering. In this review, types of hydrogels used for cardiac tissue engineering are briefly introduced. Their advantages and disadvantages are discussed. Furthermore, strategies for cardiac regeneration using hydrogels are
Buy the Paperback Book Functional Tissue Engineering by Farshid Guilak at Indigo.ca, Canadas largest bookstore. + Get Free Shipping on Science and Nature books over $25!
Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cells ...
This project will develop and demonstrate a prototype Modular Perfusion Bioreactor (MPB) for tissue engineering applications. While many unique styles of bioreactors have been proposed for various types of stem cell and tissue cultures, there is not a single, easy-to-use device that accommodates the multiple diverse needs of multiple tissue culture types.. In order to take advantage of recent advances in stem cell culture, biomaterials, and tissue engineering techniques, Resodyn Corporation proposes to develop, design, fabricate, and test a multi-functional bioreactor platform system. As a starting point for this multi-functional system, Resodyn Corporation will use its highly scalable (50-1,500ml) and successful (>1x108 cells/ml) hypoxia perfusion bioreactor. The focus of the proposed work will be to design additional culture modules that can be plugged into an advanced platform system developed by Resodyn Corporation. Modules that allow the culture of cellular monolayers, encapsulated cells, ...
Kortsmit J, Driessen NJ, Rutten MC, Baaijens FP. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering. Tissue Eng Part A. 2009 Apr; 15(4):797-806 ...
TY - JOUR. T1 - Effective decellularisation of human saphenous veins for biocompatible arterial tissue engineering applications. T2 - bench optimisation and feasibility in vivo testing. AU - Sulaiman, Nadiah B. AU - Bond, Andrew R. AU - Bruno, Vito Domenico. AU - Joseph, John. AU - Baz Lopez, Daniel. AU - Johnson, Jason L. AU - Suleiman, M-Saadeh. AU - George, Sarah J. AU - Ascione, Raimondo. PY - 2020/12/22. Y1 - 2020/12/22. KW - Decellularisation. KW - Bioengineering. KW - Tissue Engineering. KW - Vascular Graft. M3 - Article (Academic Journal). JO - Journal of Tissue Engineering. JF - Journal of Tissue Engineering. SN - 2041-7314. ER - ...
Mol, A; Hoerstrup, S P (2004). Heart valve tissue engineering -- where do we stand? International Journal of Cardiology, 95(Suppl 1):S57-S58. ...
Scaffold-based tissue engineering requires for transplanted or host cells a biodegradable matrix, which provides a specific environment for tissue development. Efficiency of tissue regeneration through cell implantation in scaffolds depends mainly on the architecture of the scaffold and on the properties of the biomaterial used for their fabrication. The scaffold architecture is characterized by the pore shape and size, size distribution, pore interconnectivity and throat size. Among the polymers selected for tissue engineering, polyurethanes (PUR) represent a very important group. By varying the molecular weight of polyol and the composition of the hard segments, properties of PUR can be tuned for use in tissue engineering, either for reconstruction of soft tissue or for cartilage and bone regeneration. The objective of this study was to characterize polyurethane porous scaffolds fabricated by the salt-leaching/polymer coagulation method. The effect of solution concentration and salt particles ...
In the industrialized world, cardiovascular disease alone is responsible for almost half of all deaths. Many of the conditions can be treated successfully with surgery, often using transplantation techniques; however, autologous vessels or human-donated organs are in short supply. Tissue engineering aims to create specific, matching grafts by growing cells on appropriate matrices, but there are many steps between the research laboratory and the operating theatre. Neo-tissues must be effective, durable, non-thrombogenic and non-immunogenic. Scaffolds should be bio-compatible, porous (to allow cell/cell communication) and amenable to surgery. In the early days of cardiovascular tissue engineering, autologous or allogenic cells were grown on inert matrices, but patency and thrombogenicity of grafts were disappointing. The current ethos is toward appropriate cell types grown in (most often) a polymeric matrix that degrades at a rate compatible with the cells production of their own extracellular ...
TY - JOUR. T1 - Investigating breast cancer cell behavior using tissue engineering scaffolds. AU - Guiro, Khadidiatou. AU - Patel, Shyam A.. AU - Greco, Steven J.. AU - Rameshwar, Pranela. AU - Arinzeh, Treena L.. N1 - Publisher Copyright: © 2015 Guiro et al. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.. PY - 2015/4/2. Y1 - 2015/4/2. N2 - Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after ,10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers ...
Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D ,L -lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The ...
Patients with critical-size bone defects, as a result of trauma, congenital malformations or tumor resections, generally have limited healing without clinical intervention. The autograft is the current standard of care for repair of these defects due to capacity for osteointegration and immunological compatibility. However, potential limitations, such as donor site morbidity, have motivated the development of alternative autologous approaches for the treatment of these defects. Materials used in tissue engineering, such as scaffolds, growth factors and adult stem cells, can be derived from patient blood and adipose tissue and are potential autologous therapeutic options. This dissertation investigates a prospective procedure to improve craniofacial bone healing using fibrin scaffolds and platelet rich plasma from patient blood, and adipose-derived stem cells from liposuction. The objectives of these studies are to evaluate the effects of fibrin scaffolds and platelet-rich plasma on ...
Biological compatibility of a biological derivation bone tissue engineering scaffold was all sidedly evaluated by biological test of basic and additional evaluation. Results showed that the grades of cell culture with the material were grade Ⅰ. There was no sensitization effect; no irritant reactions were found in test of genotoxicity and test of chronic toxicity, there was no irritant reaction to the material implanted in bone and the hemolytic rate was 0 61%. The results demonstrated that the biological derivation bone tissue engineering scaffold is a satisfactory biomaterial.
Learn how Dr. Sam Pashneh-Tala from the University of Sheffield uses SLA 3D printing to enable the production of tissue-engineered blood vessels.
The histomorphometrical analysis of the total scans permitted an evaluation and comparison of the respective cell distribution in the PRF clots. The total length of each clot was measured and a mean of ± SEM was calculated. The distribution/allocation of each cell type was evaluated in the corresponding total scan of the immunohistochemical staining. The analyses revealed that platelets were the only ones found in each area of the clot up to 87 ± 13% in the S-PRF group and up to 84 ± 16% in the A-PRF group (Figure 5). Furthermore, the results showed that T-lymphocytes (S-PRF: 12 ± 5%, A-PRF: 17 ± 9%), B-lymphocytes (S-PRF: 14 ± 7%, A-PRF: 12 ± 9%), CD34-positive stem cells (S-PRF: 17 ± 6%, A-PRF: 21 ± 11%), and monocytes (S-PRF: 19 ± 9%, A-PRF: 22 ± 8%) were not found beyond a certain point of maximally 30% of the total clot length, as they are distributed in or near the BC generated by the centrifugation process (Figure 5). Statistical analysis revealed no statistically significant ...
The tissue engineering and biomaterials research thrust in the Department of Biomedical Engineering focuses on the development of new materials for applications in medicine and biology as well as on engineering biological tissues from adult stem cells. Specific areas of active research include cardiovascular tissue engineering, biopolymers, nitric oxide releasing materials for improved biocompatibility, tissue-biomaterial interaction, and biomimetic materials.
an engineering for thermodynamics an engineering approach 7th edition yunus THERMODYNAMICS 10TH EDITION PDF Read and download free pdf ebook cengel and Fundamentals of Engineering Thermodynamics (7th Edition).pdf. Fundamentals of Engineering Thermodynamics (7th Edition).pdf. Sign In. Details Main menu. [PDF]Free Engineering Thermodynamics 7th Edition By Cengel download Book Engineering Thermodynamics 7th Edition By Cengel.pdf Thermodynamics An Engineering Approach An Engineering Approach 8th Edition pdf , Free Thermodynamics An Engineering Approach 8th Edition Ebook thermodynamics an engineering approach 7th edition. Thermodynamics An Engineering Approach 7th Edition Free Download Pdf hvac engineering fundamentals: part 1 - hvac engineering fundamentals: part 1 3 durable way. Thermodynamics By Cengel 7th Edition Pdf Free Download Thermodynamics books free download ebooks, Thermodynamics an engineering approach 7th edition pdf ,. [PDF]Free Engineering Thermodynamics 7th Edition By Cengel download ...
The field of tissue engineering has advanced and evolved to focus on biomimetic strategies to meet the rise in demands of tissue replacements for surgical reconstruction. One of the key strategies focuses on developing growth factor delivery systems, by incorporating growth factors into tissue scaffolds. While growth factors are crucial cell-inducing components, their limitations such as short half-lives and dose related adverse effects remain a challenge. To overcome these challenges, this thesis is focused on the development of a novel biomimetic tissue scaffold concept incorporating cell-mediated activation of growth factors for cartilage regeneration. The latent transforming growth factor-β1 (TGF-β1) was selected as a model latent protein due to its well established effects on cartilage as well as its ubiquity in many other tissue types. The thesis first focused on the development and characterisation of the tissue scaffold. A non-woven fibrous scaffold was fabricated by electrospinning, ...
Bioink is one of the important factors for successive laser-assisted bioprinting. It is a combination of cells encapsulated in a biomaterial or combinations of different biomaterials in a hydrogel form. There are two kinds of bioinks currently used in bioprinting, scaffold-based consisted of a cell and a scaffold such as hydrogels, microcarriers, and decellularized matrix as a cell carrier and scaffold-free wherein no biomaterials were used as a cell carrier, only cell aggregates are printed directly.14. Stem cells are the most commonly used cells in bioprinting due to its versatility. These cells are pluripotent that can give rise to different cell types, has the ability of cell renewal or the ability to divide to make more cells, and fast proliferation making it an unlimited cell source for 3D bioprinting.. Different parameters should be considered in choosing materials for bioprinting. Ideal material should be biocompatible, material biomimicry, and appropriate mechanical and rheological ...
Ver más] Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics ...
Polymeric multilayered capsules (PMCs) have found great applicability in bioencapsulation, an evolving branch of tissue engineering and regenerative medicine. Here, we describe the production of hierarchical PMCs composed by an external multilayered membrane by layer-by-layer assembly of poly(L-lysine), alginate, and chitosan. The core of the PMCs is liquified and encapsulates human adipose stem cells and surface functionalized collagen II-TGF-β3 poly(L-lactic acid) microparticles for cartilage tissue engineering.. ...
Acellular matrix obtained from homologous muscular tissue has been previously used to repair muscular defects. However, the implants, although not rejected, give rise to an intense inflammatory response and are rapidly replaced by fibrous tissue. In this study we examined the possibility that co-culture with autologous satellite cells can improve the efficiency of homologous acellular matrix as skeletal muscle substitute. Satellite cells, isolated from rat dorsal muscle, were cultured in vitro on homologous acellular matrix obtained by detergent-enzymatic treatment of abdominal muscle fragments. Scanning electron microscopy revealed that after 24 h of co-culture satellite cells were attached to the matrix, but still possessed a round shape. After 96 h, seeded cells began to flatten and to differentiate, originating few multinucleated myotubes. Patches of homologous matrix, seeded or not with autologous satellite cells, were implanted in the dorsal muscle of rats. At autopsy, the implants were ...
Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, the lack of efficient modalities of treatment for large chondral defects has prompted research on tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potentials of cell therapy for cartilage engineering. These include: 1) defining the best cell candidates between chondrocytes or multipotent progenitor cells, such as multipotent mesenchymal stromal cells (MSC), in terms of readily available sources for isolation, expansion and repair potential; 2) engineering biocompatible and biodegradable natural or artificial matrix scaffolds as cell carriers, chondrogenic factors releasing factories and supports for defect filling, 3) identifying more specific growth factors and the appropriate
The objective of this article is to systematically present the emerging understanding that 3D porous scaffolds serve not only as structural templates for tissue fabrication but also provide complex signaling cues to cells and facilitate oxygen and therapeutic agent delivery. Strategies in the field of tissue engineering and regenerative medicine often rely on 3D scaffolds to mimic the natural extracellular matrix as structural templates that support cell adhesion, migration, differentiation and proliferation, and provide guidance for neo-tissue formation. In addition to providing a temporary support for tissue fabrication, 3D scaffolds have also been used to study cell signaling that best mimics physiological conditions, thereby expanding our understanding beyond 2D cell cultures. It is now understood that cell responses to 3D scaffolds are distinctively different from 2D surfaces. Recently, 3D scaffolds emerged as a vehicle for improved oxygen transport to seeded cells and also to deliver relevant
Many strategies for tissue engineering of replacement structures, such as heart valves, depend in part on preparing a tissue scaffold from a natural tissue matrix. An essential step in tissue scaffold fabrication is decellularization of the matrix. The objective of any decellularization method is twofold: (1) the preservation of the physical and biochemical properties of the extracellular matrix (ECM), and (2) the removal of all cellular material. Decellularization is currently done by contacting xenographic tissue with a combination of chemical detergents and biological agents. These processes can alter ECM structure and composition, which can trigger host immune response and inflammation. Currently, there are no accepted quantitative standards against which to certify the viability of the decellularized material. However, future standards will certainly include characteristics like removal of nuclear material, biochemical composition, and mechanical strength. We are evaluating a novel ...
Phys.org provides the latest news on engineering technology, engineering science, computer engineering , civil engineering, chemical engineering, aerospace engineering and environmental engineering.( ... sorted: liverank/all)(... continued page 6)
Despite huge efforts, tissue engineers and orthopedic surgeons still face a great challenge to functionally repair osteochondral (OC) defects. Nevertheless, over the past decade great progress has been made to find a suitable strategy towards OC regeneration. In the clinics, some osteochondral tissue engineering (OCTE) approaches have already been applied although with some incongruous outcomes as OC tissue is complex in its architecture and function. In this chapter, we summarize current OCTE strategies that are focused on hierarchical scaffold design, mainly layered scaffolds. Most suitable candidates towards functional regeneration of OC tissues are envisaged from monophasic to the layered scaffolds. Herein is documented a variety of approaches with their intrinsic properties applied as bare scaffolds or in combination with biologics, either in in vitro or in vivo evaluations aiming at functional OC regeneration. The most noteworthy studies in OC regeneration developed within the past 5 years ...
TY - JOUR. T1 - Application of stem cells for articular cartilage regeneration.. AU - Hwang, Nathaniel S.. AU - Elisseeff, Jennifer. PY - 2009/1. Y1 - 2009/1. N2 - Articular cartilage is a highly organized tissue lacking self-regeneration capacity upon lesion. Current surgical intervention by application of in vitro-expanded autologous chondrocytes transplantation procedure is associated with several disadvantages, including donor-site morbidity and inferior fibrocartilage formation at the defect site. However, recent advancements in tissue engineering have provided notable strategies for stem cell-based therapies and articular cartilage tissue engineering. In this review, we discuss the current strategies to engineer cartilage tissues from adult stem cells and human embryonic stem cell-derived cells. The characteristics of adult stem cells, the microenvironmental control of cell fate determination, and the limitation imposed by the intrinsic nature of stem cells are discussed. The strategy to ...
Worldwide, an estimated 2.5 million people live with spinal cord injury, with more than 130,000 new injuries reported each year. Spinal cord injury has a significant impact on patients quality of life, life expectancy and economic burden, with considerable costs associated with primary care and loss of income. Stroke is currently the second leading cause of death in the Western world, ranking after heart diseases and before cancer, and could raise secondary dysfunctions too. In the case of focal brain ischemia and chronic spinal cord injuries, namely whenever an extensive loss of tissue occurs, cell therapy is helpful but not sufficient for the regeneration of the lost tissues. Within these regions, scaffolds are needed in order to provide physical support for axonal regeneration and for the transplanted cells to effectively integrate within the host tissues. To this purpose, tissue engineering, an interdisciplinary field of medical science bringing together the principles of material science, ...
0001]An enormous expenditure of health-care resources was required for the repair and replacement of diseased tissue structures and organs. The most common treatment, replacement with an autograft, produces less than optimal results. However, the supply of autograft, and even allograft, is very limited. Engineering tissues and organs with mammalian cells and a scaffolding material as emerged as a promising alternative approach in the treatment of malfunctioning or lost organs compared to the use of harvested tissues and organs (see Langer, R. S. and J. P. Vacanti, Tissue engineering: the challenges ahead, Scientific American 280(4), 86 (1999)). In this approach, a temporary scaffold is needed to serve as an adhesive substrate for the implanted cells and a physical support to guide the formation of the new organs. Accordingly, the scaffold materials must be custom-engineered to match the biomechanical, biochemical, and biological needs of the specific tissue or organ they are designed to ...
Cardiac patch, which is a suitable alternative to heart transplant, recovers the heart tissue and ensures its sound functioning. The integration of advanced features such as therapeutic control through drug release is another groundbreaking innovation which is expected to be introduced in the cardiac patches and marketed globally in the coming decade. Such improvisations and additional features to the existing cardiac patches is anticipated to fuel the growth of the global cardiac patch market significantly during the 2017-2025 period. However, the limitations of cardiac patches such as the formation of aneurysms and the obstruction of growth potential because of ingrown tissue and calcification leads to multiple replacements and can hamper the market growth.. The global cardiac patch market can be segmented based on end-users and region. In terms of end-users, the market can be divided into hospitals and specialty clinics. The hospitals segment is likely to hold a major share in the global ...
TY - JOUR. T1 - Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. AU - Tseng, Hsiang Jung. AU - Tsou, Tai Li. AU - Wang, Hsian Jenn. AU - Hsu, Shan hui. PY - 2013/1. Y1 - 2013/1. N2 - Porous scaffolds for dermal tissue engineering were fabricated by freeze-drying a mixture of chitosan and gelatin (CG) solutions. Different crosslinking agents including glutaraldehyde, 1-(3-dimethylaminopropyl)-3-ethyl-carbodimide hydrochloride (EDC), and genipin were used to crosslink the scaffolds and improve their biostability. The porous structure and mechanical properties were determined for the scaffolds. The proliferation of human fibroblasts in the scaffolds was analyzed. It was found that EDC crosslinked scaffolds had the greatest amount of cells after four days. EDC crosslinked CG scaffolds had tensile modulus in a dry state and compressive modulus in a wet state similar to commercial collagen wound dressing. They also showed appropriate pore size, high water absorption, and ...
McFetridge, P. S., Abe, K., Horrocks, M. and Chaudhuri, J. B., 2007. Vascular tissue engineering: Bioreactor design considerations for extended culture of primary human vascular smooth muscle cells. Asaio Journal, 53 Sep-Oct (5), pp. 623-630.. ...
Purpose : Upon injury to the cornea, the composition of the extracellular matrix (ECM) rapidly changes to promote wound healing through its interactions with integrins. We hypothesize that ECM remodelling occurring during corneal wound healing causes the activation of very specific signal transduction mediators that favor faster closure of the wound. Our goal is to proceed to the pharmacological inhibition and/or activation of the PI3K/Akt mediators Akt and CREB using the human tissue-engineered cornea (hTECs) as a model. Methods : hTECs produced by the self-assembly approach were wounded with a 8-mm diameter biopsy punch and deposited on another reconstructed human corneal stroma to allow wound closure on a natural ECM. Total RNAs and proteins were prepared from the epithelial cells of wounded and unwounded areas and their gene expression pattern was determined by microarrays. The wounded tissues were then incubated with or without C646 (a CREB inhibitor) or with or without SC79 (an AKT ...
Learn more about stem cells by reading Stem Cell-Based Bone Tissue Engineering with a Hydrogel Scaffold Shows Promise for Bone Repair on the Stemodontics® website.
Leading Synthetic Biology and Tissue Engineering conferences 2018, synthetic Biology conferences Europe,Tissue Engineering conferences Middle East and Asia provide invaluable prospects for all scientists in modern research of biology and Tissue Engineering
Thomas Gaborskis research may be in ultra-thin nano-membranes, but its going to be titanic in advancing tissue engineering.. Gaborski, assistant professor of biomedical engineering at Rochester Institute of Technology, and his research team are developing ways to use ultra-thin nano-membranes and adipose stem cells to create the vascular network necessary in engineering tissue, skin and organs.. For these organs to be viable, there is a need for not only the organ structure but also the inner network of micro-vessels and capillaries. Gaborski is helping develop that complex structure, using transparent and permeable membrane scaffolds to support cell and tissue growth, essential to tissue engineering.. Using adipose-derived stem cells that come from fat tissue, acquired from adults rather than embryos, Gaborski has been able to create functional microenvironments that help support and differentiate stem cells into the specialized cells that make up the human body. Creating engineered tissues ...
This review detailed the most commonly used biomaterial scaffolds for engineering tissues from stem cells by covering the types of materials available and their unique properties. This information allows readers to determine which material best suits their specific application. As mentioned in earlier in this review, many of these materials have not been fully optimized for specific tissue engineering applications and further work will continue to optimize these formulations for translation to the clinic for targeted applications. For example, optimized scaffolds could enhance the survival and differentiation of neural stem cells being transplanted into the diseased or damaged nervous system, which could lead to improved function. The type of material and the cues that are incorporated in the scaffold play a large role in directing the fate of the stem cells seeded inside as detailed in this review. The ability to further functionalize the materials discussed in this review in terms of their ...
QMULs School of Engineering and Materials Science (SEMS) provides outstanding degree programmes coupled with internationally leading research: Study reveals how manipulation of primary cilia may improve cartilage tissue engineering
2002). The tortuosity of scaffolds fabricated using solvent casting is not controllable because it requires the contact of the particulates during the fabrication procedure, which is a random process facilitated by using high humidity. Similarly, poor interconnectivity of pores is reported for scaffolds produced using gas foaming techniques, where only 10%À30% of the scaffolds pores are connected (Hutmacher, 2001). Control of pore size distribution in scaffolds fabricated using freeze-drying is an interesting research topic. 2010. The acellular matrix (ACM) for bladder tissue engineering: a quantitative magnetic resonance imaging study. Magn. Reson. Med. 64 (2), 341À348. 22404. , 2014. One-pot synthesis of macromesoporous bioactive glasses/polylactic acid for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 43, 367À374. 1016/j. 042. Epub 2014 Jul 19. , 2014. Designer functionalised selfassembling peptide nanofibre scaffolds for cartilage tissue engineering. Expert Rev. Mol. ...
TY - JOUR. T1 - Combining back scattered electron microscopy and secondary emission scanning electron microscopy to study articular cartilage morphology without decalcifying and staining the samples. AU - Merolli, A.. AU - Manunta, A.. AU - Phillips, Gary. AU - Santin, Matteo. AU - Catalano, F.. PY - 2010/8/13. Y1 - 2010/8/13. U2 - 10.3969/j.issn.1673-8225.2010.33.001. DO - 10.3969/j.issn.1673-8225.2010.33.001. M3 - Article. VL - 14. SP - 6081. EP - 6086. JO - Journal of Clinical Rehabilitative Tissue Engineering Research. JF - Journal of Clinical Rehabilitative Tissue Engineering Research. SN - 1673-8225. IS - 33. ER - ...
Stem cells have shown huge potential for regenerative medicine, but there are several critical issues to be addressed to further improve therapeutic efficacy and regenerative potential of stem cell therapy and stem cell-based tissue engineering. Functional biomaterials can solve these the limitations of current stem cell therapy by promoting prolieration, specific lineage differentiation and improving in vivo survival and engraftment of transplanted stem cells. This thematic series in Biomaterials Research aims to provide collections of recent studies on developing biomaterials for improving stem cell-based regenerative medicine.. To submit a paper to this series, please visit the Biomaterials Research submission site. Make sure to choose the name of the series under the Are you submitting to a thematic series? question on the Additional information tab.. New articles in the series will appear here as they are published.. ...
Dr. Lee has spearheaded in the development of in vitro tissue models and novel bioreactors in the field of cardiovascular tissue engineering in the past several years. She has developed spontaneously beating heart chambers exhibiting key characteristics of native heart for the first time, which is truly novel and powerful for answering questions that cannot easily be approached in vivo. She has also developed a uniaxial and a biaxial stretching device, which can be used to study the impact of mechanical stimulation on engineered cardiac tissues. More importantly, she has developed a novel flow bioreactor, which allows culture of microvasculature in vitro under the influence of flow, which is critical for any functional tissues. To the best of her knowledge, this was the first gel-based flow bioreactor, which provide a new basis for subsequent co-culture studies with various cell types to develop complex engineered tissue constructs with vascularization capacity, which is extremely critical for ...
A common design constraint in functional tissue engineering is that scaffolds intended for use in load-bearing sites possess similar mechanical properties to the replaced tissue. Here, we tested the hypothesis that in vivo loading would enhance bone morphogenetic protein-2 (BMP-2)-mediated bone regeneration in the presence of a load-bearing PLDL scaffold, whose pores and central core were filled with BMP-2-releasing alginate hydrogel. First, we evaluated the effects of in vivo mechanical loading on bone regeneration in the structural scaffolds. Second, we compared scaffold-mediated bone regeneration, independent of mechanical loading, with alginate hydrogel constructs, without the structural scaffold, that have been shown previously to facilitate in vivo mechanical stimulation of bone formation.. Contrary to our hypothesis, mechanical loading had no effect on bone formation, distribution, or biomechanical properties in structural scaffolds. Independent of loading, the structural scaffolds ...
Background: Cell-based tissue engineering represents a promising management for meniscus repair and regeneration. The present study aimed to investigate whether the injection of parathyroid hormone (PTH) (1-34) could promote the regeneration and chondroprotection of 3D printed scaffold se...
Skeletal muscle plays an important role in the bodys physiology but there are still no effective treatments for volumetric muscle loss (VML) resulting from severe traumatic injury or tumor excision. Recent studies show that a tissue engineering strategy using a compound containing mesenchymal stem cells (MSCs) and decellularized extracellular matrix (ECM) scaffold generates significant regenerative effects on VML injury, but the underlying mechanisms are not fully understood. The characteristics of human umbilical cord MSCs, including multiplication capacity and multidifferentiation ability, were determined. We constructed a compound containing MSCs and decellularized ECM scaffold which was used for tissue regeneration in a VML model. We found that MSCs and decellularized ECM scaffold generated synergistic effects on promoting skeletal muscle tissue regeneration. Interestingly, both MSCs and decellularized ECM scaffold could promote macrophage polarization toward the M2 phenotype and suppress
TY - JOUR. T1 - Optimizing the medium perfusion rate in bone tissue engineering bioreactors. AU - Grayson, Warren L. AU - Marolt, Darja. AU - Bhumiratana, Sarindr. AU - Fröhlich, Mirjam. AU - Guo, X. Edward. AU - Vunjak-Novakovic, Gordana. PY - 2011/5. Y1 - 2011/5. N2 - There is a critical need to increase the size of bone grafts that can be cultured in vitro for use in regenerative medicine. Perfusion bioreactors have been used to improve the nutrient and gas transfer capabilities and reduce the size limitations inherent to static culture, as well as to modulate cellular responses by hydrodynamic shear. Our aim was to understand the effects of medium flow velocity on cellular phenotype and the formation of bone-like tissues in three-dimensional engineered constructs. We utilized custom-designed perfusion bioreactors to culture bone constructs for 5 weeks using a wide range of superficial flow velocities (80, 400, 800, 1,200, and 1,800μm/s), corresponding to estimated initial shear stresses ...