All alcohols and spirits such as beer need yeast for the purpose of fermentation and leading breweries understand that getting top quality beer with saccharomyces cerevisiae yeast is the only way to happily placate parched throats of enthusiastic drinkers all around the globe.. All types of alcohols and also spirits like beer, wines, whiskey, rum, vodka, and so on have got diverse alcohol strengths. Different types of yeast as well can merely ferment as well as survive within a variety of alcohols, and are additionally limited by temperature distillersyeast. Thus alcoholic beverage manufacturing involving the production of vodka cannot use yeast suitable for lower alcohol potency yeasts such as wine yeast or even other forms of yeast such as saccharomyces cerevisiae, which is essentially used for brewing beer.. The saccharomyces cerevisiae yeast is actually belonging to the fungi family similar to its other cousins which ferment various other kinds of alcohols. This particular yeast is often ...
Saccharomyces Cerevisiae Yeast Cells Sem Scanning as a 8x6 Glass Mount from CMSP Photo Prints. Fast and safe delivery. Saccharomyces Cerevisiae Yeast Cells. these Microorganisms Fungi are Used to Raise Bread Dough the Yeasts Produce
Saccharomyces Cerevisiae Yeast Cells Sem Scanning as a A2 (42x59 cm) Fine Art Print from CMSP Photo Prints. Fast and safe delivery. Saccharomyces Cerevisiae Yeast Cells. these Microorganisms Fungi are Used to Raise Bread Dough the Yeasts Produce
TY - JOUR. T1 - Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. AU - Athenstaedt, Karin. AU - Daum, Günther. PY - 2005. Y1 - 2005. M3 - Article. VL - 280. SP - 37301. EP - 37109. JO - The Journal of Biological Chemistry. JF - The Journal of Biological Chemistry. SN - 0021-9258. ER - ...
China High Quality Yeast Saccharomyces Cerevisiae For Poultry Feed with High-Quality, Leading High Quality Yeast Saccharomyces Cerevisiae For Poultry Feed Manufacturers & Suppliers, find High Quality Yeast Saccharomyces Cerevisiae For Poultry Feed Factory & Exporters.
China Wholesale Animal Additive Yeast Saccharomyces Cerevisiae with High-Quality, Leading Wholesale Animal Additive Yeast Saccharomyces Cerevisiae Manufacturers & Suppliers, find Wholesale Animal Additive Yeast Saccharomyces Cerevisiae Factory & Exporters.
SCU48699 U48699 414bp mRNA PLN 10-APR-1996 Saccharomyces cerevisiae ribosomal protein S30 homolog (RPS30A) mRNA, complete cds. RPS30A; Rps30ap. SCU48700 U48700 1200bp DNA PLN 10-APR-1996 Saccharomyces cerevisiae ribosomal protein S30 homolog (RPS30) gene, complete cds. RPS30A; yrpS30. SCU51431 U51431 2760bp DNA PLN 10-APR-1996 Saccharomyces cerevisiae PHD5 gene, complete cds. PHD5; Phd5p. YSCL8004 U53876 40340bp DNA PLN 10-APR-1996 Saccharomyces cerevisiae chromosome XII cosmid 8004. L8004.4; L8004.5; L8004.6; KIN2; Probable Serine/Threonine protein kinase (Swiss; Prot. accession number P13186); ; L8004.7; CHA4; Transcriptional activator of CHA1 (Swiss Prot.; accession number P43634). Contains a Cys(6) zinc finger.; ; L8004.9; L8004.2; L8004.10; L8004.11; SEN2; tRNA-splicing endonuclease beta-subunit; L8004.13; L8004.1. YSCL9233 U53877 23223bp DNA PLN 10-APR-1996 Saccharomyces cerevisiae chromosome XII cosmid 9233. L9233.6; L9233.7; L9233.8; L9233.5; YAP3; Aspartic proteinase 3 (Swiss Prot. ...
In the study, 300 male day-old, Ross 308 broiler chicks were used. Experiment groups were designed as follows: control; 0.1 % Saccharomyces cerevisiae; 0.2 % Saccharomyces cerevisiae; 0.4 % Saccharomyces cerevisiae. The experimental diets were chemically analyzed according to the methods of the Association of Official Analytical Chemists. Twelve groups were obtained, including three replicates for each experimental group. Each replicated group was comprised of 25 chicks, and thus 75 chicks were placed in each experimental group. After 42 days, broiler chickens were slaughtered. Tibiotarsi were weighed with a digital scale, and the lengths were measured with a digital caliper after the drying process. Cortical areas were measured with the ImageJ Image Processing and Analysis Program. A UTEST Model-7014 tension and compression machine and a Maxtest software were used to determine the bone strength of the tibiotarsus. The severity of the tibial dyschondroplasia lesion was evaluated as 0, +1, +2 and ...
The structure of a polysaccharide consisting of D-glucose isolated from the cell-wall of active dry bakers yeast (Saccharomyces cerevisiae) was investigated by using methylation analysis, periodate oxidation, mass spectrometry, NMR spectroscopy, and enzymic hydrolysis, as a new approach in determination of structures. The main structural feature of the polysaccharide deduced on the basis of the obtained results is a linear chain of (1→3)-linked β-D-glucopyranoses, a part of which is substituted through the positions O-6. The side units or groups are either a single D-glucopyranose or (1→3)-β-oligoglucosides, linked to the main chaing through (1→6)-glucosidic linkages. The low optical rotation as well as the 13C-NMR and FTIR spectra suggest that the glycosidic linkages are in the β-D-configuration ...
The effect of yeast (Saccharomyces cerevisiae) on fattening performances of growing cattle is an article from MOJ Ecology & Environmental Sciences for MedCrave Group. The aim of this experiment was to evaluate the yeast on fattening performances of the growing cattle. The experiment was carried out with 179 imported 12-14 months old growing mixed breed bulls (Hereford, Angus, Brangus, and some other crossbreds) that were allocated to control and yeast group according to the breeds and body weight. Experimental diet was formulated with 19 % roughages (alfalfa and wheat straw) containing 13% crude protein. Yeast group was supplemented 40g d-1 live yeast containing 1.23×1011 CFU/g. The study lasted 62 days from May to July. Initial body weight were 393.91±4,43 for control and 395.56±4.45kg for yeast group. After test period, daily gain was similar (1465.85±26.76 vs. 1451.42±34.05g d-1, P|0.05) for the bull receiving the diet without yeast compared to the bulls receiving yeast. Similar results were
TY - JOUR. T1 - Electron transport chain of Saccharomyces cerevisiae mitochondria is inhibited by H2O2 at succinate-cytochrome c oxidoreductase level without lipid peroxidation involvement. AU - Cortés-Rojo, Christian. AU - Calderó;n-Cortés, Elizabeth. AU - Clemente-Guerrero, Mónica. AU - Manzo-Ávalos, Salvador. AU - Uribe, Salvador. AU - Boldogh, Istvan. AU - Saavedra-Molina, Alfredo. PY - 2007/11. Y1 - 2007/11. N2 - The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full ...
New Sequences ============= S82971 S82971 1775bp DNA PLN 10-FEB-1997 PEX13=PAS20 [Saccharomyces cerevisiae, Genomic, 1775 nt]. PEX13; Pex13p. SCRGA1 X90950 4305bp DNA PLN 07-FEB-1997 S.cerevisiae rga1 (dbm1) gene. DBM1; pheromone response; RGA1 gene; RGA1 (DBM1); Rga1p (Dbm1p). SCU17262 U17262 3051bp DNA PLN 11-FEB-1997 Saccharomyces cerevisiae Pip1p (PIP1) gene, complete cds. PIP1; Pip1p. SCU17263 U17263 2251bp DNA PLN 11-FEB-1997 Saccharomyces cerevisiae Pip2p (PIP2) gene, complete cds. PIP2; Pip2p. SCU17264 U17264 1842bp DNA PLN 11-FEB-1997 Saccharomyces cerevisiae Pip3p (PIP3) gene, complete cds. PIP3; Pip3p. SCU85960 U85960 1720bp DNA PLN 11-FEB-1997 Saccharomyces cerevisiae RNA polymerase II-specific TBP associated factor Taf40p (TAF40) gene, complete cds. TAF40; RNA polymerase II specific TBP associated; factor. SCU86641 U86641 1657bp DNA PLN 08-FEB-1997 Saccharomyces cerevisiae Rim9p (RIM9) gene, complete cds. RIM9; Rim9p. =========== Updated Features/Annotations ============= YSCDYS1 ...
TY - JOUR. T1 - Magnesium as a stress-protectant for industrial strains of saccharomyces cerevisiae. AU - Walker, Graeme M.. PY - 1998. Y1 - 1998. N2 - During brewery fermentations, individual yeast cells may be confronted with a variety of environmental stresses that impair yeast growth and fermentative metabolism. An understanding of the stress physiology of industrial yeasts is therefore important in order to counteract deleterious effects of stress on fermentation and, ultimately, product quality. The present study describes the influence of magnesium ions in preventing cell death caused by temperature shock and ethanol toxicity in Saccharomyces cerevisiae yeast strains employed in brewing, distilling, and wine fermentations. Results obtained show that, by increasing the extracellular availability of magnesium ions, physiological protection may be conferred on temperature- and ethanol-stressed yeast cells with respect to culture viability and growth. This practical approach is envisaged to ...
TY - JOUR. T1 - Molecular cloning and characterization of the RAD1 gene of Saccharomyces cerevisiae. AU - Higgins, David R.. AU - Prakash, Satya. AU - Reynolds, Paul. AU - Prakash, Louise. PY - 1983. Y1 - 1983. N2 - We have cloned the RAD1 gene of Saccharomyces cerevisiae and physically mapped it to a 4.0-kb DNA fragment from chromosome XVI. The RAD1 gene determines a transcript of 3.1 kb, and the direction of transcription was found to be leftwards, from EcoRI towards BglII (Fig. 1). Deletions of the RAD1 gene were made and were found to have no effect on viability of vegetative cells or spores, or on sporulation.. AB - We have cloned the RAD1 gene of Saccharomyces cerevisiae and physically mapped it to a 4.0-kb DNA fragment from chromosome XVI. The RAD1 gene determines a transcript of 3.1 kb, and the direction of transcription was found to be leftwards, from EcoRI towards BglII (Fig. 1). Deletions of the RAD1 gene were made and were found to have no effect on viability of vegetative cells or ...
TY - JOUR. T1 - Cooperative interactions between pairs of homologous chromatids during meiosis in Saccharomyces cerevisiae. AU - Mell, Joshua Chang. AU - Komachi, Kelly. AU - Hughes, Owen. AU - Burgess, Sean. PY - 2008/6. Y1 - 2008/6. N2 - We report a novel instance of negative interference during Saccharomyces cerevisiae meiosis, where Cremediated recombination between pairs of allelic loxP sites is more frequent than expected. We suggest that endogenous crossover recombination mediates cooperative pairing interactions between all four chromatids of a meiotic bivalent.. AB - We report a novel instance of negative interference during Saccharomyces cerevisiae meiosis, where Cremediated recombination between pairs of allelic loxP sites is more frequent than expected. We suggest that endogenous crossover recombination mediates cooperative pairing interactions between all four chromatids of a meiotic bivalent.. UR - http://www.scopus.com/inward/record.url?scp=49849083414&partnerID=8YFLogxK. UR - ...
TY - JOUR. T1 - The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. AU - MACKELVIE, SARAH H. AU - ANDREWS, PAUL D.. AU - STARK, MICHAEL J. R. PY - 1995/7. Y1 - 1995/7. N2 - In higher eukaryotes, the activity and specificity of the type 1 protein serine-threonine phosphatase (PP1) catalytic subunit is thought to be controlled by its association with a number of regulatory or targeting subunits. Here we describe the characterization of a gene encoding one such potential polypeptide in the yeast Saccharomyces cerevisiae. The gene which we have isolated (termed SDS22) encodes a product with a high degree of sequence identity to the fission yeast sds22 protein, a known regulator of the mitotic function of PP1 in Schizosaccharomyces pombe. Using two different criteria, we have demonstrated that Sds22p and the catalytic subunit of PP1 (Glc7p) interact in yeast cells. We have also generated a temperature-sensitive allele of ...
In a previous attempt to identify as many as possible of the essential genes on Saccharomyces cerevisiae chromosome I, temperature-sensitive (Ts-) lethal mutations that had been induced by ethyl methane-sulfonate or nitrosoguanidine were analyzed. Thirty-two independently isolated mutations that mapped to chromosome I identified only three complementation groups, all of which had been known previously. In contrast, molecular analyses of segments of the chromosome have suggested the presence of numerous additional essential genes. In order to assess the degree to which problems of mutagen specificity had limited the set of genes detected using Ts- lethal mutations, we isolated a new set of such mutations after mutagenesis with UV or nitrogen mustard. Surprisingly, of 21 independently isolated mutations that mapped to chromosome I, 17 were again in the same three complementation groups as identified previously, and two of the remaining four mutations were apparently in a known gene involved in ...
ARAUJO, Roberta A.C. et al. Monitoring Saccharomyces cerevisiae populations by mtDNA restriction analysis and other molecular typing methods during spontaneous fermentation for production of the artisanal cachaça. Braz. J. Microbiol. [online]. 2007, vol.38, n.2, pp.217-223. ISSN 1517-8382. http://dx.doi.org/10.1590/S1517-83822007000200006.. An ecological study on Saccharomyces cerevisiae populations in spontaneous fermentation has been conducted in three vats of a cachaça distillery in Minas Gerais, Brazil. Ninety-seven yeast isolates were collected at the beginning, the middle and at the end of the production period, and were identified by standard methods. Differentiation between the indigenous S. cerevisiae strains isolated was performed by mitochondrial DNA (mtDNA) restriction analysis, RAPD-PCR, and PCR fingerprint using an intron splice primer. Analysis of the mtDNA restriction profiles revealed 12 different patterns, 11 corresponding to indigenous yeasts (I to XI) and one (XII) to a ...
TY - JOUR. T1 - Saccharomyces cerevisiae proteins involved in hybrid DNA formation in vitro. AU - Heyer, W. D.. AU - Johnson, A. W.. AU - Norris, D. N.. AU - Tishkoff, D.. AU - Kolodner, R. D.. PY - 1991. Y1 - 1991. N2 - RecA-like activities that can form hybrid DNA in vitro have been identified in a wide variety of organisms. We have previously described the strand exchange protein 1 (SEP1) from the yeast Saccharomyces cerevisiae that can form hybrid DNA in vitro. Purified as an Mr 132 000 polypeptide, recent molecular and immunological studies have now shown that the native form is an Mr 175 000 polypeptide containing strand exchange activity. The gene encoding SEP1 has been cloned and sequenced. The primary sequence failed to reveal any significant sequence homology to other sequences in data base searches. In vivo SEP1 was found to be essential for normal meiosis as cells containing a homozygous insertion mutation in the SEP1 gene failed to sporulate. In order to identify additional factors ...
Understanding how new biochemical pathways evolve in a sexually reproducing population is a complex and largely unanswered question. We have successfully evolved a novel biochemical pathway in yeast using a sex based population approach.. For over 30 years, wild type Saccharomyces has been widely reported to not grow on xylose at all, but we discovered that most strains can grow, albeit at almost undetectable rates. A mass mated starting population of Saccharomyces cerevisiae strains was evolved under selection on Xylose Minimal Media (XMM) with forced sexual mating every ~two months for 1463 days. This produced a population that could grow on xylose as a sole carbon source. Initial studies show the xylose growth trait is quantitative and presumably governed by many genes. To investigate the evolution of the xylose phenotype, a xylose utilising strain MBG11a was isolated. MBG11a was sequenced with PacBio RSII long read sequencing at the Ramaciotti Centre for Genomics. A high quality complete ...
TY - JOUR. T1 - Variation in indole-3-acetic acid production by wild Saccharomyces cerevisiae and S. paradoxus strains from diverse ecological sources and its effect on growth. AU - Liu, Yen Yu. AU - Chen, Hung Wei. AU - Chou, Jui Yu. PY - 2016/8/1. Y1 - 2016/8/1. N2 - Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary ...
TY - JOUR. T1 - A regulated MET3-GLC7 gene fusion provides evidence of a mitotic role for Saccharomyces cerevisiae protein phosphatase 1. AU - Black, S. AU - Andrews, P D. AU - Sneddon, A A. AU - Stark, M J. PY - 1995. Y1 - 1995. N2 - Saccharomyces cerevisiae possesses a single essential gene (GLC7) encoding protein phosphatase 1 (PP1). Elevated expression of this gene from the GAL1 promoter is highly detrimental to the cell, causing a growth defect and aberrant bud morphology, which leads to cells exhibiting long, extended buds. By comparison, expression of GLC7 from the weaker MET3 promoter was without significant effect on either growth or morphology. However, repression of GLC7 expression from the MET3 promoter in cells where the MET3-GLC7 fusion was the sole source of PP1 resulted in a mitotic delay. Such cultures showed a massive decrease in the rate of proliferation in conjunction with a significant increase in the proportion of large, budded cells. 46-diamidino-2-phenylindole ...
The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo- and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. Results from co-expressing endo- and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late
Saccharomyces cerevisiae Y12 - Organisms are classified by taxonomy into specified groups such as the multicellular animals, plants, and fungi; or unicellular microorganisms such as a protists, bacteria, and archaea.
Saccharomyces cerevisiae is a species of budding yeast. It is perhaps the most useful yeast owing to its use since ancient times in baking and brewing. It is believed that it was originally isolated from the skins of grapes (one can see the yeast as a component of the thin white film on the skins of some dark-colored fruits such as plums; it exists among the waxes of the cuticle). It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model prokaryote. It is the microorganism behind the most common type of fermentation. Saccharomyces cerevisiae cells are round to ovoid, 5-10 micrometres in diameter. It reproduces by a division process known as budding. It is useful in studying the cell cycle because it is easy to culture, but, as a eukaryote, it shares the complex internal cell structure of plants and animals. S. cerevisiae was the first eukaryotic genome that was completely sequenced. The yeast genome database [1] is ...
Pulsed electric field (PEF) treatment can be used for non-thermal inactivation of microorganisms. The aim of this paper is to investigate PEF treatment of yeast, Saccharomyces cerevisiae, using three different field waveforms: square; non-oscillating exponential and oscillating exponential. The PEF system used in this paper consists of a pulsed power supply and a parallel-plane metallic electrodes treatment cell located in an air-pressurised chamber. PEF treatment of the yeast was conducted using electric field impulses with magnitudes of 67 kV/cm and 80 kV/cm. The efficacy of the PEF treatment for inactivation of the yeast cells was assessed by comparison of the PEF-treated and untreated yeast populations. Results showed that 3-log10 reduction in the yeast population can be achieved with 100 impulses using all tested waveforms. Amongst all three tested waveforms non-oscillating exponential impulses demonstrated improved PEF performance. The effect of duration of treatment and peak magnitude ...
I reveal that Saccharomyces cerevisiae Rtt109p promotes genome stability and resistance to DNA-damaging agents, and that it does this by functionally cooperating with the histone chaperone Asf1p to maintain normal chromatin structure. Furthermore, I show that, as for Asf1p, Rtt109p is required for histone H3 acetylation on lysine 56 (K56) in vivo. Moreover I show that Rtt109p directly catalyzes this modification in vitro in a manner that is stimulated by Asf1p. These data establish Rtt109p as a member of a new class of histone acetyltransferases and show that its actions are critical fro cell survival in the presence of DNA damage during S phase. In the second part of this thesis, I reveal that cells deleted for Saccharomyces cerevisiae ESC2 exhibit synthetic sickness when combined with deletions of many genes involved in maintaining genomic stability. Moreover, I show that esc2Δ mutant cells exhibit increased recombination frequency and increased relocalisation of recombination repair protein ...
AbstractProtein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/. By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme ...
Purchase Recombinant Saccharomyces cerevisiae Protein RTA1(RTA1). It is produced in in vitro E.coli expression system. High purity. Good price.
TY - JOUR. T1 - Investigation of steroid receptor function in the budding yeast Saccharomyces cerevisiae. AU - McEwan, I J PY - 1999. Y1 - 1999. N2 - Steroid hormones are small lipophilic molecules that control a wide range of responses in both the developing and adult organism. The actions of these molecules are mediated by soluble receptor proteins that function as hormone-activated transcription factors. The first steroid receptors were expressed in the yeast Saccharomyces cerevisae over 10 years ago, and to date virtually all the classical steroid receptors, together with a number of non-steroid members of the nuclear receptor superfamily, have been expressed in yeast. The ability to reconstitute steroid receptor signalling in yeast cells by co-expression of the receptor protein and a reporter gene driven by the appropriate hormone response element has presented researchers with a powerful model system for investigating receptor action. Tn this review, the use of yeast-based steroid receptor ...
The Saccharomyces cerevisiae SNF2 gene affects the expression of many diversely regulated genes and has been implicated in transcriptional activation. We report here the cloning and characterization of STH1, a gene that is homologous to SNF2. STH1 is essential for mitotic growth and is functionally distinct from SNF2. A bifunctional STH1-beta-galactosidase protein is located in the nucleus. The predicted 155,914-Da STH1 protein is 72% identical to SNF2 over 661 amino acids and 46% identical over another stretch of 66 amino acids. Both STH1 and SNF2 contain a putative nucleoside triphosphate-binding site and sequences resembling the consensus helicase motifs. The large region of homology shared by STH1 and SNF2 is conserved among other eukaryotic proteins, and STH1 and SNF2 appear to define a novel family of proteins related to helicases. ...
The Sec18 protein (Sec18p) of the yeast Saccharomyces cerevisiae has been identified as a component involved in the vesicular transport of proteins through the secretory and endocytotic pathways. Sec18p is a homologue of the mammalian protein NSF which has been shown, using a number of in vitro transport assay systems and affinity purification procedures, to interact with other proteins in a multisubunit protein complex. This work represents two approaches taken with the aim of identifying proteins that interact with Sec18p in the yeast Saccharomyces cerevisiae. Isolation of protein complexes was first attempted by affinity purification of a tagged version of Sec18p. The protein was C-terminally tagged with a protein A moiety from Staphylococcus aureus containing IgG binding domains. It was hoped that the affinity of protein A for IgG Sepharose could be used to isolate protein complexes that formed in vivo with the Sec18p. Although the fusion construct was shown to be active in vivo, specific ...
TY - CHAP. T1 - Delta integration CRISPR-Cas (Di-CRISPR) in saccharomyces cerevisiae. AU - Shi, Shuobo. AU - Liang, Youyun. AU - Ang, Ee Lui. AU - Zhao, Huimin. PY - 2019/1/1. Y1 - 2019/1/1. N2 - Despite the advances made in genetic engineering of Saccharomyces cerevisiae, the multicopy genomic integration of large biochemical pathways remains a challenge. Here, we developed a Di-CRISPR (delta integration CRISPR-Cas) platform based on cleavage of the delta sites by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated systems (Cas) to enable unprecedented high-efficiency, multicopy, markerless integrations of large biochemical pathways into the S. cerevisiae genome. Detailed protocols are provided on the entire workflow which includes pDi-CRISPR plasmid and donor DNA construction, Di-CRISPR-mediated integration and analysis of integration efficiencies and copy numbers through flow cytometry and quantitative polymerase chain reaction (qPCR).. AB - Despite the ...
A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed. These strains minimize or eliminate the homology to the corresponding marker genes in commonly use …
Yeast cells. Coloured Scanning Electron Micrograph (SEM) of yeast cells, Saccharomyces cerevisiae. This fungus, also known as Bakers or Brewers yeast, consists of single vegetative cells. Some cells can be seen dividing by budding off new cells. Saccharomyces cerevisiae ferments sugar, producing alcohol and carbon dioxide in the process. It has long been used in brewing beer, the production of wine and in baking leavened bread (carbon dioxide causes the dough to rise). Medically, dried Bakers yeast is used as a rich source of vitamin B1, riboflavin and nicotinic acid. Magnification: x125 at 6x7cm size. x200 at 4x5 - Stock Image B250/0646
Anhydrobiosis is the state of life when cells get into waterless conditions and gradually cease their metabolism. In this study, we determined the sequence of events in Saccharomyces cerevisiae energy metabolism during processes of dehydration and rehydration. The intensities of respiration and acidification of the medium, the amounts of Phenyldicarbaundecaborane (PCB-) bound to yeast membranes, and the capabilities of cells to accumulate K+ were assayed using electrochemical monitoring system, and intracellular content of ATP was measured using bioluminescence assay. Mesophilic, semi-resistant to desiccation S. cerevisiae strain 14 and thermotolerant, very resistant to desiccation S. cerevisiae strain 77 cells were compared. After 22 h of drying it was possible to restore the respiration activity of very resistant to desiccation strain 77 cells, especially when glucose was available. PCB- binding also indicated considerably higher metabolic activity of dehydrated S. cerevisiae strain 77 cells.
TY - JOUR. T1 - The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. AU - Rosenfeld, Leah. AU - Reddi, Amit R.. AU - Leung, Edison. AU - Aranda, Kimberly. AU - Jensen, Laran T.. AU - Culotta, Valeria C.. PY - 2010/9/1. Y1 - 2010/9/1. N2 - Much of what is currently understood about the cell biology of metals involves their interactions with proteins. By comparison, little is known about interactions of metals with intracellular inorganic compounds such as phosphate. Here we examined the role of phosphate in metal metabolism in vivo by genetically perturbing the phosphate content of Saccharomyces cerevisiae cells. Yeast pho80 mutants cannot sense phosphate and have lost control of phosphate uptake, storage, and metabolism. We report here that pho80 mutants specifically elevate cytosolic and nonvacuolar levels of phosphate and this in turn causes a wide range of metal homeostasis defects. Intracellular levels of the hard-metal cations sodium and calcium ...
Saccharomyces cerevisiae sudah sejak lama digunakan sebagai starter fermentasi pembuatan roti dan minuman beralkohol. Dalam buku ini, Saccharomyces crervisiae dimanfaatkan sebagai agensia modifikasi dalam pengolahan pangan, kemampuan S. cerevisiae dalam merombak komponen pangan, produk metabolit yang dihasilkan oleh S. cerevisiae, modifikasi terhadap perubahan sifat beberapa produk pangan oleh S. cerevisiae seperti tapioka, tempe, dan modifikasi fermentasi kakao. Pengertian dasar mengenai khamir perlu dipahami oleh mahasiswa yang khususnya mempelajari mikrobiologi pangan, mikrobiologi industri dan teknologi pangan. S.cerevisiae adalah khamir ...
Sequence analysis of a 33.1 kb fragment from the left arm of Saccharomyces cerevisiae chromosome X, including putative proteins with leucine zippers, a fungal Zn(11)2-Cys6 binuclear cluster domin and a putative alpha2-SCB-alpha2 binding site ...
Ghanegolmohammadia F, Yoshida M, Ohnuki S, Sukegawa Y, Okada H, Obara K, Kihara A, Suzuki K, Kojima T, Yachie N, Hirata D & Ohya Y Systematic analysis of Ca2+ homoeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles Molecular Biology of the Cell ...
Wine yeast (Saccharomyces cerevisiae D8) and non-Saccharomyces wine yeasts (Hanseniaspora uvarum S6 and Issatchenkia orientalis KMBL5774) were studied using air-blast drying instead of the conventional drying methods (such as freeze and spray drying). Skim milk-a widely used protective agent-was used and in all strains, the highest viabilities following air-blast drying were obtained using 10% skim milk. Four excipients (wheat flour, nuruk, artichoke powder, and lactomil) were evaluated as protective agents for yeast strains during air-blast drying. Our results showed that 7 g lactomil was the best excipient in terms of drying time, powder form, and the survival rate of the yeast in the final product. Finally, 7 types of sugars were investigated to improve the survival rate of air-blast dried yeast cells: 10% trehalose, 10% sucrose, and 10% glucose had the highest survival rate of 97.54, 92.59, and 79.49% for S. cerevisiae D8, H. uvarum S6, and I. orientalis KMBL5774, respectively. After 3 months of
Saccharomyces cerevisiae ATCC ® 201390D-5™ Designation: Genomic DNA from Saccharomyces cerevisiae Strain BY4743 (ATCC ® 201390™) Application:
Saccharomyces cerevisiae ATCC ® 201389D-5™ Designation: Genomic DNA from Saccharomyces cerevisiae Strain BY4742 (ATCC ® 201389™) Application:
Species, Publications, Genomes and Genes, Scientific Experts, Locale about Experts and Doctors on saccharomyces cerevisiae proteins in Al Ain, Abu Dhabi, United Arab Emirates
TY - JOUR. T1 - Automated Yeast Transformation Protocol to Engineer Saccharomyces cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames That Express Proteins Binding to Xylose Isomerase Identified Using a Robotic Two-Hybrid Screen. AU - Hughes, Stephen R.. AU - Rich, Joseph O.. AU - Bischoff, Kenneth M.. AU - Hector, Ronald E.. AU - Qureshi, Nasib. AU - Saha, Badal C.. AU - Dien, Bruce S.. AU - Liu, Siqing. AU - Jackson, John S.. AU - Sterner, David E.. AU - Butt, Tauseef R.. AU - LaBaer, Joshua. AU - Cotta, Michael A.. PY - 2009/8. Y1 - 2009/8. N2 - Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to use pentose sugars. Because S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI), which catalyzes conversion of xylose to xylulose. In this study, an automated two-hybrid interaction protocol was used to find ...
MITUSHI BIOPHARMA- Manufacturer & Supplier Of Saccharomyces Cerevisiae Dry Yeast In Gujarat,India. Find More Detail For Saccharomyces Cerevisiae Dry Yeast Manufacturers & Suppliers In Gujarat,India
TY - JOUR. T1 - Saccharomyces cerevisiae homologs of mammalian B and B subunits of protein phosphatase 2A direct the enzyme to distinct cellular functions. AU - Zhao, Yu. AU - Boguslawski, George. AU - Zitomer, Richard S.. AU - DePaoli-Roach, Anna A.. N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.. PY - 1997/3/28. Y1 - 1997/3/28. N2 - Protein phosphatase 2A (PP2A) is a major cellular serine/threonine protein phosphatase, present in the cell in a variety of heterotrimeric forms that differ in their associated regulatory B-subunit. Cloning of the mammalian B subunit has allowed the identification of a highly homologous Saccharomyces cerevisiae gene, RTS1. Disruption of the gene results in a temperature-sensitive growth defect that can be suppressed by expression of rabbit Bα or Bγ isoforms. The Bα subunit is much more effective in restoring normal growth at 37 °C than Bγ. Immunoprecipitated Rts1p was found associated with type 2A-specific protein phosphatase activity ...
Background and objectivePineapple peels contain significant quantities of carbohydrates, which can be used as cheap raw materials for production of commercially important products through fermentation. The aim of this study was to use this feed stock for the cultivation of Saccharomyces cerevisiae NCDC 364 and its use as single cell protein.Material and methodsThe single cell protein was produced using discarded pineapple peels and Saccharomyces cerevisiae NCDC 364. Optimization of bioprocess variables (temperature, pH, incubation period, carbon source and nitrogen source) affecting single cell protein production was carried out using classical one factor at a time approach. The harvested cells from optimized media were screened for amino acid content using high-performance thin-layer chromatography.Results andconclusionThe Saccharomyces cerevisiae NCDC 364 produced maximum single cell protein in pineapple peel based media, compared to non-optimized media. The one factor at a time approach showed
Base Sequence, DNA Polymerase II/chemistry, DNA Polymerase III/*chemistry/metabolism, DNA Replication, Molecular Sequence Data, Saccharomyces cerevisiae/enzymology/*genetics, Saccharomyces cerevisiae Proteins/*chemistry ...
This study evaluated the chemical and volatile composition of lychee wines fermented with four commercial yeast strains of Saccharomyces cerevisiae: EC-1118, R2, 71B and MERIT.ferm. Yeast cell population, pH, malic acid, ammonia and some amino acids had significant differences between strain 71B and other strains. There were strain variations with regard to degradation and retention of some juice volatiles as well as formation of new volatile compounds such as most esters and certain terpene compounds. Ethyl octanoate had the highest odour activity value (OAV of 500-1100), followed by ethyl hexanoate (about 50-85), among the common odorants in all lychee wines. Ethyl octanoate reached its highest OAV (1077) in the lychee wine fermented with strain EC1118, whereas ethyl hexanoate had the highest OAV (85) in the wine fermented with strain MERIT.ferm. Cis-rose oxide, the character-impact volatile in lychee juice with highest OAV (161), was dramatically reduced to trace levels after fermentation. © ...
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behaviour during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different
It is essential when studying the circadian rhythm in cells to be able to effectively stop them in time. In this experiment, we tested what would be the most successful killing agent on Saccharomyces cerevisiae. Six different agents were tested at different concentrations and amounts. After the S. cerevisiae was added to the test tube containing the agent, it was streaked on a plate after 5 and 10 minutes. The plates were incubated and then checked for growth. Ethanol was the most efficient killing agent. After an effective killing agent is determined, it can be used in further experiments measuring Gapdehydrogenase activity using a colorimetric assay to examine the circadian rhythm in Saccharomyces cerevisiae. Gapdehydrogenase results will also be presented.
Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinant Saccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions. S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within the MIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in ...
RODERIC (Repositori dObjectes Digitals per a lEnsenyament la Recerca i la Cultura) es el repositorio institucional de la Universitat de València. Se concibe como una ventanilla única para el acceso y la difusión de la producción digital de la Universitat. RODERIC responde al compromiso de la Universitat con el movimiento de acceso abierto al conocimiento adquirido con su adhesión a la Declaración de Berlín (30 Septiembre de 2008).
Biotechnology for Biofuels. RESEARCH Open Access. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Sun-Mi Lee1,2, Taylor Jellison1 and Hal S Alper1,3*. Abstract. Background: Efficient xylose fermentation by yeast would improve the economical and sustainable nature of biofuels production from lignocellulosic biomass. However, the efficiency of xylose fermentation by the yeast Saccharomyces cerevisiae is suboptimal, especially in conversion yield, despite decades of research. Here, we present an improved performance of S. cerevisiae in xylose fermentation through systematic and evolutionary engineering approaches. Results: The engineering of S. cerevisiae harboring xylose isomerase-based pathway significantly improved the xylose fermentation performance without the need for intensive downstream pathway engineering. This strain contained two integrated copies of a mutant xylose isomerase, gre3 and pho13 deletion ...
TY - JOUR. T1 - Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. AU - Timmers, A.C.J.. AU - Stuger, R.. AU - Schaap, P.J.. AU - van t Riet, J.. AU - Raue, H.A.. PY - 1999. Y1 - 1999. U2 - 10.1016/s0014-5793(99)00669-9. DO - 10.1016/s0014-5793(99)00669-9. M3 - Article. VL - 452. SP - 335. EP - 340. JO - FEBS Letters. JF - FEBS Letters. SN - 0014-5793. ER - ...
TY - JOUR. T1 - A dependent pathway of gene functions leading to chromosome segregation in saccharomyces cerevisiae. AU - Wood, John S.. AU - Hartwell, Leland H.. N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.. PY - 1982/9/1. Y1 - 1982/9/1. N2 - Methyl-benzimidazole-2-ylcarbamate (MBC) inhibits the mitotic cell cycle of Saccharomyces cerevisiae at a stage subsequent to DNA synthesis and before the completion of nuclear division (Quinlan, R. A., C. I. Pogson, and K. Gull, 1980, J. Cell 5ci., 46: 341-352). The step in the cell cycle that is sensitive to M8C inhibition was ordered in reciprocal shift experiments with respect to the steps catalyzed by cdc gene products. Execution of the CDC7 step is required for the initiation of DNA synthesis and for completion of the MBC-sensitive step. Results obtained with mutants (cdc2, 6, 8, 9, and 21) defective in DNA replication and with an inhibitor of DNA replication (hydroxyurea) suggest that some DNA replication is required for ...
TY - JOUR. T1 - Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. AU - Imura, Makoto. AU - Iwakiri, Ryo. AU - Bamba, Takeshi. AU - Fukusaki, Eiichiro. PY - 2018/8/1. Y1 - 2018/8/1. N2 - The budding yeast Saccharomyces cerevisiae is an important microorganism for fermentation and the food industry. However, during production, S. cerevisiae commonly uses the ethanol fermentation pathway for glucose utilization if excess sugar is present, even in the presence of sufficient oxygen levels. This aerobic ethanol fermentation, referred to as the Crabtree effect, is one of the most significant reasons for low cell yield. To weaken the Crabtree effect in fed-batch and continuous culture, sugar flow should be limited. In addition, in continuous culture, the dilution rate must be reduced to avoid washing out cells. However, under such conditions, production speed might be sacrificed. It is difficult to solve this problem with the tradeoff between cell ...
Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S similar to cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S similar to cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to
TY - JOUR. T1 - L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner. AU - Cartwright, Stephanie P.. AU - Bill, Roslyn M.. AU - Hipkiss, Alan R.. N1 - © Cartwright et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.. PY - 2012/9/12. Y1 - 2012/9/12. N2 - The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic ...
Abstract: The objective of this study was to select three strains of probiotic Saccharomyces cerevisiae and to evaluate the effect of S. cerevisiae and rumen bacteria isolate (MR4) supplementation and their combination on rumen fermentability and rumen microbial population. Experiment 1 was designed in a 4 x 5 factorial randomized block design with 3 replications. The first factor was S. cerevisiae strain consisted of control treatment (without S. cerevisiae supplementation), NBRC 10217, NRRL Y 567 and NRRL 12618, and the second factor was incubation time consisted of 0, 1, 2, 3, and 4 h. Ration was basal ration for feedlot with forage to concentrate ratio (F:C)= 60:40. Dosage of each treatment with S. cerevisiae was 5 x 1010 cfu/kg ration. Experiment 2 was designed in randomized block design with 4 treatments: P0= basal ration of feedlot; P1= P0 + S. cerevisiae; P2= P0 + MR4 isolate (5 x 107 cfu/kg ration); P3= P0 + S. cerevisiae and MR4 isolate. The result of experiment 1 showed that ...
Autophagy is an intracellular process responsible for the degradation and recycling of cytoplasmic components. It selectively removes harmful cellular material and enables the cell to survive starvation by mobilizing nutrients via the bulk degradation of cytoplasmic components. While research over the last decades has led to the discovery of the key factors involved in autophagy, the pathway is not yet completely understood. The first studies of autophagy on a molecular level were conducted in the yeast Saccharomyces cerevisiae. Building up on these studies, many homologs have been found in higher eukaryotes. Yeast remains a highly relevant model organism for studying autophagy, with a wide range of established methods to elucidate the molecular details of the autophagy pathway. In this review, we provide an overview of methods to study both selective and bulk autophagy, including intermediate steps in the yeast Saccharomyces cerevisiae. We compare different assays, discuss their advantages and
TY - JOUR. T1 - A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae. AU - Piirainen, Mari. AU - Boer, Harry. AU - de Ruijter, Jorg C.. AU - Frey, Alexander D.. PY - 2016. Y1 - 2016. N2 - N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We ...
The yeast assimilatory sulfate reductase is a complex enzyme that is responsible for conversion of sulfite into sulfide. To obtain information on the nature of this enzyme, we isolated and sequenced the MET10 gene of Saccharomyces cerevisiae and a divergent MET10 allele from Saccharomyces carlsbergensis. The polypeptides deduced from the identically sized open reading frames (1,035 amino acids) of both MET10 genes have molecular masses of around 115 kDa and are 88% identical to each other. The transcript of S. cerevisiae MET10 has a size comparable to that of the open reading frame and is transcriptionally repressed by methionine in a way similar to that seen for other MET genes of S. cerevisiae. Distinct homology was found between the putative MET10-encoded polypeptide and flavin-interacting parts of the sulfite reductase flavoprotein subunit (encoded by cysJ) from Escherichia coli and several other flavoproteins. A significant N-terminal homology to pyruvate flavodoxin oxidoreductase (encoded ...
Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation. Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strains ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed
TY - JOUR. T1 - Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae. AU - Citterio, Barbara. AU - Albertini, Maria Cristina. AU - Ghibelli, Lina. AU - Falcieri, Elisabetta. AU - Battistelli, Michela. AU - Canonico, Barbara. AU - Rocchi, Marco B. L.. AU - Teodori, Laura. AU - Ciani, Maurizio. AU - Piatti, Elena. PY - 2015/8/25. Y1 - 2015/8/25. N2 - In Saccharomyces cerevisiae, a typical apoptotic phenotype is induced by some stress factors such as sugars, acetic acid, hydrogen peroxide, aspirin and age. Nevertheless, no data have been reported for apoptosis induced by puromycin, a damaging agent known to induce apoptosis in mammalian cells. We treated S. cerevisiae with puromycin to induce apoptosis and evaluated the percentage of dead cells by using Hoechst 33342 staining, transmission electron microscopy (TEM) and Annexin V flow cytometry (FC) analysis. Hoechst 33342 fluorescence images were processed to acquire parameters to use for multiparameter analysis [and ...
A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in cellular chromosomes, we have begun to characterize functionally homologous proteins from the yeast Saccharomyces cerevisiae. RFC from S. cerevisiae was purified by its ability to stimulate yeast DNA polymerase delta on a primed single-stranded DNA template in the presence of yeast PCNA and RPA. Like its human-cell counterpart, RFC from S. cerevisiae (scRFC) has an associated DNA-activated ATPase activity as well as a primer-template, structure-specific DNA binding activity. By analogy with the phage T4 and ...
Article Saccharomyces cerevisiae afr1 protein is a protein phosphatase 1/glc7-targeting subunit that regulates the septin cytoskeleton during mating. Glc7, the type1 serine/threonine phosphatase in the yeast Saccharomyces cerevisiae, is targeted by a...
MIG1 overexpression causes flocculation in Saccharomyces cerevisiae. An important role of glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae
We have isolated STN1, an essential Saccharomyces cerevisiae gene, as a suppressor of the cdc13-1 mutation. A synthetic lethal interaction between a temperature-sensitive mutant allele of STN1, stn1-13, and cdc13-1 was observed. Stn1 and Cdc13 proteins displayed a physical interaction by two-hybrid analysis. As shown previously for cdc13-1, stn1-13 cells at the restrictive temperature accumulate single-stranded DNA in subtelomeric regions of the chromosomes, but to a lesser extent than cdc13-1 cells. In addition, both Cdc13 and Stn1 were found to be involved in the regulation of telomere length, mutations in STN1 or CDC13 conferring an increase in telomere size. Loss of Stn1 function activated the RAD9 and MEC3 G2/M checkpoints, therefore confirming that DNA damage is generated. We propose that Stn1 functions in telomere metabolism during late S phase in cooperation with Cdc13 ...
Article Pet191 is a cytochrome c oxidase assembly factor in saccharomyces cerevisiae. The twin-Cx9C motif protein Pet191 is essential for cytochrome c oxidase maturation. The motif Cys residues are functionally important and appear to be present in d...
TY - JOUR. T1 - Identification of a DNA supercoiling activity in Saccharomyces cerevisiae. AU - Koo, Hyeon Sook. AU - Lau, Kawai. AU - Wu, Hai Young. AU - Liu, Leroy-Fong. PY - 1992/10/11. Y1 - 1992/10/11. N2 - A relaxed plasmid DNA is shown to become positively supercoiled in cell extracts from top1 strains of Saccharomyces cerevisiae. This positive supercoiling activity is dependent on the presence of bacterial DNA topoisomerase I and ATP (or dATP), and the positive supercoils generated in this reaction are not constrained by protein(s). Non-hydrolyzable ATP analogs cannot substitute for ATP in this supercoiling reaction, and the supercoiling activity is not due to RNA synthesis. The presence of an ARS sequence in the DNA does not alter the activity. Furthermore, this activity is equally active against UV irradiated or intact DNA. Extracts prepared from rad50 and rad52 mutant cells exhibited the same activity. Partial purification of this activity suggests that a protein factor with a native ...
During pretreatment of lignocellulose raw material, compounds that severely inhibit microbial activity including Saccharomyces cerevisiae strains are released [1]. These compounds, which include furaldehydes and weak organic acids, inhibit yeast metabolism and affect yeast viability and, as a consequence, reduces the overall productivity of an ethanol production process [2]. Elucidation of the molecular mechanisms behind inhibition can suggest new strategies to prevent the inhibitory effect. In the present study, the possible effect on the plasma membrane in S. cerevisiae is studied as a response to inhibitors present in lignocellulose raw material. A comparative lipidomic profiling will be carried out on S. cerevisiae cultured in the absence and presence of lignocellulose inhibitors. LC-CAD and GC-MS will be used to extensively characterize the composition of the plasma membrane. Changes in membrane composition will be correlated with the presence of specific inhibitors. References 1. Palmqvist E, Hahn
TY - JOUR. T1 - A circadian clock in Saccharomyces cerevisiae. AU - Eelderink-Chen, Zheng. AU - Mazzotta, Gabriella. AU - Sturre, Marcel. AU - Bosman, Jasper. AU - Roenneberg, Till. AU - Merrow, Martha. PY - 2010/2/2. Y1 - 2010/2/2. N2 - Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as ...
en] Time-series of high throughput gene sequencing data intended for gene regulatory network (GRN) inference are often short due to the high costs of sampling cell systems. Moreover, experimentalists lack a set of quantitative guidelines that prescribe the minimal number of samples required to infer a reliable GRN model. We study the temporal resolution of data vs.quality of GRN inference in order to ultimately overcome this deficit. The evolution of a Markovian jump process model for the Ras/cAMP/PKA pathway of proteins and metabolites in the G1 phase of the Saccharomyces cerevisiae cell cycle is sampled at a number of different rates. For each time-series we infer a linear regression model of the GRN using the LASSO method. The inferred network topology is evaluated in terms of the area under the precision-recall curve (AUPR). By plotting the AUPR against the number of samples, we show that the trade-off has a, roughly speaking, sigmoid shape. An optimal number of samples corresponds to values ...
en] Time-series of high throughput gene sequencing data intended for gene regulatory network (GRN) inference are often short due to the high costs of sampling cell systems. Moreover, experimentalists lack a set of quantitative guidelines that prescribe the minimal number of samples required to infer a reliable GRN model. We study the temporal resolution of data vs.quality of GRN inference in order to ultimately overcome this deficit. The evolution of a Markovian jump process model for the Ras/cAMP/PKA pathway of proteins and metabolites in the G1 phase of the Saccharomyces cerevisiae cell cycle is sampled at a number of different rates. For each time-series we infer a linear regression model of the GRN using the LASSO method. The inferred network topology is evaluated in terms of the area under the precision-recall curve (AUPR). By plotting the AUPR against the number of samples, we show that the trade-off has a, roughly speaking, sigmoid shape. An optimal number of samples corresponds to values ...
[150 Pages Report] Check for Discount on Global and Chinese HK/Hexokinase from Saccharomyces cerevisiae (CAS 9001-51-8) Industry, 2016 Market Research Report report by Prof Research. The Global and Chinese HK/Hexokinase from Saccharomyces cerevisiae Industry,...
The yeast Saccharomyces cerevisiae strain W303 synthesizes in the early logarithmic phase of growth dolichols of 14-18 isoprene residues. The analysis of the polyisoprenoids present in the stationary phase revealed an additional family which proved to be also dolichols but of 19-24 isoprene residues, constituting 39% of the total dolichols. The transfer of early logarithmic phase cells to a starvation medium lacking glucose or nitrogen resulted in the synthesis of the longer chain dolichols. The additional family of dolichols represented 13.8% and 10.3% of total dolichols in the glucose and nitrogen deficient media, respectively. The level of dolichols in yeast cells increased with the age of the cultures. Since both families of dolichols are present in stationary phase cells we postulate that the longer chain dolichols may be responsible for the physico-chemical changes in cellular membranes allowing yeast cells to adapt to nutrient deficient conditions to maintain long-term viability ...
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing
The communication reports the cloning, sequencing, and analysis of the RPS3 gene from yeast, which codes for the ribosomal protein YS3. Sequence analyses of a 2.45 kb DNA fragment revealed an open reading frame with the potential to code for a 240 amino-acid long protein. The first 20 amino acids display a 90% identity to a 20 amino-acid long protein sequence of yeast ribosomal protein S3, that was obtained by protein sequencing of purified yeast ribosomal proteins. The promoter region of the RPS3 gene contains several upstream conserved sequence elements (UASrpg, T-rich region) that usually regulate transcription of ribosomal protein genes. Northern blot experiments demonstrate that this ORF is transcribed into an approximately 900 nt long mRNA. The major start site of transcription is located near position -20. The RPS3 gene is a single copy gene in yeast. Its disruption yields non viable haploid spores of Saccharomyces cerevisiae.
Bioethanol production from lignocellulosic biomass, in particular xylose, is currently of great concern, given the abundance of this sugar in the world, because Saccharomyces cerevisiae, which is widely used for bioethanol production, is unable to naturally ferment xylose. The aim of this study was to obtain a novel yeast capable of stably producing ethanol from biomass containing xylose by protoplast fusion between S. cerevisiae and xylose-utilizing yeast. We describe a novel xylose-fermenting yeast strain, FSC1, developed for ethanol production by intergeneric hybridization between S. cerevisiae and Candida intermedia mutants by using a protoplast fusion technique. The characteristics of the FSC1 strain are reported with respect to xylose fermentation, morphology, gene, and protein expression. Mutation of the parental strains prior to protoplast fusion endowed the FSC1 strain with the ability to convert xylose to ethanol. Microscopic analysis confirmed that the parental and FSC1 strains produced
Most of ethanol production processes are limited by lower ethanol production rate and recyclability problem of ethanologenic organism. In the present study, immobilized co-fermenting Saccharomyces cerevisiae GSE1618 was employed for ethanol fermentation using rice straw enzymatic hydrolysate in a packed bed reactor (PBR). The immobilization of S. cerevisiae was performed by entrapment in Ca-alginate for optimization of ethanol production by varying alginic acid concentration, bead size, glucose concentration, temperature and hardening time. Remarkably, extra hardened beads (EHB) immobilized with S. cerevisiae could be used up to repeated 40 fermentation batches. In continuous PBR, maximum 81.82 g L−1 ethanol was obtained with 29.95 g L−1 h−1 productivity with initial glucose concentration of 180 g L−1 in feed at dilution rate of 0.37 h−1. However, maximum ethanol concentration of 40.33 g L−1 (99% yield) with 24.61 g L−1 h−1 productivity was attained at 0.61 h−1 dilution rate in ...
Mitosis in yeast Saccharomyces cerevisiae was investigated in thick (0-25-I mum) serial sections with a high voltage electron microscope and in preparations of spheroplasts spread on a water surface. Spindle microtubules originate from a plaque-like structure called the spindle pole bosis the SPB duplicates and a set of long and short microtubules develops on each SPB. The spindle arises as the SPBs separate on the nuclear membrane adense and are not individually visible. Genetic studies, however, have indicated that there are 17 linkage groups. The number of microtubules was determined in diploid and haploid spindles on serial stereo micrographs. In diploid mitosis about 40 microtubules issue from a SPB. Most are non-continuous and often they are visibly associated with a chromatin fibre. The spindle in haploid cells is similar except that the number of microtubules is about half that in diploid cells and the SPB is smaller. The pole-to-pole microtubules vary in number from spindle to spindle, ...
Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as ...
In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a Vmax of 2.1 nmol·s−1·mg of dry weight−1. Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. ...
The Saccharomyces cerevisiae SIS1 gene was identified as a high copy number suppressor of the slow growth phenotype of strains containing mutations in the SIT4 gene, which encodes a predicted serine/threonine protein phosphatase. The SIS1 protein is similar to bacterial dnaJ proteins in the amino-terminal third and carboxyl-terminal third of the proteins. In contrast, the middle third of SIS1 is not similar to dnaJ proteins. This region of SIS1 contains a glycine/methionine-rich region which, along with more amino-terminal sequences, is required for SIS1 to associate with a protein of apparent molecular mass of 40 kD. The SIS1 gene is essential. Strains limited for the SIS1 protein accumulate cells that appear blocked for migration of the nucleus from the mother cell into the daughter cell. In addition, many of the cells become very large and contain a large vacuole. The SIS1 protein is localized throughout the cell but is more concentrated at the nucleus. About one-fourth of the SIS1 protein is ...
Background Although no potential homologues of multicellular apoptotic genes (e.g. Bax, Bak, Bcl-2, caspases and p53) have been identified in a unicellular eukaryote, previous reports contain several implications of the apoptotic behaviour of yeasts (i.e. Saccharomyces cerevisiae and Schizosaccharomyces pombe). Therefore, whether or not yeast undergoes apoptosis has been a topic of some debate. hCCG1, which is the largest subunit of TFIID and a histone acetyltransferase, appears to be involved in the regulation of apoptosis. The factor hCIA interacts with hCCG1 and functions as a histone chaperone in mammalian cells; its homologue in yeast is Asf1p/Cia1p. Therefore, we anticipated that a yeast mutant in Asf1p/Cia1p would be a valuable tool for studying apoptosis in yeast.. Results We established a strain of S. cerevisiae lacking the histone chaperone ASF1/CIA1. This disruptant, asf1/cia1, arrested preferentially at the G2/M-phase and died. We systematically analysed the phenotype associated with ...
Read Effect of Mutations in Genes PH085 and PH04 on Proline Utilization in Yeast Saccharomyces cerevisiae, Russian Journal of Genetics on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.