Shop Phosphoenolpyruvate synthase ELISA Kit, Recombinant Protein and Phosphoenolpyruvate synthase Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
TY - JOUR. T1 - Inositol polyphosphate multikinase mediates extinction of fear memory. AU - Park, Jina. AU - Longo, Francesco. AU - Park, Seung Ju. AU - Lee, Seulgi. AU - Bae, Mihyun. AU - Tyagi, Richa. AU - Han, Jin Hee. AU - Kim, Seyun. AU - Santini, Emanuela. AU - Klann, Eric. AU - Snyder, Solomon H. PY - 2019/2/12. Y1 - 2019/2/12. N2 - Inositol polyphosphate multikinase (IPMK), the key enzyme for the biosynthesis of higher inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphate, also acts as a versatile signaling player in regulating tissue growth and metabolism. To elucidate neurobehavioral functions of IPMK, we generated mice in which IPMK was deleted from the excitatory neurons of the postnatal forebrain. These mice showed no deficits in either novel object recognition or spatial memory. IPMK conditional knockout mice formed cued fear memory normally but displayed enhanced fear extinction. Signaling analyses revealed dysregulated expression of neural genes accompanied by ...
Pantothenate kinase-associated neurodegeneration is a form of neurodegeneration with brain iron accumulation, characterized by a progressive movement disorder and prominent iron deposition in the globus pallidus. Formerly referred to as Hallervorden-Spatz syndrome, the disorder was renamed pantothenate kinase-associated neurodegeneration after discovery of the causative gene, PANK2. Although the pathological features of clinically characterized Hallervorden-Spatz syndrome have been described, the literature is confounded by the historical use of this term for nearly all conditions with prominent basal ganglia iron accumulation and by the fact that this term encompasses a genetically heterogeneous group of disorders, now referred to as 'neurodegeneration with brain iron accumulation'. As a result, interpreting reports that precede molecular characterization of specific forms of neurodegeneration with brain iron accumulation is problematic. In the present studies, we describe neuropathological ...
This research describes the optimization of parameters (including pH, temperature, period of co-cultivation and age of callus) for Agrobacterium tumefaciens-mediated genetic transformation of Theobroma cacao L. using staminodes from cocoa buds as explants. The A. tumefaciens strain used was the super avirulent AGLl with the binary vector pGPTV-Kan/Gus. The strain confers aminoglycoside resistance to transformed cells through the neomycin phosphotransferase II (nptII) gene. Callus induction medium contained DKW minerals, glucose, vitamins, 2 mg/L 2,4D and 0.005 mg/L TDZ (0.5nM) pH 5.3. Co-cultivation medium was identical to callus induction medium but contained 0.02mg/L acetosyringone. Experiments were conducted using two clones of cocoa: KKM19 and P22. Staminodes were cultured on callus induction medium in the dark before the transformation process. After 14 days and 21 days on callus induction medium, callus-derived staminodes were co-cultivated with A. tumefaciens on semi-solid co-cultivation ...
We have achieved efficient transformation system for forage-type tall fescue plants by Agrobacterium tumefaciens. Mature seed-derived embryogenic calli were infected and co-cultivated with each of three A. tumefaciens strains, all of which harbored a standard binary vector pIG121Hm encoding the neomycin phosphotransferase II (NPTII), hygromycin phosphotransferase (HPT) and intron-containing |TEX|$\beta$|/TEX|-glucuronidase (intron-GUS) genes in the T-DNA region. Transformation efficiency was influenced by the A. tumefaciens strain, addition of the phenolic compound acetosyringone and duration of vacuum treatment. Of the three A. tumefaciens strains tested, EHA101/pIG121Hm was found to be most effective followed by GV3101/pIG121Hm and LBA4404/pIG121Hm for transient GUS expression after 3 days co-cultivation. Inclusion of 100 |TEX|$\mu$|/TEX|M acetosyringone in both the inoculation and co-cultivation media lead to an improvement in transient GUS expression observed in targeted calli. Vacuum treatment
casSAR Dugability of A2RD38 | proA | Gamma-glutamyl phosphate reductase - Also known as PROA_STRPG, proA. Catalyzes the NADPH-dependent reduction of L-glutamate 5-phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate.
Phosphagen (guanidino) kinases, including creatine kinase (CK), arginine kinase (AK), taurocyamine kinase (TK), lombricine kinase (LK), glycocyamine kinase (GK), and hypotaurocyamine kinase (HTK), are enzymes that catalyze the reversible transfer of the γ-phosphoryl group of adenosine triphosphate (ATP) to naturally occuring guanidino compounds such as creatine, arginine, yelding adenosine diphosphate (ADP) and a phosphorylated guanidine typically referred to as phosphagen (phosphocreatine, phosphoarginine and etc). Members of this enzyme family play a key role in animals as ATP-buffering systems in cells that display high and variable rates of ATP turnover. Phosphagen kinases have been found in all animal species and in some protozoa, such as trypanosomes, choanoflagellates, and the ciliates, Paramecium tetraurelia, Paramecium caudatum, and Tetrahymena. Eukaryotic phosphagen kinases consist of a small, ~100-residue, α-helical N-terminal domain and a larger, 250+-residue, C-terminal α/β ...
Inteins (for INternal proTEINs) are protein insertion sequences that are embedded in host protein sequences. They are post-translationally excised from the host protein by a self-catalytic protein splicing process, in which the intein sequence is precisely excised, and the flanking host protein sequences (N- and C-exteins) are religated to create a functional protein. Intein and protein splicing may be viewed as the protein equivalent of intron and RNA splicing, respectively. Inteins were initially discovered as translated intervening sequences that were present in the host gene but absent in homologous genes. Inteins occur in organisms spanning all three kingdoms of life (eubacteria, archaea and eukaryote). Although many inteins are in host proteins involved in nucleic acid metabolism, several inteins are located in metabolic enzymes, such as phosphoenolpyruvate synthase, anaerobic ribonucleoside triphosphate reductase, UDP-glucose dehydrogenase, ClpP protease/chaperone, vacuolar ATPase proton ...
casSAR Dugability of A2S874 | argB | Acetylglutamate kinase - Also known as ARGB_BURM9, argB. Catalyzes the ATP-dependent phosphorylation of N-acetyl-L-glutamate.
Mevalonate kinase deficiency is a condition characterized by recurrent episodes of fever, which typically begin during infancy. Each episode of fever lasts about 3 to 6 days, and the frequency of the episodes varies among affected individuals. In childhood the fevers seem to be more frequent, occurring as often as 25 times a year, but as the individual gets older the episodes occur less often.. Mevalonate kinase deficiency has additional signs and symptoms, and the severity depends on the type of the condition. There are two types of mevalonate kinase deficiency: a less severe type called hyperimmunoglobulinemia D syndrome (HIDS) and a more severe type called mevalonic aciduria (MVA).. During episodes of fever, people with HIDS typically have enlargement of the lymph nodes (lymphadenopathy), abdominal pain, joint pain, diarrhea, skin rashes, and headache. Occasionally they will have painful sores called aphthous ulcers around their mouth. In females, these may also occur around the vagina. ...
In molecular biology, the amino acid kinase domain is a protein domain. It is found in protein kinases with various specificities, including the aspartate, glutamate and uridylate kinase families. In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In Escherichia coli, thrA, metLM, and lysC encode aspartokinase isozymes that show feedback inhibition by threonine, methionine, and lysine, respectively. The lysine-sensitive isoenzyme of aspartate kinase from spinach leaves has a subunit composition of 4 large and 4 small subunits. In plants although the control of carbon fixation and nitrogen assimilation has been studied in detail, relatively little is known about the regulation of carbon and nitrogen flow into amino acids. The metabolic regulation of expression of an Arabidopsis thaliana aspartate kinase/homoserine dehydrogenase (AK/HSD) gene, ...
0159] Resistance genes for glyphosate (resistance conferred by mutant 5-enolpyruvl-3 phosphikimate synthase (EPSP) and aroA genes, respectively), and hygromycin B phosphotransferase, and to other phosphono compounds such as glufosinate (phosphinothricin acetyl transferase (PAT) and Streptomyces hygroscopicus phosphinothricin-acetyl transferase (bar) genes) may also be used. See, for example, U.S. Pat. No. 4,940,835 to Shah, et al., which discloses the nucleotide sequence of a form of EPSPS which can confer glyphosate resistance. A DNA molecule encoding a mutant aroA gene can be obtained under ATCC accession number 39256, and the nucleotide sequence of the mutant gene is disclosed in U.S. Pat. No. 4,769,061 to Comai. A hygromycin B phosphotransferase gene from E. coli that confers resistance to glyphosate in tobacco callus and plants is described in Penaloza-Vazquez et al. (Plant Cell Reports, 14:482-487, 1995). European patent application No. 0 333 033 to Kumada et al., and U.S. Pat. No. ...
Summary Herpes simplex virus can confer to thymidine kinaseless cells the ability to incorporate exogenously supplied thymidine into acid precipitable material. However no incorporation of exogenously supplied deoxycytidine into acid precipitable material can be detected after infection of deoxycytidine kinaseless cells by herpes simplex virus. This failure to incorporate exogenous deoxycytidine is not due to the failure of the deoxycytidine phosphorylating activity of the virus induced deoxypyrimidine kinase but to a block in the metabolism of deoxycytidine monophosphate in herpes simplex virus infected cells. This block becomes evident with the appearance of the virus induced deoxypyrimidine kinase activity.
NBIA (neurodegeneration with brain iron accumulation) comprises a heterogeneous group of neurodegenerative diseases having as a common denominator, iron overload in specific brain areas, mainly basal ganglia and globus pallidus. In the past decade a bunch of disease genes have been identified, but NBIA pathomechanisms are still not completely clear. PKAN (pantothenate kinase-associated neurodegeneration), an autosomal recessive disorder with progressive impairment of movement, vision and cognition, is the most common form of NBIA. It is caused by mutations in the PANK2 (pantothenate kinase 2) gene, coding for a mitochondrial enzyme that phosphorylates vitamin B5 in the first reaction of the CoA (coenzyme A) biosynthetic pathway. A distinct form of NBIA, denominated CoPAN (CoA synthase protein-associated neurodegeneration), is caused by mutations in the CoASY (CoA synthase) gene coding for a bifunctional mitochondrial enzyme, which catalyses the final steps of CoA biosynthesis. These two inborn ...
In the linear pathway (Figure 1A), GLU is converted to acetylglutamate (Ac-GLU) by N-acetylglutamate synthase (NAGS, encoded by argA) which is inhibited by ARG through negative feedback regulation [36],[39]. Sequential catalytic reactions catalyzed by the next three enzymes, N-acetylglutamate kinase (NAGK, encoded by argB), N-acetylglutamate semialdehyde dehydrogenase (encoded by argC) and N-acetylornithine transaminase (encoded by argD), which are common in the three pathways (Figure 1), yield N-acetylornithine (Ac-ORN) [34]. The next step, which distinguishes the linear pathway from the other two pathways, is deacetylation of Ac-ORN by AOase to yield ORN [40],[41]. The next and final steps are carried out by ornithine carbamoyltransferase (OTC or OTCase, encoded by argF), argininosuccinate synthase (encoded by argG) and argininosuccinate lyase (encoded by argH), which finally yield ARG [35]. This pathway has been found in a few species such as Myxococcus xanthus [41] and E. coli [36].. In many ...
Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder,
TY - JOUR. T1 - Hereditary erythrocyte adenylate kinase deficiency. T2 - A defect of multiple phosphotransferases?. AU - Lachant, N. A.. AU - Zerez, C. R.. AU - Barredo, J.. AU - Lee, D. W.. AU - Savely, S. M.. AU - Tanaka, K. R.. PY - 1991. Y1 - 1991. N2 - Adenylate kinase (AK) modulates the interconversion of adenine nucleotides (AMP + adenosine triphosphate → 2 ADP). We evaluated the fifth kindred with hereditary erythrocyte (RBC) AK deficiency. The proband had chronic hemolytic anemia. Her RBC had undetectable AK activity when measured spectrophotometrically, whereas those of her parents had half-normal AK activity. AK electrophoresis showed only AK-1 in the parents. The activities of pyruvate kinase and phosphoribosylpyrophosphate synthetase were decreased given the young age of the proband's RBC. Despite the absence of spectrophotometric AK activity, the proband's RBC were able to incorporate 14C-adenine into 14C-adenine nucleotides at 50% of the rate expected for her young RBC ...
Background & objective: Multidrug-resistant Acinetobacter baumannii (MDR-AB) is an important nosocomial pathogen which is associated with significant morbidity and mortality, particularly in high-risk populations. Aminoglycoside-modifying enzymes (AMEs) and 16S ribosomal RNA (16S rRNA) methylation are two important mechanisms of resistance to aminoglycosides. The aim of this study was to determine the prevalence of 16S rRNA methylase (armA, rmtA, rmtB, rmtC, and rmtD), and the AME genes [aac(6′)-Ib, aac(3)-I, ant(3′′)-I, aph(3′)-I and aac(6')-Id], among clinical isolates of A. baumannii in Tehran, Iran. Methods: Between November 2015 to July 2016, a total of 110 clinical strains of A. baumannii were isolated from patients in two teaching hospitals in Tehran, Iran. Antimicrobial susceptibility testing was performed according to Clinical and Laboratory Standards Institute guidelines. The presence of genes encoding the AMEs and16S rRNA methylases responsible for resis-tance was investigated by
Phosphagen kinases catalyze the reversible dephosphorylation of guanidino phosphagens such as phosphocreatine and phosphoarginine, contributing to the restoration of adenosine triphosphate concentrations in cells experiencing high and variable demands on their reserves of high-energy phosphates. The major invertebrate phosphagen kinase, arginine kinase, is expressed in the gills of two species of euryhaline crabs, the blue crab Callinectes sapidus and the shore crab Carcinus maenas, in which energy-requiring functions include monovalent ion transport, acid-base balance, nitrogen excretion and gas exchange. The enzymatic activity of arginine kinase approximately doubles in the ion-transporting gills of C. sapidus, a strong osmoregulator, when the crabs are transferred from high to low salinity, but does not change in C. maenas, a more modest osmoregulator. Amplification and sequencing of arginine kinase cDNA from both species, accomplished by reverse transcription of gill mRNA and the polymerase ...
Inverse metabolic engineering (IME) is a combinatorial approach for identifying genotypes associated with a particular phenotype of interest. In this study, gene disruptions that increase the biosynthesis of poly-3-hydroxybutyrate (PHB) in the photosynthetic bacterium Synechocystis PCC6803 were identified. A Synechocystis mutant library was constructed by homologous recombination between the Synechocystis genome and a mutagenized genomic plasmid library generated through transposon insertion. Using a fluorescence-activated cell sorting-based high throughput screen, high PHB accumulating mutants from the library grown in different nutrient conditions were isolated and characterized. While several mutants isolated from the screen had increased PHB accumulation, transposon insertions in only two ORFs could be linked to increased PHB production. Disruptions of sll0461, coding for gamma-glutamyl phosphate reductase (proA), and sll0565, a hypothetical protein, resulted in increased accumulation in ...
In enzymology, a diacylglycerol cholinephosphotransferase (EC 2.7.8.2) is an enzyme that catalyzes the chemical reaction CDP-choline + 1,2-diacylglycerol ⇌ {\displaystyle \rightleftharpoons } CMP + a phosphatidylcholine Thus, the two substrates of this enzyme are CDP-choline and 1,2-diacylglycerol, whereas its two products are CMP and phosphatidylcholine. This enzyme belongs to the family of transferases, specifically those transferring non-standard substituted phosphate groups. The systematic name of this enzyme class is CDP choline:1,2-diacylglycerol cholinephosphotransferase. Other names in common use include: 1-alkyl-2-acetyl-m-glycerol:CDPcholine choline phosphotransferase, 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase, 1-alkyl-2-acetylglycerol cholinephosphotransferase, alkylacylglycerol choline phosphotransferase, alkylacylglycerol cholinephosphotransferase, CDP-choline diglyceride phosphotransferase, cholinephosphotransferase, CPT, cytidine diphosphocholine glyceride ...
Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4'-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency. ...
selenophosphate synthetase: involved in selenium metabolism; gamma-phosphate of ATP is transferred to HSe resulting in formation of monoselenophosphate; amino acid sequence in first source
Looking for online definition of neurodegeneration with brain iron accumulation in the Medical Dictionary? neurodegeneration with brain iron accumulation explanation free. What is neurodegeneration with brain iron accumulation? Meaning of neurodegeneration with brain iron accumulation medical term. What does neurodegeneration with brain iron accumulation mean?
Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS
Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was ...
Two enzymes in the methionine salvage pathway, 5-methylthioribose kinase (MTR kinase) and 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTA/SAH nucleosidase) were purified from Klebsiellapneumoniae. Chromatography using a novel 5´-(p-aminophenyl)thioadenosine/5-(p-aminophenyl)thioribose affinity matrix allowed the binding and selective elution of each of the enzymes in pure form. The molecular mass, substrate kinetics and N-terminal amino acid sequences were characterized for each of the enzymes. Purified MTR kinase exhibits an apparent molecular mass of 46-50 kDa by SDS/PAGE and S200HR chromatography, and has a Km for MTR of 12.2 μM. Homogeneous MTA/SAH nucleosidase displays a molecular mass of 26.5 kDa by SDS/PAGE, and a Km for MTA of 8.7 μM. Comparisons of the N-terminal sequences obtained for each of the enzymes with protein-sequence databases failed to reveal any significant sequence similarities to known proteins. However, the amino acid sequence obtained for the ...
Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12-13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India,
Glycerol uptake and glycerol kinase activity were studied in primary cultures of rat hepatocytes in the presence of either 1 nM insulin, 1 nM glucagon, or 100 nM dexamethasone, alone or in combination in
In article ,Pine.SOL.3.96.970711115134.16570A-100000 at ascc.artsci.wustl.edu,, Alex Brands ,abbrands at artsci.wustl.edu, wrote: , I was planning to use kanamycin resistance as a selectable marker in , yeast, and I aquired a construct from another lab that has a kanamycin , resistance cassette. However, my negative control plates revealed that , the parent yeast (w303) was not sensitive to the kanamycin. After talking , to the other lab, I found out that they use something called Geneticin, , (that name is a registered trademark of GIBCO) which is about 20 times , more expensive than kanamycin. , , So, is my kanamycin simply expired, or are yeast not sensitive to , kanamycin? Am I stuck with Geneticin? , , , All help is appreciated very much! , , Alex Brands , Washington University Sorry, you're stuck with the Geneticin (also known as G418). Although the kanamycin resistance factor inactivates both kanamycin and G418, only the latter antibiotic is effective against eukaryotic cells. Steve ...
PubMed Central Canada (PMC Canada) provides free access to a stable and permanent online digital archive of full-text, peer-reviewed health and life sciences research publications. It builds on PubMed Central (PMC), the U.S. National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature and is a member of the broader PMC International (PMCI) network of e-repositories.
The 45-days-old seedlings of drought resistant (N-22, CR143-2-2) and susceptible rice (Oryza sativa L.) genotypes (Panidhan, Pusa-169) were subjected to osmotic stress in PEG-6000 solution of -10 and -16 bar and the relative water content (RWC), proline content, and pyrroline-5-carboxylate synthetase (P5CS) activity and its P5CS expression were studied. A gradual decrease in RWC was observed in tolerant genotypes, whereas the decrease was drastic in susceptible ones. Proline content and P5CS activity increased both in susceptible and tolerant genotypes; the increase was higher in tolerant genotypes. Higher proline levels in tolerant genotypes were due to increased P5CS activity. The EcoRI, BamHI and XbaI restricted DNA of N-22 and Panidhan genotypes were hybridized with Arabidopsis P5CS sequence and a single band (approx 2.4 kb) was observed, however, P5CS expression was more in N-22, as compared to Panidhan ...
Mycoplasma penetrans is a species of Gram-positive bacteria. It is pathogenic, though many infected show no symptoms. It is a sexually transmitted disease though an infant may be infected during birth. It has an elongated shape and its cells possess two internal compartments, one packed with granules, the other filled with coarse granules (consistent with ribosomal structures). The organism has properties of adherence, hemadsorption and cytadsorption and invades different types of mammalian cells. The type strain is strain GTU-54-6A1 (= ATCC 55252).This particular species is a sexually transmitted disease and one cause of pelvic inflammatory disease. Gallego, Pablo; Planell, Raquel; Benach, Jordi; Querol, Enrique; Perez-Pons, Joseph A.; Reverter, David (October 17, 2012). "Structural Characterization of the Enzymes Composing the Arginine Deiminase Pathway in Mycoplasma penetrans". PLOS ONE. 7 (10): Article No.: e47886. doi:10.1371/journal.pone.0047886. PMC 3474736 . PMID 23082227. Retrieved 11 ...
TY - JOUR. T1 - Common hydrogen bond interactions in diverse phosphoryl transfer active sites. AU - Summerton, Jean C.. AU - Martin, Gregory M.. AU - Evanseck, Jeffrey D.. AU - Chapman, Michael S.. N1 - Publisher Copyright: © 2014 Summerton et al.. PY - 2014/9/19. Y1 - 2014/9/19. N2 - Phosphoryl transfer reactions figure prominently in energy metabolism, signaling, transport and motility. Prior detailed studies of selected systems have highlighted mechanistic features that distinguish different phosphoryl transfer enzymes. Here, a top-down approach is developed for comparing statistically the active site configurations between populations of diverse structures in the Protein Data Bank, and it reveals patterns of hydrogen bonding that transcend enzyme families. Through analysis of large samples of structures, insights are drawn at a level of detail exceeding the experimental precision of an individual structure. In phosphagen kinases, for example, hydrogen bonds with the O3b of the nucleotide ...
Deoxyribonucleoside kinases catalyze the phosphorylation of deoxyribonucleosides to the corresponding deoxyribonucleoside monophosphates (dNMPs). They are the key enzymes in the salvage of deoxyribonucleosides originating from extra‐ or intracellular breakdown of DNA. Subsequently, dNMPs are phosphorylated into diphosphates (dNDPs) and triphosphates (dNTPs), which are the precursors of DNA. Deoxyribonucleoside kinases play a key role in the chemotherapeutic treatment of cancer and viral diseases, as they catalyze the first, and often rate‐limiting step of nucleoside analog activation by phosphorylation (Arnér and Eriksson, 1995). Native and genetically engineered deoxyribonucleoside kinases from different organisms are also attractive candidates for use in cancer gene therapy as suicide enzymes (Christians et al., 1999; Kokoris et al., 1999; Knecht et al., 2000a; Zheng et al., 2000). The basic concept here is to transduce cancer or virus‐infected cells with a gene encoding a ...
Activation and aggregation of blood platelets is crucial for hemostasis and thrombosis. In the vascular system adenine nucleotides are important signaling molecules playing a key role in hemostasis. ADP was the first low molecular weight agent recognized to cause blood platelets activation and aggregation. NTPDases and adenylate kinase (AK) are the main enzymes involved in metabolism of extracellular adenine nucleotides. The majority of studies concentrated on the role of NTPDase1 (apyrase) in the inhibition of platelets aggregation. Up to now, there are still insufficient data concerning the role of AK in this process. We found that adenylate kinase activity in the serum of patients with myocardial infarction is significantly increased when compared to the healthy volunteers. The elevated activity of AK is connected to appearance of another isoform of that enzyme, expressed in patients with myocardial infarction. The influence of AK on the pig blood platelets aggregation induced by 20 μM ADP or 7.5
Catalytic domain of the Protein Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 and 6. Serine/threonine kinases (STKs), mitogen-activated protein kinase (MAPK) kinase kinase kinase 4 (MAPKKKK4 or MAP4K4) and MAPKKKK6 (or MAP4K6) subfamily, catalytic (c) domain. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The MAP4K4/MAP4K6 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4Ks (or MAPKKKKs) are involved in MAPK signaling pathways that are important in mediating cellular responses to extracellular signals by activating a MAPK kinase kinase (MAPKKK or MAP3K or MKKK). Each MAPK cascade is activated ...
Sphingosine kinase 1 (SphK1) is a lipid kinase with important roles including regulation of cell survival. We have previously shown reduced SphK1 activity in cells with an established dengue virus type-2 (DENV-2) infection. In this study, we examined the effect of alterations in SphK1 activity on DENV-2 replication and cell death and determined the mechanisms of the reduction in SphK1 activity. Chemical inhibition or overexpression of SphK1 after established DENV-2 infection had no effect on infectious DENV-2 production, although inhibition of SphK1 resulted in enhanced DENV-2-induced cell death. Reduced SphK1 activity was observed in multiple cell types, regardless of the ability of DENV-2 infection to be cytopathic, and was mediated by a post-translational mechanism. Unlike bovine viral diarrhea virus, where SphK1 activity is decreased by the NS3 protein, SphK1 activity was not affected by DENV-2 NS3 but, instead, was reduced by expression of the terminal 396 bases of the 3′ UTR of DENV-2 RNA. We
Pancreatic cancer is a leading cause of cancer-related deaths in the world with a 5-year survival rate of less than 6%. Currently, there is no successful therapeutic strategy for advanced pancreatic cancer, and new effective strategies are urgently needed. Recently, an arginine deprivation agent, arginine deiminase, was found to inhibit the growth of some tumor cells (i.e., hepatocellular carcinoma, melanoma, and lung cancer) deficient in argininosuccinate synthetase (ASS), an enzyme used to synthesize arginine. The purpose of this study was to evaluate the therapeutic efficacy of arginine deiminase in combination with gemcitabine, the first line chemotherapeutic drug for patients with pancreatic cancer, and to identify the mechanisms associated with its anticancer effects. In this study, we first analyzed the expression levels of ASS in pancreatic cancer cell lines and tumor tissues using immunohistochemistry and RT-PCR. We further tested the effects of the combination regimen of arginine deiminase
TABLE-US-00003 TABLE 3 PFAM Results for Amino Acid Sequences Amino Acid SEQ ID Range NO: ORF Domain Start, Stop Family PFAM Accession No. E-value 3 877 PTS_IIA 16, 111 PTS system, Lactose/Cellobiose specific IIA PF02255 8.20E-40 subunit 5 609 PTS_EIIA_1 30, 134 phosphoenolpyruvate-dependent sugar PF00358 6.00E-55 phosphotransferase system, EIIA 1 7 1479 PRD 76, 171; PRD domain PF00874 9.90E-52 181, 282 7 1479 CAT_RBD 6, 67 CAT RNA binding domain PF03123 1.10E-16 9 1574 Glyco_hydro_1 4, 471 Glycosyl hydrolase family 1 PF00232 2.90E-133 11 1707 PTS_EIIA_1 491, 595 phosphoenolpyruvate-dependent sugar PF00358 6.10E-53 phosphotransferase system, EIIA 1 11 1707 PTS_EIIC 105, 387 Phosphotransferase system, EIIC PF02378 3.10E-33 11 1707 PTS_EIIB 7, 41 phosphotransferase system, EIIB PF00367 8.50E-19 13 725 PTS_EIIA_1 528, 632 phosphoenolpyruvate-dependent sugar PF00358 4.10E-60 phosphotransferase system, EIIA 1 13 725 PTS_EIIC 122, 419 Phosphotransferase system, EIIC PF02378 3.80E-35 13 725 PTS_EIIB 21, ...
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) is a major mechanism used by bacteria for uptake of carbohydrates, particularly hexoses, hexitols, and disaccharides, where the source of energy is from PEP. The PTS consists of two general components, enzyme I (EI) and histidine phosphocarrier protein (HPr), and of membrane-bound sugar specific permeases (enzymes II). Each enzyme II (EII) complex consists of one or two hydrophobic integral membrane domains (domains C and D) and two hydrophilic domains (domains A and B). EII complexes may exist as distinct proteins or as a single multidomain protein. The PTS catalyzes the uptake of carbohydrates and their conversion into their respective phosphoesters during transport. There are four successive phosphoryl transfers in the PTS. Initial autophosphorylation of EI, using PEP as a substrate, is followed by transfer of the phosphoryl group from EI to HPr. EIIA catalyzes the self-phosphoryl transfer from HPr after which the ...
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) is a major mechanism used by bacteria for uptake of carbohydrates, particularly hexoses, hexitols, and disaccharides, where the source of energy is from PEP. The PTS consists of two general components, enzyme I (EI) and histidine phosphocarrier protein (HPr), and of membrane-bound sugar specific permeases (enzymes II). Each enzyme II (EII) complex consists of one or two hydrophobic integral membrane domains (domains C and D) and two hydrophilic domains (domains A and B). EII complexes may exist as distinct proteins or as a single multidomain protein. The PTS catalyzes the uptake of carbohydrates and their conversion into their respective phosphoesters during transport. There are four successive phosphoryl transfers in the PTS. Initial autophosphorylation of EI, using PEP as a substrate, is followed by transfer of the phosphoryl group from EI to HPr. EIIA catalyzes the self-phosphoryl transfer from HPr after which the ...
The cassava was modified for resistance to Cassava mosaic disease (CMD) by introducing an RNA interference cassette that targets African cassava mosaic virus (ACMV) replication associated disease AC1. The production of hairpin RNA by the host cells trigger an RNAi response that is expected to target viral transcripts and prevent viral replication and thus further infection. Due to conservation between AC1 sequences in ACMV and East african cassava mosaic virus, the modified cassava is expected to resistant to both viruses, which are the causal agents of CMD. A selectable marker, Escherichia coli hygromycin B phosphotransferase, was additionally included for hygromycin selection during transformation ...
TY - JOUR. T1 - Structural basis for the catalysis and substrate specificity of homoserine kinase. AU - Krishna, S. S.. AU - Zhou, T.. AU - Daugherty, M.. AU - Osterman, A.. AU - Zhang, H.. N1 - Copyright: Copyright 2011 Elsevier B.V., All rights reserved.. PY - 2001/9/11. Y1 - 2001/9/11. N2 - Homoserine kinase (HSK), the fourth enzyme in the aspartate pathway of amino acid biosynthesis, catalyzes me pnosphorylanon of L-homoserine (Hse) to L-homoserine phosphate, an intermediate in the production of L-threonine, L-isoleucine, and in higher plants, L-methionine. The high-resolution structures of Methanococcus jannaschii HSK ternary complexes with its amino acid substrate and ATP analogues have been determined by X-ray crystallography. These structures reveal the structural determinants of the tight and highly specific binding of Hse, which is coupled with local conformational changes that enforce the sequestration of the substrate. The δ-hydroxyl group of bound Hse is only 3.4 Å away from the ...
Ribulose-5-phosphate kinase from maize (Zea mays) can exist in either a reduced, active form or an oxidized, inactive form. Reduced ribulose-5-phosphate kinase is rapidly and irreversibly inactivated by the dichlorotriazine dye Reactive Red 1 (Procion Red MX-2B), but the irreversible inactivation of the oxidized form of ribulose-5-phosphate kinase occurs at only 0.05% of this rate. The rate of inactivation of the reduced enzyme by Reactive Red 1 (apparent bimolecular rate constant 10(4)M-1 X s-1 at pH 7.4 and 25 degrees C) is several orders of magnitude greater than previous estimates of the rates of dye-mediated inactivation of other enzymes. The dye-dependent inactivation of the reduced enzyme is inhibited by Hg2+ or p-mercuribenzoate (thiol reagents that reversibly inhibit ribulose-5-phosphate kinase activity), or by ATP and ADP, the nucleotide substrates of the enzyme. Hydrolysed Reactive Red 1, which does not inactivate the enzyme, is a reversible inhibitor of ribulose-5-phosphate kinase. ...
Order Recombinant Human Ornithine carbamoyltransferase mitochondrial OTC 01015825041 at Gentaur Ornithine carbamoyltransferase, mitochondrial (OTC)
Monoclonal antibody against kanamycin was ready, and competitive direct ELISA and immunochromatographic assay were developed using the antibody to detect kanamycin in animal plasma and milk. kanamycin residues in veterinary medicine. Screened positives can be confirmed using a more sensitive laboratory method such as competitive direct ELISA. Therefore, the assays developed in this study could be used to complement each other as well as other laboratory findings. Moreover, instead of slaughtering the animals to obtain test samples, these methods could be applied to determine kanamycin concentration in the plasma of live animals. spp., and spp. [16], and is known to perturb protein synthesis in Gram-negative bacteria by binding to the 30 S subunit of ribosomal RNA, which causes misreading of the genetic code and inhibits translation [6,15]. Kanamycin is a mixture of 3 isomers: kanamycin A, kanamycin B, and kanamycin C. Since the kanamycin components differ markedly in their toxicity, commercial ...
The histidine phosphocarrier protein (HPr) kinase/phosphorylase (HPrK/P) modulates the phosphorylation state of the HPr protein, and it is involved in the use of carbon sources by Gram-positive bacteria. Its X-ray structure, as concluded from crystals of proteins from several species, is a hexamer; however, there are no studies about its conformational stability, and how its structure is modified by the pH. We have embarked on the conformational characterization of HPrK/P of Bacillus subtilis (bsHPrK/P) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, small-angle X-ray-scattering (SAXS) and dynamic light-scattering (DLS)). bsHPrK/P was mainly a hexamer in solution at pH 7.0, in the presence of phosphate. The protein had a high conformational stability, with an apparent thermal denaturation midpoint of ~70 °C, at pH 7.0, as monitored by fluorescence and CD. The protein was very pH-sensitive, precipitated be ...
Citation: Malnoy, M., Boresjza-Wysocka, E., Norelli, J.L., Flaishman, M., Gidoni, D., Aldwinckle, H.S. 2010. Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene. Tree Genetics and Genomes. 6:423-433. Interpretive Summary: Antibiotic and herbicide resistance genes are widely used as selectable markers to facilitate the efficient transformation of crop plants. Due to the negative public connotations associated with the use of selectable markers, a completely marker-free transformation technology would be desirable for the commercialization of genetically transformed plants. With this goal in mind, a technique was developed to genetically transform apple without the use of selectable marker genes. The technique takes advantage of the apple's capacity for high efficiency transformation and allows for the generation of marker-free transgenic plants without the need for repeated transformation or sexual crossing. When two different marker-gene free vectors ...
Defects in phosphotransferase chemotaxis in cya and cpd mutants previously cited as evidence of a cyclic GMP or cyclic AMP intermediate in signal transduction were not reproduced in a study of chemotaxis in Escherichia coli and Salmonella typhimurium. In cya mutants, which lack adenylate cyclase, the addition of cyclic AMP was required for synthesis of proteins that were necessary for phosphotransferase transport and chemotaxis. However, the induced cells retained normal phosphotransferase chemotaxis after cyclic AMP was removed. Phosphotransferase chemotaxis was normal in a cpd mutant of S. typhimurium that has elevated levels of cyclic GMP and cyclic AMP. S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase. After preincubation with cyclic AMP, the crr mutants were deficient in enzyme II glucose-mediated transport and chemotaxis, but other chemotactic responses were normal. It is concluded ...