TY - GEN. T1 - Polymer Optical Fibre Bragg Grating Humidity Sensor at 100ºC. AU - Woyessa, Getinet. AU - Fasano, Andrea. AU - Markos, Christos. AU - Rasmussen, Henrik K.. AU - Bang, Ole. N1 - Conference code: 25. PY - 2016. Y1 - 2016. N2 - We have demonstrated a polymer optical fibre Bragg grating humidity sensor that can be operated up to 100ºC. The sensor has been fabricated from a polycarbonate (PC) microstructured polymer optical fibre Bragg grating (mPOFBG). PC mPOFBG gave a relative humidity (RH) sensitivity of 6.95±0.83 pm/% RH in the range 10-90% RH at 100ºC and a temperature sensitivity of 25.94±0.47 pm/ºC in the range 20 - 100 ºC at 90% RH. Despite PC mPOFBGs shows smaller humidity sensitivity compared to PMMA mPOFBGs, they can be used to sense humidity beyond the operating temperature limit of PMMA mPOFBGs.. AB - We have demonstrated a polymer optical fibre Bragg grating humidity sensor that can be operated up to 100ºC. The sensor has been fabricated from a polycarbonate (PC) ...
An angle type optical connector enables a splicing operation of an optical fiber cable accurately and stably without requiring skilled labor and having a superior on-site installation property. An optical connector is provided with a splicing section for securely supporting an incorporated optical fiber securely supported at a ferrule and an optical fiber of an outside optical fiber cable in an end-abutting condition. The body of the optical connector is provided with a cable holding member able to hold an optical fiber cable. The cable holding member can be set at a temporary position where it makes an optical fiber of the optical fiber cable abut against the incorporated optical fiber at the splicing section in the state holding the optical fiber cable and bends a covered optical fiber of the optical fiber cable between the splicing section and the cable holding member by a pressing force in the lengthwise direction.
Global Optical Fiber Fusion Splicer Market 2017 report extracts the latest industry aspects and upcoming market trends which will help the readers in analysing the product and clients which are driving factors behind the market development and market share.. The report titled Global Optical Fiber Fusion Splicer Market presents thorough and essential market outlook covering the product definitions, categorization and variety of applications. The Optical Fiber Fusion Splicer is foreseen to show positive development which will enhance the market prevalence in coming years. The chief Optical Fiber Fusion Splicer factors which favour the market development are the growing popularity for Optical Fiber Fusion Splicer products and innovations taking place in this sector.. The global Optical Fiber Fusion Splicer data is covered in this report stating the business strategies, market growth, supply and consumption scenario, market demands. Furthermore, the Optical Fiber Fusion Splicer review based on the ...
The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength.. © 2016 Optical Society of America. Full Article , PDF ...
Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis ...
We report on a detailed study of the inscription and characterization of fiber Bragg gratings (FBGs) in commercial step index polymer optical fibers (POFs). Through the growth dynamics of the gratings, we identify the effect of UV-induced heating during the grating inscription. We found that FBGs in annealed commercial POFs can offer more stable short-term performance at both higher temperature and larger strain. Furthermore, the FBGs operational temperature and strain range without hysteresis was extended by the annealing process. We identified long-term stability problem of even the annealed POF FBGs ...
Optical fiber array - An optical fiber array is formed by including m number of optical fibers (where, m is a natural number other than 0), an optical fiber aligning member on a surface of which, at least m number of grooves are formed in parallel, and a cover. An end portion of the optical fiber is disposed in the groove of the optical fiber aligning member, and is held by the optical fiber aligning member and the cover. Furthermore, when being held by the optical fiber aligning member and the cover, by setting a line segment which has connected a point on an outer periphery in contact with the cover, of the optical fiber to be a straight line, the optical fiber is supported at three points by the groove and the cover. Moreover, by setting an angle of formation of the groove to be constant for all the grooves, and by setting arbitrarily a depth of the groove to differ, and by setting arbitrarily a cladding diameter of the optical fiber arranged in the groove, a line segment which has connected ...
This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.
In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG) to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the materials geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring.
A new biologically compatible Zn(II) sensor was fabricated by embedding a Zn(II) sensing spiropyran within the surface of a liposome derived from Escherichia coli lipids (LSP2). Solution-based experiments with increasing Zn(II) concentrations show improved aqueous solubility and sensitivity compared to the isolated spiropyran molecule (SP2). LSP2 is capable of sensing Zn(II) efflux from dying cells with preliminary data indicating that sensing is localized near the surface membrane of HEK 293 cells. Finally, LSP2 is suitable for development into a nanoliter-scale dip-sensor for Zn(II) using microstructured optical fiber as the sensing platform to detect Zn(II) in the range of 100 ρM with minimal photobleaching. Existing spiropyran based sensing molecules can thus be made biologically compatible, with an ability to operate with improved sensitivity using nanoscale liquid sample volumes. This work represents the first instance where photochromic spiropyran molecules and liposomes are combined to ...
A method and system of intrusion detection system for a multimode fiber optic cable. A light signal is launched into the cable fiber to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the cable. A small portion of the higher order signal modes arriving at the remote end of the cable is sampled by use of a coupler and monitored for transient changes in the mode field power distribution. The power distribution changes with physical disturbance of the cable. When those changes are detected as being characteristic of fiber intrusion, the system activates an alarm. This method can sense and alarm any attempt to access the optical fibers in a fiber optic communication cable. In preferred embodiments, the active signal of a multimode optical fiber is monitored for both signal degradation and transient power disturbance patterns that could indicate fiber damage or physical intrusion. A translator can be provided in an existing optical fiber system in which the data
An electric arc apparatus for processing an optical fiber includes one or more first electrodes and one or more second electrodes. The first electrode(s) each have an end portion that terminates at an opening defined by the first electrode(s). The opening is configured to accommodate the optical fiber extending along a longitudinal axis. The second electrode(s) each have an end portion that terminates at a location spaced from the opening defined by the first electrode(s). The first electrode(s) or second electrode(s) are configured to receive a voltage that generates a plasma field between the first electrode(s) and second electrode(s), which are shaped to focus the plasma field so that the plasma field extends across the longitudinal axis and modifies the end of the optical fiber. Methods of processing an optical fiber with an electric arc apparatus are also disclosed.
Optical Fiber Sensors, Temperature, humidity and water leakage management, environmental monitoring, asset managements, IoT, temperature sensors, oil & Gas
Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules. . Biblioteca virtual para leer y descargar libros, documentos, trabajos y tesis universitarias en PDF. Material universiario, documentación y tareas realizadas por universitarios en nuestra biblioteca. Para descargar gratis y para leer online.
1. A method for obtaining the binding kinetic rate constants using a fiber optic particle plasmon resonance (FOPPR) sensor, comprising the steps of: providing a fiber optic particle plasmon resonance sensor, wherein the fiber optic particle plasmon resonance sensor at least comprises: a light source to emit a light beam; a photoreceiver; and a fiber sensor chip, wherein the fiber sensor chip is located between the light source and the photoreceiver and the fiber sensor chip comprises: an optical fiber, wherein the optical fiber comprises a first region and a second region; the first region is located at two corresponding sides of the second region, wherein the first region comprises a fiber core, a cladding, and a protective layer, the refractive index of the fiber core is greater than that of the cladding such that the light beam can propagate within the fiber core; and the second region comprises the fiber core, the cladding, a noble metal nanoparticle layer, and a bio-recognition layer; a ...
A high-capacity optical fiber network [ 100, 200 ] includes wavelength-division multiplexing (WDM) within the 1.4 micron (μm) wavelength region (i.e., 1335-1435 nm). Such a system includes optical fiber [ 130 ] whose peak loss in the 1.4 μm region is less than its loss at 1310 nm. The optical fiber has a zero dispersion wavelength (λ 0 ) at about 1310 nm, and linear dispersion between about 1.5 and 8.0 ps/nm-km within the 1.4 μm region. At least three WDM channels operate at 10 Gb/s in the 1.4 μm wavelength region and have a channel separation of 100 GHz. In one illustrative embodiment of the invention, a broadcast television channel, having amplitude modulated vestigial sideband modulation, simultaneously operates in the 1.3 μm region (i.e., 1285-1335 nm) and/or the 1.55 μm region (i.e., 1500-1600 nm). In another embodiment of the invention, 16 digital data channels are multiplexed together in the 1.55 μm region, each channel operating at about 2.5 Gb/s. Raman amplifiers [ 103, 113 ] are
Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, MTRJ, MPO or SMA. Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used. Fusion splicing is done with a specialized instrument. The fiber ends are first stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the fusion splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a ...
Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, MTRJ, MPO or SMA. Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used.. Fusion splicing is done with a specialized instrument. The fiber ends are first stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the fusion splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a ...
The invention provides improved multi-fiber, fiber optic probe assemblies in which the component parts are adapted for rapid assembly with precise alignment. Some embodiments are adapted to illuminate and collect light from a sample at a particular depth while minimizing interference arising from within the probe assembly itself. Also provided are methods for manufacturing the probe assemblies and optical apparatuses including the probe assemblies.
​Diagnosing a muscular disorder often requires a painful tissue sample biopsy. Researchers have developed a less invasive alternative, using a thin fiber optic probe to quickly scan and measure the health of muscle tissue. For the first time, the team has now tested it on living muscles.
Biomedical research has become a strong growing sector in recent years. Moreover the interdisciplinary background involves novel possibilities and measurement techniques. Light propagation in turbid media like human tissue is a central aspect to many medical and biomedical applications. This is a very complex process and depends on parameters, which are called optical properties. The spatial distribution of light is determined by those optical properties. A major difficulty in this field can be explained by the forward and inverse problem. There are several theories and approximations that are used to describe the propagation of light in scattering media. Those approaches are often applied to get qualitative results that can be helpful in fields like laser surgery, photodynamic therapy and diagnostic purposes. This thesis presents the development of an optical fibre based system that uses diffuse reflectance data to determine the optical properties of tissue. The optical properties obtained are ...
The interaction of fibre Bragg grating sensors with ultrasonic acoustic waves in water is investigated in the near field region of a 1-3 piezocomposite transducer. Longitudinal and transverse strain coupling is studied using two different grating designs and high fidelity measurement of the emitted field was demonstrated ...
C2G 10m SC-ST 50/125 OM2 Duplex Multimode Fiber Optic Cable - Plenum CMP-Rated - Green - Patch cable - ST multi-mode (M) to SC multi-mode (M) - 33 ft - fiber optic - 50 / 125 micron - OM2 - plenum - green 37594 for $54.99 at macmall.com. Cables and Wiring - Cables - Fibre Optic Cables w/ SC Connector from macmall.com.
C2G SC-SC 62.5/125 OM1 Duplex Multimode Fiber Optic Cable (Plenum-Rated) - Patch cable - SC multi-mode (M) to SC multi-mode (M) - 98 ft - fiber optic - 62.5 / 125 micron - OM1 - molded, plenum - orange 37282 for $74.10 at macmall.com. Cables and Wiring - Cables - Fibre Optic Cables w/ SC Connector from macmall.com.
Control of the spatial and temporal properties of light propagating in disordered media have been demonstrated over the last decade using spatial light modulators. Most of the previous studies demonstrated spatial focusing to the speckle grain size, and manipulation of the temporal properties of the achieved focus. In this work, we demonstrate an approach to control the total temporal impulse response, not only at a single speckle grain but over all spatial degrees of freedom (spatial and polarization modes) at any arbitrary delay time through a multimode fiber. Global enhancement or suppression of the total light intensity exiting a multimode fibre is shown for arbitrary delays and polarization states. This work could benefit to applications that require pulse delivery in disordered media. Here, the authors describe the control of the temporal shape and polarization of the total transmission through a multimode fibre. Most of the previous works studied spatial control of the output field at the expense
Polymer Optical Fibers (POF) Applications for Indoor Cell Coverage Transmission Infrastructure: 10.4018/978-1-60566-014-1.ch160: The role of transmission network design is diverse. Basically, it includes the preparation of transmission solutions for access and core (backbone)
OPTICAL FIBER LIGHT Fiber optic microscope illuminator provides strong, even and cool daylight illumination. It comes with 50 Watt or 150Watt Halogen light source and dual gooseneck lights. The inside fan design also allows the unit to work with very low
A sensor is described which utilizes the phenomenon of surface plasmon resonance to detect changes in refractive index of chemical or biochemical samples applied to a surface modified optical fiber. The sensor is constructed by polishing a short section of the lateral surface of an optical fiber to its evanescent field surrounding the fiber core. One or more thin films are applied to the polished section of the fiber to produce the sensing element. One of the films is the metal silver, which acts as the support for the surface plasmon. Under the proper conditions, TM polarized energy propagating in the fiber can be coupled to a surface plasmon electromagnetic mode on the metal film. This coupling depends on the wavelength, the nature of the fiber, the refractive index and thickness of the thin films applied to the fiber, and the refractive index of a chemical sample in contact with the modified surface. The fiber to plasmon coupling is seen as a large attenuation of the light reaching the distal ...
An optical fiber amplifier includes an input side wavelength combiner and an output side wavelength combiner arranged at an input side and an output side, respectively. An input optical signal is supplied from a transmission line to the input side wavelength combiner, while an output signal is supplied from the output side wavelength combiner to the transmission line. Further, an optical fiber is connected between the input side wavelength combiner and the output side wavelength combiner, an optical branch circuit is connected to the input side wavelength combiner and the output wavelength combiner and, a laser device is connected to the optical branch circuit and supplies an excited laser light beam to the optical branch circuit. The optical branch circuit divides the excited laser light beam into a first laser light beam and a second laser light beam with a predetermined dividing ratio and then supplies the first and second laser light beams to the
Selector for separating at least two wavelength bands from a complex light introduced into the apparatus through the end of an optical fiber (12) arranged in the immediate vicinity of the focal point of a concave mirror (5) producing a parallel beam directed towards a plane reflecting device, the return beam being focused towards an output optical fiber. It comprises at least one plane miltidielectric layer (8) interposed between the concave mirror (5) and the plane reflecting device (10) and forming, with the vertex axis (6) of the concave mirror, an angle which is slightly different from that of the plane reflecting device, each multidielectric layer having a discontinuity in the vicinity of the vertex axis of the concave mirror.
A microactuator for precisely aligning an optical fiber with an optical device includes a carrier having at least one bimorphic actuator which bends or deflects in response to electrical stimuli to thereby controllably position the carrier and, in turn, an optical fiber mounted on the carrier, with an optical device, such as a laser diode. The bimorphic actuator includes first and second layers of first and second materials, respectively, which respond differently to electrical stimuli. For example, the first and second materials can have different coefficients of thermal expansion or one of the materials can be a piezoelectric material such that application of electrical stimuli to the bimorphic actuator will deflect the actuator by a precisely controllable amount. The carrier can also be mounted on an alignment support structure such that upon deflecting the bimorphic actuator is urged against a portion of the alignment support structure so as to
...A team of scientists led by John Badding a professor of chemistry at ... It has become almost a clich to say that optical fibers are the corne...Unlike silica glass which traditionally is used in optical fibers zi...,New,kind,of,optical,fiber,developed,biological,advanced biology technology,biology laboratory technology,biology device technology,latest biology technology
This paper proposes a new solution for improving oxygenation state of anaerobic medium by means of optical fibres. Visible light (400-750 nm) of varying intensity (811-4866 lx) was introduced through optical fibres to an anaerobic medium ( Eutric Fluvisol ) for 10 days, which could activate...
A bend radius control member for controlling the bend radius of an optical fiber cable including a deformation resistant heat shrunk outer jacket wrapped around the optical fiber cable. The heat shrunk outer jacket has a desired bend radius curvature.
NEW YORK, April 12, 2017 /PRNewswire/ -- Fiber Optics Market by Cable Type (Single mode, and Multi-mode), Optical Fiber Type (Glass and Plastics),...
In recent years, many research and development projects have focused on the study of fiber Bragg gratings. Fiber Bragg gratings have been used in the field of sensors, lasers and communications systems. The coupled-mode theory is a suitable tool for analysis and for obtaining quantitative information about the spectrum of a fiber Bragg grating. The transfer matrix can be used to solve non-uniform fiber Bragg gratings. Uniform, chirped, sampled Bragg gratings have already been simulated by using the direct numerical integration method and the transfer matrix method. Many of the applications for optical fibers in an in vivo setting, i.e., applied to the living human body. Using optical fibers for in vivo sensing is at a far less mature stage of evolution but nevertheless shows great promise for the provision of quantitative, minimally-invasive diagnostic information. There are few light-based systems sufficiently sensitive to detect the weak reflections typically present in biological and ...
A control system for an optical fiber laser power delivery system wherein the system employs a tip assembly for the optical fibers which provide focusing and beam divergence, mechanical protection for the optical fibers, and in addition functions as the source of a condition responsive signal useful in monitoring and controlling the system operation. The tip assembly utilizes a synthetic sapphire lens or window having incident laser radiation and temperature dependent fluorescing property useful in generating a signal utilized in a feedback control system for the laser system. The improved tip assembly accordingly has application as an optical fiber shield as well as a signal source for the control and monitor portion of the laser system.
The development of optical fibers has revolutionized not only telecommunications but also the way monitoring and sensing is conducted, particularly in remote or harsh environments. In this context, the discovery of photosensitivity in optical fibers led to the establishment of fiber Bragg gratings (FBGs), optical filters that have been widely employed in telecom and as measurement elements.. This Tutorial Text discusses these optical devices directly, focusing on the practical aspects and applications. It addresses the fundamental aspects of FBG operation to quickly introduce the subject to students, engineers, and laboratory technicians. Due to their inherent advantages in instrumentation, sensing, and automation systems, FBGs play an important role not only for industry professionals but also for academics. Thus, this book is primarily intended for scientists, professors, researchers, students, photonics technicians, and engineers involved in optical-fiber projects. The chapters follow a ...
This application relates to a fibre optic cable which is adapted for use in a distributed fibre optic sensor such as a distributed acoustic sensor. The cable (201) comprises at least one optical fibre (208) and a shear thickening non-Newtonian fluid (202) disposed within the cable. The presence of a shear thickening fluid in the cable means that in response to a mechanical vibration or strain such as due to an incident acoustic wave the apparent viscosity of the non-Newtonian fluid will increase. In effect the cable will stiffen which will increase the strain on the optical fibre used for sensing, and thus increase the sensitivity of the cable to incident signals. The non-Newtonian fluid may be a dilatant material and/or a rheopectic material and may comprise comprises a plurality of particles disposed within a liquid.
In each reflection within the fiber, the light has the opportunity to interact with the nanostructures that are coated with the dye molecules," Wang explained. "You have multiple light reflections within the fiber, and multiple reflections within the nanostructures. These interactions increase the likelihood that the light will interact with the dye molecules, and that increases the efficiency.". Wang and his research team have reached an efficiency of 3.3 percent and hope to reach 7 to 8 percent after surface modification. While lower than silicon solar cells, this efficiency would be useful for practical energy harvesting. If they can do that, the potentially lower cost of their approach could make it attractive for many applications.. By providing a larger area for gathering light, the technique would maximize the amount of energy produced from strong sunlight, as well as generate respectable power levels even in weak light. The amount of light entering the optical fiber could be increased by ...
A testing device for fiber optic system devices includes a fiber optic loop support that holds a single-mode optical fiber such that an empirically determined loss characteristic associated therewith is unvarying from use to use. In particular, an optical fiber forms a loop, and the loop is supported within a rigid slotted housing. The housing effectively precludes bending losses. Additionally, the housing is small and portable so that field testing may also be performed.
Fiberguide Industries will exhibit its line of large-core multimode optical fibers featuring hard plastic clad standard silica core fibers with a nume
Black Box ST-ST 62.5 125 OM1 Multimode Fiber Optic Cable, Yellow, 1m (FOCMR62-001M-STST-YL). Shop now and get specialized service for your organization.
A method and apparatus for the non-invasive sensing of the pressure within a pipe (or other vessel) is disclosed. An optical source produces a first light beam. This first light beam is split between a first (reference) and a second (measurement) optical fiber. The second optical fiber is associated with the pipe such that circumferential displacements in the pipe, due to changes in internal pressure, result in corresponding displacements in the length of the second optical fiber. Length changes in the optical fibers result in variations in the phase of the light emerging therefrom. The phase difference between the light beams emitted from the first and second optical fibers is then determined and related to changes in the internal pressure of the pipe.
This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann-Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). ...
Journal of Sensors is a peer-reviewed, Open Access journal that publishes original research and review articles related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices.
A new method to control the free spectral range (FSR) of a long-period fiber grating (LPFG) is proposed and theoretically analyzed. As the refractive index
A method for forming a grating in a photosensitive medium such as a photosensitive optical fiber. The method comprises impinging a pair of interfering, actinic beams onto the medium, and during the impinging step, advancing the illuminated portion of the interference pattern relative to the medium. The advancement is carried out without changing the phase, or registration, of the interference pattern. According to one embodiment of the invention, a grating having a spatially dependent period is produced by varying the wavelength or the intersection angle of the actinic beams during the advancement. According to a second embodiment of the invention, a grating having a spatially dependent refractive index perturbation is produced by varying the dose of actinic radiation received by the medium during the advancement.
A Fiber Bragg Grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all the others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength specific dielectric mirror. A Fiber Bragg Grating can therefore be used as an inline optical filter to block certain wavelengths, or as a wavelength-specific reflector. The primary application of Fiber Bragg Gratings is in optical communications systems: they are specifically used as notch filters and they are also used in optical multiplexers and demultiplexers with an optical circulator, or optical add-drop multiplexer (OADM). Fiber Bragg Gratings tuned on 2-3 μm region are also used as direct sensing elements for strain and temperature in instrumentation applications such as seismology and in pressure sensors for extremely harsh environments. To characterize FBGs, the high ...
Key Concepts Brief History of Optical Fiber Technology Multimode and Single-mode Fiber Basic Fiber Optic Link Concepts and Applications to the Computer Industry