Abstract Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE). The design of experiment (DOE) was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow ...
Boron Carbide Nanoparticles,Freestanding Gallium Nitride Substrate,Gallium Nitride Powder,Molybdenum Disulfide Nanoparticle,Nano Hydroxylapatie Powder,Silicon Carbide SIC Nanoparticles,Silicon Nitride Nanoparticles,Titanium Nitride Nanoparticles,Titanium Carbide Nanoparticles,Tungsten Carbide Nanoparticles,Zirconium Carbide Nanoparticles,Zirconium Boride Nanoparticles,Aluminium Nanoparticles,Bismuth Nanoparticles,Carbon Nanoparticles,Cobalt Nanoparticles,Copper Nanoparticles,Gold Nanoparticles,Graphite Nanoparticles,Iron Nanoparticles,Indium Nanoparticles,Molybdenum Nanoparticles,Nickel Nanoparticles,Silicon Nanoparticles,Silver Nanoparticles,Tin Nanoparticles,Titanium Nanoparticles,Tungsten Nanoparticles,Znic Nanoparticles,Nano Metal Oxide,ATO Nanoparticles,Alpha Aluminum Oxide,Gamma Aluminum Oxide,Nano CeO2,Nano CuO,Nano Cu2O,Nano Indium Oxide,Nano Indium Tin Oxide,Nano Lanthanum Oxide,Nano MgO,Nano Nickel Oxide,Hydrophobic Nano SiO2,Nano SiO2,Nano SnO2,Nano TiO2,Nano ZnO,Nano ZrO2 Copyright ...
Boron Carbide Nanoparticles,Freestanding Gallium Nitride Substrate,Gallium Nitride Powder,Molybdenum Disulfide Nanoparticle,Nano Hydroxylapatie Powder,Silicon Carbide SIC Nanoparticles,Silicon Nitride Nanoparticles,Titanium Nitride Nanoparticles,Titanium Carbide Nanoparticles,Tungsten Carbide Nanoparticles,Zirconium Carbide Nanoparticles,Zirconium Boride Nanoparticles,Aluminium Nanoparticles,Bismuth Nanoparticles,Carbon Nanoparticles,Cobalt Nanoparticles,Copper Nanoparticles,Gold Nanoparticles,Graphite Nanoparticles,Iron Nanoparticles,Indium Nanoparticles,Molybdenum Nanoparticles,Nickel Nanoparticles,Silicon Nanoparticles,Silver Nanoparticles,Tin Nanoparticles,Titanium Nanoparticles,Tungsten Nanoparticles,Znic Nanoparticles,Nano Metal Oxide,ATO Nanoparticles,Alpha Aluminum Oxide,Gamma Aluminum Oxide,Nano CeO2,Nano CuO,Nano Cu2O,Nano Indium Oxide,Nano Indium Tin Oxide,Nano Lanthanum Oxide,Nano MgO,Nano Nickel Oxide,Hydrophobic Nano SiO2,Nano SiO2,Nano SnO2,Nano TiO2,Nano ZnO,Nano ZrO2 Copyright ...
TY - JOUR. T1 - Solid Lipid Nanoparticles: A Potential Approach for Dermal Drug Delivery. AU - Kakadia, Partibha. AU - Conway, Barbara. PY - 2014. Y1 - 2014. N2 - Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. Due to their unique size dependent properties, lipid nanoparticles offer possibilities to develop new therapeutics. The ability to incorporate drugs into nanoparticles offers a new prototype in drug delivery thus realizing the dual goal of both controlled release and site-specific drug delivery. Drug delivery to the skin is widely used for local and systemic delivery and has potential to be improved by application of nanoparticulate formulations. If investigated appropriately, solid lipid nanoparticles may open new opportunities in therapy of complex diseases which is difficult to treat.. AB - Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. Due to their unique size dependent properties, lipid nanoparticles ...
TY - JOUR. T1 - Scalable manufacturing processes for solid lipid nanoparticles. AU - Anderluzzi, Giulia. AU - Lou Ramirez, Gustavo. AU - Su, Yang. AU - Perrie, Yvonne. PY - 2019/11/30. Y1 - 2019/11/30. N2 - Solid lipid nanoparticles offer a range of advantages as delivery systems, but they are limited by effective manufacturing processes. Within this study we outline a high-throughput and scalable manufacturing process for solid lipid nanoparticles. The solid lipid nanoparticles were formulated from a combination of Tristearin and 1,2-Distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate-2000 and manufactured using the M-110P Microfluidizer® processor (Microfluidics Inc, Westwood, Massachusetts, US). The manufacturing process was optimized in terms of the number of process cycles (1 to 5) and of process pressure change (20,000, 25,000 and 30,000 psi). The solid lipid nanoparticles were purified using tangential flow filtration, and they were characterized in terms of their ...
TY - JOUR. T1 - Alumina-pepsin hybrid nanoparticles with orientation-specific enzyme coupling. AU - Li, Ju. AU - Wang, Jianquan. AU - Gavalas, Vasilis G.. AU - Atwood, David A.. AU - Bachas, Leonidas G.. PY - 2003/1/1. Y1 - 2003/1/1. N2 - Hybrid alumina nanoparticles with pepsin were prepared in a controlled and efficient manner. Phosphorylated pepsin can be coupled to alumina through the interaction between phosphoserine on pepsin and the alumina surface in an orientation-specific manner. A comparison of data obtained with nanoparticles and microsized alumina particles reveals that the conjugated pepsin retained much higher enzymatic activity when it was immobilized on nanoparticles mainly because of the lack of diffusion limitations of the substrate. Additionally, upon attachment to the alumina nanoparticles, the thermal stability of pepsin is enhanced. The coupled enzyme can be quantitatively released by simply incubating the hybrid nanoparticles with phosphate buffer.. AB - Hybrid alumina ...
Lipid-polymer hybrid nanoparticles (LPHNPs) are next-generation core-shell nanostructures, conceptually derived from both liposome and polymeric nanoparticles (NPs), where a polymer core remains enveloped by a lipid layer. Although they have garnered significant interest, they remain not yet widely exploited or ubiquitous. Recently, a fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids. Owing to its two-in-one structure, this approach is of particular interest as a combinatorial drug delivery platform in oncology. In particular, the outer surface can be decorated in multifarious ways for active targeting of anticancer therapy, delivery of DNA or RNA materials, and use as a diagnostic imaging agent. This review will provide an update on recent key advancements in design, synthesis, and bioactivity evaluation as well as discussion of future clinical
Nanoparticles have been widely used in biological and biomedical fields. To achieve certain purpose, nanoparticles should be functionalized with diverse molecules through genetic or chemical modification. Therefore, we developed genetically functionalized nanoparticles for improved systems by simple construction. In chapter 1, we developed genetically functionalized ferritin nanoparticles for immunoassay and imaging. Ferritins are known as self-assembled protein nanoparticles, and we fused human IgG-specific repebody to N-terminal heavy-chain ferritin subunit to construct repebody-ferritin nanoparticles. The repebody-ferritin nanoparticles were shown to have a three-order of magnitude higher binding affinity toward human IgG than free repebody due to multivalency. Also, the dye-labeled repebody-ferritin nanoparticles were applied for immunoassay such as western blot, cell imaging and flow cytometry. As a result, the repebody-ferritin nanoparticles generated much stronger fluorescent signals than ...
OBJECTIVE Docetaxel (DTX) remains the only effective drug for prolonging survival and improving quality of life of metastatic castration-resistant prostate cancer (mCRPC) patients. Combination anticancer therapy encapsulating DTX and another extract of traditional Chinese medicine is one nano-sized drug delivery system promising to generate synergistic anticancer effects, to maximize the treatment effect, and to overcome multi-drug resistance. The purpose of this study is to construct lipid-polymer hybrid nanoparticles (LPNs) as nanomedicine for co-encapsulation of DTX and curcumin (CUR). METHODS DTX and CUR co-encapsulated LPNs (DTX-CUR-LPNs) were constructed. DTX-CUR-LPNs were evaluated in terms of particles size, zeta potential, drug encapsulation, and drug delivery. The cytotoxicity of the LPNs was evaluated on PC-3 human prostate carcinoma cells (PC3 cells) by MTT assays. In vivo anti-tumor effects were observed on the PC3 tumor xenografts in mice. RESULTS The particle size of DTX-CUR-LPNs was
Many prostate cancers relapse after initial chemotherapy treatment. Combining molecular and chemotherapy together with encapsulation of drugs in nanocarriers provides effective drug delivery and toxicity reduction. We developed core shell lipid-polymer hybrid nanoparticles (CSLPHNPs) with poly (lactic-co-glycolic acid) (PLGA) core and lipid layer containing docetaxel and clinically used inhibitor of sphingosine kinase 1 (SK1) FTY720 (fingolimod). We show for the first time that FTY720 (both free and in CSLPHNPs) re-sensitizes castrate resistant prostate cancer cells and tumors to docetaxel, allowing a four-fold reduction in effective dose. Our CSLPHNPs showed high serum stability and a long shelf life. CSLPHNPs demonstrated a steady uptake by tumor cells, sustained intracellular drug release and in vitro efficacy superior to free therapies. In a mouse model of human prostate cancer, CSLPHNPs showed excellent tumor targeting and significantly lower side effects compared to free drugs, importantly,
Background: Due to the rise in antimicrobial resistance and the challenges accompanied by conventional antibiotic dosage forms, there is a need for developing drug delivery systems that enhance, protect and potentiate the current antibiotics in the market. Furthermore, natural derivatives from plants have proven to be potent antimicrobial agents. Therefore, their combination with antibiotics could be effective in overcoming antimicrobial resistance. Aim: The aim of this study was to co-deliver vancomycin and 18β-glycyrrhetinic acid via pH-responsive lipid-polymer hybrid nanoparticles (VCM-GAPAH-LPHNPs) formulated from polyallylamine and oleic acid (OA) and to explore its potential for enhanced activity and targeted delivery. Methods: Molecular dynamics and stability studies were used to determine the stability of the oil and water phases independently as well as VCM-GAPAH-LPHNPs as a complex. VCM-GAPAH-LPHNPs were prepared using the micro-emulsion technique. The size, polydispersity index and ...
Page contains details about fluorescein isothiocyanate-loaded targeted lipid-polymer hybrid nanoparticles . It has composition images, properties, Characterization methods, synthesis, applications and reference articles : nano.nature.com
Page contains details about small interfering RNA against actin-loaded lipid-polymer hybrid nanoparticles . It has composition images, properties, Characterization methods, synthesis, applications and reference articles : nano.nature.com
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cost production of the core-shell nanoparticles. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy techniques were used to investigate the physicochemical characterizations. Importantly, the catalytic activity of [email protected] core-shell nanoparticles was probed to develop electrocatalyst in direct ethanol fuel cells (DEFCs). This electrocatalyst was applied to ethanol oxidation reaction for first time. Thus, the electrocatalytic activity of the [email protected] core-shell nanoparticles towards ethanol oxidation reaction has been investigated by cyclic voltammetry
TY - JOUR. T1 - Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry.. AU - Shmueli, Ron B.. AU - Bhise, Nupura S.. AU - Green, Jordan J.. PY - 2013. Y1 - 2013. N2 - Non-viral gene delivery using polymeric nanoparticles has emerged as an attractive approach for gene therapy to treat genetic diseases(1) and as a technology for regenerative medicine(2). Unlike viruses, which have significant safety issues, polymeric nanoparticles can be designed to be non-toxic, non-immunogenic, non-mutagenic, easier to synthesize, chemically versatile, capable of carrying larger nucleic acid cargo and biodegradable and/or environmentally responsive. Cationic polymers self-assemble with negatively charged DNA via electrostatic interaction to form complexes on the order of 100 nm that are commonly termed polymeric nanoparticles. Examples of biomaterials used to form nanoscale polycationic gene delivery nanoparticles include polylysine, ...
Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles DMSO dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles toluene dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 ...
A hybrid hydrogel including a hydrogel material and a plurality of first hybrid nanoparticles is provided. The plurality of first hybrid nanoparticles are conjugated to the hydrogel material, wherein each of the first hybrid nanoparticles includes a first positive-charged polysaccharide and a first negative-charged polysaccharide. The first positive-charged polysaccharide is located at an inner core of the first hybrid nanoparticles. The first negative-charged polysaccharide is located at an outer shell of the first hybrid nanoparticles and carries a plurality of first growth factors. The first negative-charged polysaccharide and the first positive-charged polysaccharide are electrostatically attracted to form the first hybrid nanoparticles. A method of fabricating the hybrid hydrogel is also provided.
The present invention is directed to cationic nanoparticles, methods to make them, and the use of compositions containing said nanoparticles in personal care compositions or formulations. The nanoparticles are useful in personal care applications and impart antimicrobial properties to home and personal care products containing them. These cationic nanoparticles also contribute useful conditioning properties to hair-care and skin-care products.
TY - JOUR. T1 - A new therapeutic modality for acute myocardial infarction. T2 - Nanoparticle-mediated delivery of pitavastatin induces cardioprotection from ischemia-reperfusion injury via activation of PI3K/Akt pathway and anti-inflammation in a rat model. AU - Nagaoka, Kazuhiro. AU - Matoba, Tetsuya. AU - Mao, Yajing. AU - Nakano, Yasuhiro. AU - Ikeda, Gentaro. AU - Egusa, Shizuka. AU - Tokutome, Masaki. AU - Nagahama, Ryoji. AU - Nakano, Kaku. AU - Sunagawa, Kenji. AU - Egashira, Kensuke. N1 - Publisher Copyright: © 2015 Nagaoka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.. PY - 2015/7/13. Y1 - 2015/7/13. N2 - Aim: There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI), for which the effectiveness of interventional reperfusion therapy is ...
The bimetallic core-shell nanoparticles show unique plasmonic properties and their preparations and characterizations are currently under investigation. A new type of Au core-Ag shell ([email protected]) nanoparticles is prepared by sandwiching the chemically attached Raman reporter molecules (RRMs) and a 12-base-long oligonucleotide between the 13 nm average size core-gold nanoparticles (AuNPs) and 9 nm and 21 nm average size of Ag shell. The synthesized [email protected] nanoparticles are tested for their surface-enhanced Raman scattering (SERS) performance. It is found that the chemical attachment of the oligonucleotides along with the RRM improved the enhancement in Raman scattering more than one order of the magnitude with the [email protected] nanoparticles with an average 9-nm shell thickness while the [email protected] nanoparticles with 21 nm average shell thickness have poor SERS activity. A minimum enhancement factor of 1.0 x 10(7) is estimated for the SERS active oligonucleotide-mediated [email protected] nanoparticles. The approach may ...
TY - JOUR. T1 - Interactions Between the Lipid Core and the Phospholipid Interface in Emulsions and Solid Lipid Nanoparticles. AU - Bricarello, Daniel A.. AU - Pan, Yuanjie. AU - Nitin, Nitin. PY - 2015/8/14. Y1 - 2015/8/14. N2 - This study evaluates interactions between the lipid core and the phospholipid interface in oil in water emulsions and solid lipid nanoparticles. Interactions between the core and the interface are characterized based on changes in structural order and lateral mobility of the phospholipid interface as a function of physical state of the lipid core (solid vs. liquid) and composition of phospholipids and bile salts at the interface. Changes in structural order of the lipid core are also evaluated as a function of composition of the interface. Emulsions (liquid core) and solid lipid nanoparticles (solid core) are formulated using an eicosane lipid core. Phospholipid with long carbon chain (C16)-high melting phospholipids (41 °C) and short carbon chain (C12)-low melting ...
Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.
TY - JOUR. T1 - Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells. AU - Baoum, Abdulgader. AU - Dhillon, Navneet. AU - Buch, Shilpa J. AU - Berkland, Cory. PY - 2010/1/1. Y1 - 2010/1/1. N2 - Biodegradable polymeric nanoparticles are currently being explored as a nonviral gene delivery system; however, many obstacles impede the translation of these nanomaterials. For example, nanoparticles delivered systemically are inherently prone to adsorbing serum proteins and agglomerating as a result of their large surface/volume ratio. What is desired is a simple procedure to prepare nanoparticles that may be delivered locally and exhibit minimal toxicity while improving entry into cells for effectively delivering DNA. The objective of this study was to optimize the formulation of poly(D,L-lactide-co-glycolide) (PLG) nanoparticles for gene delivery performance to a model of the pulmonary epithelium. Using a simple solvent diffusion technique, ...
Background: Accurate tumor localization is critical to performing laparoscopic colectomy which is lack of tactile sensation. The purpose of this study was to evaluate the feasibility and safety of using carbon nanoparticles to localize non-palpable tumor for laparoscopic colectomy, compared with intra-operative colonoscopy.. Methods: A prospective study was performed between July 2012 and September 2015. Inclusion criteria included T1-3 colon cancer, big adenoma or polyp unsuitable for endoscopic resection, multiple colorectal tumors, and cancer complete or partial response after neoadjuvant therapy. Exclusion criteria included T4 colon cancer, planned local excision, previous abdominal surgery, and emergency case with bleeding or obstruction or perforation. Sixty patients were enrolled in this study and divided into carbon nanoparticles group (30 cases) and intra-operative colonoscopy group (30 cases). One milliliter carbon nanoparticles suspension, which is approved by Chinese Food and Drug ...
Faceted colloidal nanoparticles are currently of immense interest due to their unique electronic, optical, and catalytic properties. However, continuous flow synthesis that enables rapid formation of faceted nanoparticles of single or multi-elemental composition is not trivial. We present a continuous flow synthesis route for the synthesis of uniformly sized Pd nanocubes and PdPt core-shell nanoparticles in a single-phase microfluidic reactor, which enables rapid formation of shaped nanoparticles with a reaction time of 3 min. The PdPt core-shell nanoparticles feature a dendritic, high surface area with the Pt shell covering the Pd core, as verified using high-resolution scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The Pd nanocubes and PdPt core-shell particles are catalytically tested during NO2 reduction in the presence of H2 in a flow pocket reactor. The Pd nanocubes exhibited low-temperature activity (i.e., <136 °C) and poor selectivity performance toward
TY - JOUR. T1 - Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. AU - Kumar, Swapnil. AU - Narayan, Reema. AU - Ahammed, Vasif. AU - Nayak, Yogendra. AU - Naha, Anup. AU - Nayak, Usha Y.. PY - 2018/4/1. Y1 - 2018/4/1. N2 - The aim of the present study was to develop and evaluate solid lipid nanoparticles (SLNs) of anti-HIV drug ritonavir to target intestinal lymphatic vessels and bioavailability enhancement by the oral route of administration. SLNs were prepared by solvent evaporation followed by ultrasonication using Compritol 888 and sodium lauryl sulfate using Box Behnken design. SLNs were characterized for particle size, zeta potential, entrapment efficiency, in vitro release and pharmacokinetic studies. The average particle size for the optimized formulations was well within 300 nm, and PDI (0.361) and zeta potential (−32.4 mV) were also found to be in acceptable ranges. The encapsulation efficiency ranged from 53.20 ± 4.13 to ...
Due to their high surface area and size-dependent properties, nanoparticles have seen use as biomedical devices in the past several decades. Magnetic nanoparticles are of particular interest as their properties allow for a variety of uses including separations, targeting, imaging, and therapy. The biological milieu is not a pristine environment, however. The complex medium presents many challenges for particle stability and reproducible performance. It even makes fundamental particle characterization more difficult. In this thesis, magnetic iron oxide nanoparticles are investigated as biomedical devices which provide diagnosis/imaging and therapy (theranostics). Innovative methods for characterizing these particles and observing their behavior over time in biologically relevant environments are also presented. Overall, this thesis aims to make the important point that magnetic nanoparticles are not stagnant objects but are in fact dynamic systems capable of vast changes upon exposure to in vitro ...
Nanoparticle size controls their ability to move through the body. Smaller nanoparticles move through the body without getting stuck in tight spaces. They also are easier for cells to swallow, which is important because nanoparticles need to release their medicine inside cells to work. Smaller nanoparticles can also let go of medicine faster.. It might seem like a good idea to make the smallest nanoparticles possible, but there is a size limit that cant be crossed. If the nanoparticles are too small, they will clump together. Clumpy nanoparticles are no longer small enough to work properly. Thats why its important to stay within a certain size range when designing nanoparticles.. While their small size allows nanoparticles to go anywhere in the body, they still have to find their target organs or cell types. Scientists can program nanoparticles to find cell types from different organs, systems, or even tumors because each type of cell has different proteins on its surface. This is the cells ...
TY - CHAP. T1 - Nanotoxicity of polymeric and solid lipid nanoparticles. AU - Prasad, Dev. AU - Chauhan, Harsh. PY - 2014/1/1. Y1 - 2014/1/1. N2 - Nanoparticles, as the name suggest, are the particles in a size ranging between 1 and 1000 nm. The utilization of nanoparticles, especially in the eld of medicine and pharmaceutical sciences, provides the exibility to alter fundamental physical properties of compounds such as solubility, diffusivity, half-life of drug in blood circulation, drug release characteristics, and immunogenicity. A drug can be dissolved, entrapped, encapsulated, or attached to a nanoparticle matrix [1-3]. Over the years, a number of nanoparticulate systems have been developed for the treatment and diagnosis of cancer, diabetes, pain, asthma, allergy, and infections among many other diseases and conditions [4,5]. Further, the discovery of new chemical entities for better treatment and control of a wide spectrum of diseases has necessitated the use of these carrier systems for ...
Nanoparticles are considered a primary vehicle for targeted therapies because they can pass biological barriers, enter and distribute in cells by energy-dependent pathways1-3. Until now, most studies have shown that nanoparticle properties, such as size4-6 and surface7,8, can affect how cells internalise nanoparticles. Here we show that the different phases of cell growth, which constitute the cell cycle, can also influence nanoparticle uptake. Although cells in different cell cycle phases internalised nanoparticles with similar rates, after 24 hours of uptake the concentration of nanoparticles in the cells is ranked according to the different cell cycle phases: G2/M , S , G0/G1. Nanoparticles were not exported from cells but the internalised nanoparticle concentration is split when the cell divides. Our results suggest that future studies on nanoparticle uptake should consider the cell cycle because in a cell population, the internalised nanoparticle dose in each cell varies as the cell cycles ...
Makefield Therapeutics Licenses Patent Rights Covering Its Hybrid Nanoparticle Delivery Platform From Albert Einstein College of Medicine
PCS and AFM analyses were carried out in order to characterize size and size distribution, surface properties, and shape of nanoparticles. The analyses showed that the produced nanoparticles have almost spherical shape, and they are formed with desirable surface morphology (they have very smooth surface). In addition, it was turned out that egg albumin nanoparticles had a mean size of less than 100 nm. The simple coacervation method was considered an appropriate method for the production of this type of nanoparticles. Therefore, egg albumin nanoparticles can be considered very good candidates to be used as drug and food nano-carriers ...
0153] In some embodiments, subject 2DG-functionalized polyoxalate nanoparticles exhibit differential metabolic uptake into a particular mammalian cell and/or tissue. In some embodiments, subject 2DG-functionalized polyoxalate nanoparticles exhibit differential metabolic uptake into a diseased mammalian fissile, e.g., subject 2DG-functionalized polyoxalate nanoparticles exhibit an at least about 1%, at least about 5%, at least about 10%, at least about 25%, at least about 50%, at least about 100% (or 2-fold), at least about 2.5-fold, at least about 5-fold, at least about 10-fold, at least about 15-fold, at least about 20-fold, at least about 50-fold, or at least about 100-fold, or more, greater metabolic uptake into the diseased tissue, compared to the metabolic uptake of the 2DG-functionalized polyoxalate nanoparticles into a non-diseased tissue, e.g., a non-diseased tissue of the same tissue type. For example, in some embodiments, subject 2DG-functionalized polyoxalate nanoparticles exhibit ...
Through a process of translocation across biological barriers, nanoparticles can reach and deposit in secondary target organs where they may induce adverse biological reactions. Therefore, a correct assessment of nanoparticle-induced adverse effects should take into account the different aspects of toxicokinetics and tissues that may be targeted by nanoparticles. For this reason, a comprehensive evaluation of renal nanotoxicity is urgently needed as kidneys are particularly susceptible to xenobiotics and renal excretion is an expected and possible elimination route of nanoparticles in living organisms. On one hand, summarizing the findings of in vitro and in vivo studies that have investigated the adverse effects of nanoparticles on the kidney, this review intends to provide a thorough insight into the nephrotoxicity of these substances. The evaluation of the in vitro studies revealed that different types of nanoparticles (carbon, metal and/or silica nanoparticles) are able to exert significant ...
TY - JOUR. T1 - Protein Nanoparticle Formation Using a Circularly Permuted α-Helix-Rich Trimeric Protein. AU - Kawakami, Norifumi. AU - Kondo, Hiroki. AU - Muramatsu, Masayuki. AU - Miyamoto, Kenji. PY - 2017/2/15. Y1 - 2017/2/15. N2 - We here report the production of highly spherical protein nanoparticles based on the domain-swapping oligomerization of a circularly permuted trimeric protein, major histocompatibility complex (MHC) class II associated chaperonin. The size distribution of the nanoparticles can be adjusted to between 40 and 100 nm in diameter, and thus, these particles are suitable as drug carriers following purification under basic conditions. Our approach involves no harsh treatments and could provide an alternative approach for protein nanoparticle formation.. AB - We here report the production of highly spherical protein nanoparticles based on the domain-swapping oligomerization of a circularly permuted trimeric protein, major histocompatibility complex (MHC) class II ...
The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation
The multi-kinase inhibitor sorafenib (tradename Nexavar®, Bayer) has been recently approved by the FDA for the treatment of non-resectable hepatocarcinoma and advanced renal carcinoma. Despite its proven survival benefit, sorafenib can lead to important side effects. The aim of this study is the development of a magnetic nanovector able to efficiently and selectively deliver sorafenib toward cancer lesions thanks to a physical guidance mediated by magnetic nanoparticles. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles (SLNs), extensively characterized and in vitro tested on the hepatocellular carcinoma cell line HepG2. Obtained results suggest the possibility to prepare stable SLNs able to destroy HepG2 cancer cells through sorafenib cytotoxic effect, and to enhance this effect in a desired area thanks to the magnetically-driven accumulation of the drug.
Nanoparticles made from poly(dl-lactide-co-glycolide) (PLGA) are used to deliver a wide range of bioactive molecules, due to their biocompatibility and biodegradability. This study investigates the surface modification of PLGA nanoparticles via the layer-by-layer (LbL) deposition of polyelectrolytes, and the effects of these coatings on the release behavior, cytotoxicity, hemolytic activity, and cellular uptake efficiency. PLGA nanoparticles are modified via LbL adsorption of two polyelectrolyte pairs: 1) poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) and 2) poly(L-lysine hydrobromide) (PLL) and dextran sulfate (DES). It is demonstrated that both PAH/PSS and PLL/DES coatings suppress the burst release usually observed for unmodified PLGA nanoparticles and that the release behavior can be adjusted by changing the layer numbers, layer materials, or by crosslinking the layer constituents. Neither bare nor polyelectrolyte-modified PLGA nanoparticles show any signs of ...
The health risk and cytotoxic effects of nanoparticles are almost unknown. Consequently, we have launched an interdisciplinary research program to systematically investigate the toxicity of nanoparticles. An initial observation prompted us to hypothesize that SiO2 nanoparticles can traverse the plasma membranes of cells through the endocytosis mechanism and thereby exert their cellular and cytotoxic effects on cells. To test this hypothesis, we investigated the effects of silicon dioxide nanoparticles on two human brain tumor cell lines (SK-N-SH, a neuroblastoma line and U87, an astrocytoma line) employing light microscopy, lactate dehydrogenase release into the culture medium (an indicator of cell damage and necrosis) and MTT assay (an indicator of cell survival). Our results indicate exposure to SiO2 nanoparticles led to cytotoxic damage (as indicated by LDH release) and decreases in cell survival (as determined by the MTT assay) in SK-N-SH and U87 cells in a dose-related manner, their effect being
TY - JOUR. T1 - Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. AU - Potta, Sriharsha Gupta. AU - Minemi, Sriharsha. AU - Nukala, Ravi Kumar. AU - Peinado, Chairmane. AU - Lamprou, Dimitrios A.. AU - Urquhart, Andrew. AU - Douroumis, D.. PY - 2010/12. Y1 - 2010/12. N2 - Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted by varying lipid compositions, drug initial loading and applied homogenization pressure. The processing temperatures were above the lipid melting points for all formulations. The empty and CyA loaded SLN particles made were characterized for particle size stability over six months. Atomic force microscopy (AFM) and photon correlation spectroscopy (PCS) showed particle sizes ranging from 112-177 nm for ...
PhD Project - Nanoparticle delivery of antibiotics for treatment of pulmonary infection at Queens University Belfast, listed on FindAPhD.com
We develop second-harmonic nanoparticles as the contrast agents for cell imaging. Second-harmonic nanoparticles show promise as cell imaging probes due to their non-bleaching, non-blinking, and coherent signal. Nanoparticles of noncentrosymmetric crystal structures have high second-harmonic generation (SHG) efficiency and provide high contrast in a generally non-structured cell environment. Here, we use barium titanate (BaTiO3) nanoparticles with tetragonal crystal structure as imaging probes. Cytotoxicity tests performed on BaTiO3 nanoparticles with mammalian cells did not result in toxic effects. Specifically we observed no change in the cell metabolism after 24 hours incubation of the cells with high concentration of BaTiO3 nanoparticles. We demonstrate two methods of cell labeling with BaTiO 3 nanoparticles for imaging. One is non-specific labeling via endocytosis of the cells, which results in a great number of the nanoparticles randomly distributed inside the cells. The other is specific ...
Water-soluble cupric oxide nanoparticles are fabricated via a quick-precipitation method and used as peroxidase mimetics for ultrasensitive detection of hydrogen peroxide and glucose. The water-soluble CuO nanoparticles show much higher catalytic activity than that of commercial CuO nanoparticles due to their higher affinity to hydrogen peroxide. In addition, the as-prepared CuO nanoparticles are stable over a wide range of pH and temperature. This excellent stability in the form of aqueous colloidal suspensions makes the application of the water-soluble CuO nanoparticles easier in aqueous systems. A colorimetric assay for hydrogen peroxide and glucose has been established based on the catalytic oxidation of phenol coupled with 4-amino-atipyrine by the action of hydrogen peroxide. This analytical platform not only confirms the intrinsic peroxidase-like activity of the water-soluble cupric oxide nanoparticles, but also shows its great potential applications in environmental chemistry, biotechnology and
Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features. Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult. One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized ...
Laser manipulation technique was applied to patterning of single nanoparticles onto a substrate one by one in solution at room temperature. Individual polymer nanoparticles were optically manipulated to the surface of glass substrate in ethylene glycol solution of acrylamide, N,N-methylenebis(acrylamide), and commercial radical photoinitiator. An ultra violet (UV) laser beam was focused to the nanoparticle, which led to generation of sub-μm sized acrylamide gel around the particle. The polymer nanoparticles were incorporated into the polymerized gel and fixed onto the substrate. A single gold nanoparticle was optically trapped and moved to the surface of the glass substrate in ethylene glycol. Additional irradiation of the UV laser light induced transient melting of the particle, resulting in its adhesion to the substrate. By the use of the present methods, arrangement of individual polymer and gold nanoparticles on any pattern was achieved ...
We have previously shown that gadolinium oxide (Gd2O3) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd2O3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd2O3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd2O3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ...
TY - CHAP. T1 - Engineering well-characterized PEG-coated nanoparticles for elucidating biological barriers to drug delivery. AU - Yang,Qi. AU - Lai,Samuel K.. PY - 2017. Y1 - 2017. N2 - Poly(ethylene glycol) (PEG) coatings can substantially reduce nanoparticle uptake and clearance by immune cells as well as nonspecific interactions with the biological environment, thus potentially improving nanoparticle circulation times and biodistribution in target tissues such as tumors. Naturally, the stealth properties of PEG coatings are critically dependent on the density and conformation of surface PEG chains. However, there are significant technical hurdles to both generating sufficiently dense PEG coatings on nanoparticles and precisely characterizing their PEG grafting densities. Here, we describe methods for preparing PEGylated polymeric nanoparticles with precisely tunable PEG coatings without the use of organic solvents, quantifying PEGylation efficiency and density using a standard fluorescence ...
1. Chertok B, Webber MJ, Succi MD. et al. Drug delivery interfaces in the 21st century: From science fiction ideas to viable technologies. Mol Pharm. 2013;10:3531-43 2. Hubbell JA, Langer R. Translating materials design to the clinic. Nat Mater. 2013;12:963-6 3. Hu C-MJ, Fang RH, Luk BT. et al. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale. 2013;6:65-75 4. Wicki A, Witzigmann D, Balasubramanian V. et al. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-157 5. Tan SW, Li X, Guo Y. et al. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale. 2013;5:860-72 6. Bamrungsap S, Zhao ZL, Chen T. et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7:1253-71 7. Al-Jamal WT, Kostarelos K. Liposomes: from aclinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. ...
The rise of antimicrobial resistance demands the development of more rapid screening methods for the detection of antimicrobial resistance in clinical samples to both give the patient the proper treatment and expedite the treatment of patients. Cerium oxide nanoparticles may serve a useful role in diagnostics due to their ability to exist in a mixed valence state and act as either oxidizing agents or reducing agents. Considering that cerium oxide nanoparticles have been shown to shift in absorbance upon oxidation, a useful method of antimicrobial resistance detection could be based on the oxidation of cerium oxide nanoparticles. Herein, an assay is described whereby cerium oxide nanoparticle oxidation is a function of glucose metabolism of bacterial samples in the presence of an antimicrobial agent. Cerium oxide nanoparticles were shown to have an absorbance in the range of 395nm upon oxidation by hydrogen peroxide whereas mixed valence cerium oxide nanoparticles lacked an absorbance around 395nm. In
Wet chemical precipitation route is developed for the synthesis of ZnO nanoparticles using a dipodal receptor as capping agent to control the size and shape of ZnO nanoparticles and also to passivate the surface defects. The capping of ZnO nanoparticles with dipodal receptor is characterized with NMR and IR spectroscopy. EDX analyses also confirmed the presence of organic receptors together with ZnO nanoparticles. The morphology and size of surface modified ZnO nanoparticles is checked by SEM, TEM and DLS spectroscopic techniques. The surface decorated ZnO nanoparticles demonstrate emission peak at 333 nm. The emission peak at 333 nm in case of surface capped ZnO demonstrate fewer surface defects present in comparison to their bulk counterpart, where blue, red, green, yellowish green emission peaks are present. The photophysical studies of ZnO nanoparticles are further carried in presence of metal ions where it is observed that the binding with Mn(II) result in increase in fluorescence ...
For subunit vaccines, adjuvants play a key role in shaping the magnitude, persistence and form of targeted antigen-specific immune response. Flagellin is a potent immune activator by bridging innate inflammatory responses and adaptive immunity and an adjuvant candidate for clinical application. Calcium phosphate nanoparticles are efficient carriers for different biomolecules like DNA, RNA, peptides and proteins. Flagellin-functionalized calcium phosphate nanoparticles were prepared and their immunostimulatory effect on the innate immune system, i.e. the cytokine production, was studied. They induced the production of the proinflammatory cytokines IL-8 (Caco-2 cells) and IL-1β (bone marrow-derived macrophages; BMDM) in vitro and IL-6 in vivo after intraperitoneal injection in mice. The immunostimulation was more pronounced than with free flagellin.
Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles DMSO dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles toluene dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 ...
Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles DMSO dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles toluene dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles water dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethanol dispersin, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles nmp dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles acetone dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles ethylene glycol dispersion, Molybdenum Dioxide MoO2 Nanopowder / Nanoparticles dmf dispersion, Molybdenum Dioxide MoO2 ...
Background: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial ...
Objective(s): This study considered the combination of chitosan nanoparticles with antioxidant-antibacterial fraction extracted from Lactobacillus casei and investigation of possible increasing of antibacterial activity of the fraction in hybrid nanoparticle and the effect of the fraction on the stability of chitosan nanoparticles. Methods: Extraction of Antioxidant antibacterial material from Lactobacillus casei supernatant was done by thin layer chromatography fractionation. For determination of antioxidant and antibacterial activity of fraction, DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and Minimum Inhibition Concentration (MIC) by micro-well dilution method was used, respectively. For chitosan nanoparticles (Cs NPs) formation, the ionic gelation method was used and the ratio of Tripolyphosphate pentasodium (TPP): chitosan was optimized. For Antioxidant fraction loaded chitosan nanoparticles, the fraction is physically incorporated into the chitosan nanoparticles. Particle morphology was monitored
TY - JOUR. T1 - Bisindole anchored mesoporous silica nanoparticles for cyanide sensing in aqueous media. AU - Kim, Hyun Jung. AU - Lee, Hyejin. AU - Lee, Ji Ha. AU - Choi, Dong Hoon. AU - Jung, Jong Hwa. AU - Kim, Jong Seung. PY - 2011/10/21. Y1 - 2011/10/21. N2 - For CN- recognition, a series of bisindolyl compounds 1-3 were prepared, and their chromodosimetric color changes toward anions were investigated. Nucleophilic addition of the cyanide ion to the meso position of the bisindolyl group gave rise to breaking of the double bond conjugation, thereby inducing spectroscopic changes in the compound. Mesoporous silica nanoparticles 3 also gave color changes from deep orange to yellow in response to the cyanide ion.. AB - For CN- recognition, a series of bisindolyl compounds 1-3 were prepared, and their chromodosimetric color changes toward anions were investigated. Nucleophilic addition of the cyanide ion to the meso position of the bisindolyl group gave rise to breaking of the double bond ...
In a paper published in ACS Nano in November 2013, researchers from MCN, The Australian Synchrotron, CSIRO, RMIT and Monash University showcased ground-breaking characterisation techniques which were used to enable research into the human immune response to zinc oxide nanoparticles.. Zinc oxide nanoparticles are used in many consumer products such as sunscreen since they are largely insoluble in water and invisible to the eye, unlike larger white zinc particles which remain white on the skin. However, the behaviour of zinc oxide nanoparticles in biological systems is not well understood. This led the team of researchers to delve into what happens to these nanoparticles after they are absorbed into our skin.. The research team used x-ray fluorescence to image immune cells which had been treated with zinc oxide nanoparticles. Using the world-class Maia x-ray fluorescence detector at the Australian Synchrotron, the researchers were able to count how many of these tiny particles had been absorbed ...
ZnO nanoparticles and ZnO encapsulated with polyethylene glycol (PEG) was synthesized using zinc acetate as a precursor at low temperature and characterized by different techniques. The influence of the types of solvent, synthesis parameters, and PEG encapsulation on the crystallization, the surface morphology, and the luminescent properties of ZnO nanoparticles prepared by the sol-gel process were investigated. The influence of different addition molar masses of the PEG during the synthesis on the ZnO emission peaks was systematically monitored. The crystallinity, the surface morphology, and the photoluminescence (PL) properties of ZnO depended highly on the synthesis process and PEG encapsulation. X-ray diffraction (XRD) spectra of ZnO nanoparticles show that all the peaks corresponding to the various planes of wurtzite ZnO indicate the formation of a single phase. The absorption edges of these ZnO nanoparticles are shifted by additions of the PEG polymer. The photoluminescence (PL) ...
SEE PDF Full Length Article Writers: M.H.M.T. Assumpção; A. Moraes; R.F.B. De Souza; M.L. Calegaro; M.R.V. Lanza; E.R. Leite; M.A.L. Cordeiro; P. Hammer; M.C. Santos. Keywords: Oxygen reduction reaction; Electrogeneration of hydrogen peroxide; Cerium oxide nanoparticles. Abstract: This work describes the influence of the preparation method and the carbon support using a low content of cerium oxide nanoparticles (CeO2/C 4%) on H2O2 electrogeneration via the oxygen reduction reaction (ORR). For this purpose, the polymeric precursor (PPM) and sol-gel (SGM) methods with Vulcan XC 72R (V) and Printex L6 (P) supports were employed. The materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XRD analysis identified two phases comprising CeO2 and CeO2−x. The smallest mean crystallite size was exhibited for the 4% CeO2/C_PPM_P material, which was estimated using the Debye-Scherrer equation to be 6 nm and 4 nm for ...
In order to improve drug entrapment efficiency and loading capacity, nanostructured lipid carriers consisting of solid lipid and liquid lipid as a new type of colloidal drug delivery system were prepared. The dispersions of oridonin-loaded solid lipid nanoparticles and nanostructured lipid carriers were successfully prepared by the emulsion-evaporation and low temperature-solidification technique using monostearin as the solid lipid, caprylic/capric triglycerides as the liquid lipid and oridonin as the model drug. Their physicochemical properties of oridonin-loaded nanostructured lipid carriers and release behaviours were investigated and compared with those of solid lipid nanoparticles. As a result, the mean particle size was similar to 200 nm with narrow polydispersity index lower than 0.4 for all developed formulations. Zeta potential values were in the range -35 mV similar to -50 mV, providing good physical stability of all formulations. The differential scanning calorimetry and X-ray ...
TY - PAT. T1 - Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming. AU - Li, Lidong. AU - Anjum, Dalaver H.. AU - Zhou, Lu. AU - Laveille, Paco. AU - Basset, Jean-Marie. N1 - KAUST Repository Item: Exported on 2019-02-13. PY - 2015/6/25. Y1 - 2015/6/25. N2 - Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.. AB - Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.. UR - ...
TY - JOUR. T1 - Antibacterial effects of chitosan/cationic peptide nanoparticles. AU - Tamara, Frans Ricardo. AU - Lin, Chi. AU - Mi, Fwu Long. AU - Ho, Yi Cheng. N1 - Funding Information: Acknowledgments: The authors gratefully acknowledge the financial support provided by the by the Ministry of Science and Technology, Taiwan, ROC (MOST 104-2320-B-415-004), Taiwan, Republic of China.. PY - 2018/2/5. Y1 - 2018/2/5. N2 - This study attempted to develop chitosan-based nanoparticles with increased stability and antibacterial activity. The chitosan/protamine hybrid nanoparticles were formed based on an ionic gelation method by mixing chitosan with protamine and subsequently cross-linking the mixtures with sodium tripolyphosphate (TPP). The effects of protamine on the chemical structures, physical properties, and antibacterial activities of the hybrid nanoparticles were investigated. The antibacterial experiments demonstrated that the addition of protamine (125 µg/mL) in the hybrid nanoparticles ...
David Warther, Chiara Mauriello-Jimenez, Laurence Raehm, Corine Gerardin, Jean-Olivier Durand, et al.. Small sized mesoporous silica nanoparticles functionalized with mannose for retinoblastoma cell imaging. RSC Advances, Royal Society of Chemistry, 2014, pp.37171-37179. ⟨10.1039/c4ra05310a⟩. ⟨hal-01068017⟩ ...
Rapid and sensitive detection of thrombin has very important significance in clinical diagnosis. In this work, bare magnetic iron oxide nanoparticles (magnetic nanoparticles) without any modification were used as fluorescence quenchers. In the absence of thrombin, a fluorescent dye (CY3) labeled thrombin aptamer (named CY3-aptamer) was adsorbed on the surface of magnetic nanoparticles through interaction between a phosphate backbone of the CY3-aptamer and hydroxyl groups on the bare magnetic nanoparticles in binding solution, leading to fluorescence quenching. Once thrombin was introduced, the CY3-aptamer formed a G-quartet structure and combined with thrombin, which resulted in the CY3-aptamer being separated from the magnetic nanoparticles and restoration of fluorescence. This proposed assay took advantage of binding affinity between the CY3-aptamer and thrombin for specificity, and bare magnetic nanoparticles for fluorescence quenching. The fluorescence signal had a good linear relationship ...
Nanoparticle-based systems can alleviate systemic toxicity via surface functionalization to promote tissue-specific targeting as well as passive targeting abilities [1], such as the enhanced permeation and retention effect (EPR) [2]. The transport of nanoparticles is limited in hypoxic tumor regions due to the typically impaired tumor vasculature. To enhance diffusion of nanotherapeutics within tumor tissue; functionalized citrate gold nanoparticles and silica gold nanoshells with surface modifications of phosphatidylcholine (PC) and high density lipoprotein (HDL) were synthesized. 3D cell cultures were used as a representative model of portions of hypoxic tissue in liver, lung, and pancreatic solid tumors. Our results indicate that two layered silica gold nanoshells (surface modifications of -thiol and PC) permit enhanced accumulate compared to PEGylated nanoparticles. The addition of HDL for the smaller, citrate gold nanoparticles as a third external layer provided enriched accumulation compared to
Gold nanoparticles with sizes around 2 nm and below are being studied extensively because they exhibit novel electronic, magnetic, optical and catalytic properties. We are investigating the formation of Au-55 types of gold nanoparticles through a reduction reaction at a liquid-liquid interface. Diffuse X-ray scattering and reflectivity techniques [1] allow us to monitor the formation of gold nanoparticles at liquid-liquid interface. These techniques also provide information regarding the out-of-plane and in-plane structure of the gold nanoparticles at liquid surface and liquid-liquid interface.. In situ X-ray scattering measurements were carried out at beamline ID10B during the formation of gold nanoparticles at a toluene-water interface. The reduction reaction [2] uses an organic precursor of gold kept in the toluene layer and a reducing agent kept in the slightly alkaline water layer. As the reaction occurs through the creation of fingers from one liquid to another, the size (1 nm diameter) of ...
Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery ...
0101] 1. A coated article comprising a substrate surface, a nanoparticle-containing primer disposed on the substrate surface, and a silicone-based material bonded to the nanoparticle-containing primer, wherein the nanoparticle-containing primer comprises agglomerates of silica nanoparticles, said agglomerates comprising a three-dimensional porous network of silica nanoparticles, and the silica nanoparticles being bonded to adjacent silica nanoparticles. 2. The coated article of embodiment 1, wherein the silica nanoparticles are spherical and have an average particle diameter of less than 40 nanometers. 3. The coated article of embodiment 1, wherein the silica nanoparticles are spherical and have an average particle diameter of less than 20 nanometers. 4. The coated article of embodiment 1, wherein the silica nanoparticles are spherical and have an average particle diameter of less than 10 nanometers. 5. The coated article of any one of embodiments 1 through 4, wherein the substrate surface ...
As more and more oral formulations of nanoparticles are used in clinical contexts, a comprehensive study on the mechanisms of interaction between polymer nanoparticles and live cells seems merited. Such a study was conducted and the results were compared to the polymer itself in order to demonstrate different kinds of effects that are brought into the cell by polymer and its nanoparticles, especially the effects on the biomembrane. Several techniques, including surface plasmon resonance (SPR), Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, fluorescence polarization spectroscopy (FP), flow cytometry (FCM) with quantitative analysis, and confocal images with antibody staining were employed toward this end. The cytotoxicity in vitro was also evaluated. Chitosan (CS), a polycationic polymer, was used to prepare the nanoparticles. We demonstrate that chitosan nanoparticles (CS-NP) induce strong alterations in the distribution of membrane proteins, fluidity of membrane lipids, ...
A one-step method to prepare core-shell nanoparticles and thus hollow nanospheres is reported. The process for the formation of core and shell took place during reaction. Once the core formed, it was covered with the shell substance produced in situ, and thus, the shell hindered the continued growth of the core. Based on this method, we readily obtained core-shell nanoparticles by choosing AgCl, CuS, or Fe(III) diethyldithiocarbamate (FeDEC)3 as model core substances and the cogel from gelatin and gum arabic as the shell substance. High-resolution transmission electron microscopy (HRTEM) directly revealed the core-shell structure. TEM results showed the average particle sizes were under 100 nm, depending on the core substance and the concentration of substances producing cores. After removal of the core materials, hollow nanospheres resulted, which were directly observed by TEM. The observation further verified the core-shell structure. UV spectrophotometry also gave signals of coated structure ...
The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF,
Polyfluorenes with pendant alkoxysilyl groups have been used to prepare inorganic-organic composite nanoparticles (diameter = 80-220 nm) in which the conjugated polymer is dispersed within a silica matrix. Preparation of these nanoparticles is achieved by simultaneous nanoprecipitation of the conjugated polymer and hydrolysis/crosslinking of the alkoxysilyl groups under basic conditions. The composition of the nanocomposites is controlled by addition of an alkoxysilane monomer, tetramethylorthosilicate. The hybrid nanoparticles form highly stable dispersions in water and buffer (pH 9.2). The size of the nanoparticles can be tuned by varying the amount of the alkoxysilane monomer added during the nanoprecipitation process. Increasing the relative amount of alkoxysilane monomer also increases the proportion of polyfluorene chains that adopt the higher energy β-phase conformation within the resultant nanoparticles. Nanoparticles with the highest silica content were found to have increased ...
   Nanotechnology researchers have identified a wide range of nanoparticle applications that may have an important role in medicine and treatment of diseases. Due to lack of detailed documentation about the toxicology of zinc oxide (ZnO) nanoparticles, this study was aimed to evaluate the absorption of ZnO nanoparticles in hearts of female NMRI mice. Overall, 20 adult NMRI female mice were studied in experimental and control groups. ZnO nanoparticles with concentration of 100 and 300 mg/kg were administered in the drinking water for 28 days and the mice were dissected after 28 days. Then, the heart tissues were isolated and dissolved in acid and the amount of ZnO deposited into the heart tissue was measured by atomic absorption spectrophotometer. ZnO nanoparticles treatment groups were significantly influenced by the nanoparticles compared with the control group. The experimental group 1 and 2 had a significant increase in ZnO NPs absorption in heart tissue compared to the control group (P|0.01).
Cadmium Sulphide (CdS) nanoparticles were prepared using microemulsion method using cadmium chloride as cadmium source and sodium sulphide as sulphur source. The obtained nanoparticles structures were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) whereas optical characterization was done by Ultra Violet-Visible absorption. XRD result shows that CdS nanoparticles of hexagonal phase are formed. The TEM result indicates that the synthesized CdS nanoparticles are of variable morphology like spherical, cylindrical, nanorods and nanoneedles. Histograms help to evaluate size and aspect ratio of nanoparticles. UV-Visible spectroscopy reveals that as prepared CdS nanoparticles show a quantum confinement effect with shift in band gap. It is also found that water to surfactant molar ratio (wo) and co-surfactant are vital factors in the morphology and optical properties of CdS nanoparticles.
The burden of life on the earth is the source of biological contamination in water. Nanotechnology has promising contributions in control of microbial contaminations and medicinal plants further increase these properties. Presently, copper acetate and nickel oxide nanoparticles were synthesized using 1mM solution of each with Ziziphus mauritiana leaves extract as reducing agent. Nanoparticles were characterized through UV vis-spectroscopy and scanning electron microscope and antimicrobial properties were determined through disc diffusion method. Copper and nickel nanoparticles were adsorbed on filter paper strips and used in biological water purification. The pre and post treatment viable bacterial count of water was analyzed statistically. Absorbance peaks of copper acetate nanoparticles were recorded at 650nm while for nickel oxide nanoparticles at 250nm. The particles size of copper acetate nanoparticles through SEM was calculated up-to 47.90nm while 48.40 nm nickel oxide nanoparticles at resolution
Squaraine dyes, that exhibit intense absorption in the red/near infrared region, have been successfully introduced into mesoporous silica nanoparticles (MSNs) to obtain a nanoplatform for photodynamic therapy. Three brominated squaraine dyes which exhibited good PS performance in solution but a different behaviour
In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.
TY - JOUR. T1 - Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. AU - Guryev, Evgenii L.. AU - Volodina, Natalia O.. AU - Shilyagina, Natalia Y.. AU - Gudkov, Sergey V.. AU - Balalaeva, Irina V.. AU - Volovetskiy, Arthur B.. AU - Lyubeshkin, Alexander V.. AU - Sen, Alexey V.. AU - Ermilov, Sergey A.. AU - Vodeneev, Vladimir A.. AU - Petrov, Rem V.. AU - Zvyagin, Andrei V.. AU - Alferov, Zhores I.. AU - Deyev, Sergey M.. PY - 2018/9/25. Y1 - 2018/9/25. N2 - We report combined therapy using upconversion nanoparticles (UCNP) coupled to two therapeutic agents: beta-emitting radionuclide yttrium-90 (90Y) fractionally substituting yttrium in UCNP, and a fragment of the exotoxin A derived from Pseudomonas aeruginosa genetically fused with a targeting designed ankyrin repeat protein (DARPin) specific to HER2 receptors. The resultant hybrid complex UCNP-R-T was tested using human breast adenocarcinoma cells SK-BR-3 ...
Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg-1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep ...
Mesoporous silica nanoparticles in biomedical applications, (Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink), Chem. Soc. Rev. 2012, 41, 2590-2605. ...
Background: This study investigated the potential effects of Titanium dioxide nanoparticles (Tio2NPs) followed by maternal gavage on fetal development
Title:Study of Time-dependent Interaction of ZnO Nanoparticles with Sucrose and Honey Molecules for Biomedical Applications. VOLUME: 4 ISSUE: 3. Author(s):Pijus Kanti Samanta *, Tapanendu Kamilya and Dhrubajyoti Pahari. Affiliation:Department of Physics (PG & UG), Prabhat Kumar College, Contai-721404, West Bengal, Department of Physics, Narajole Raj College, Narajole-721211, West Bengal, Department of Zoology, Prabhat Kumar College, Contai-721404, West Bengal. Keywords:ZnO, nanoparticles, sucrose, absorption, corona, conjugation.. Abstract:. Background: Nanoparticles are in the forefront of research due to their unique properties that find possible applications from optoelectronics to medical technology. It is also reported that nanoparticles can interact with the living cells and can selectively destroy the cells. Researchers are thus interested to find a way by which the drugs will be attached to the nanoparticles, go to the target site and destroy the infected cells. Before that, it is very ...
Researchers from UT Southwestern Medical Center have developed a first-of-its-kind nanoparticle vaccine immunotherapy that targets several different cancer types.. The nanovaccine consists of tumor antigens - tumor proteins that can be recognized by the immune system - inside a synthetic polymer nanoparticle. Nanoparticle vaccines deliver minuscule particulates that stimulate the immune system to mount an immune response. The goal is to help peoples own bodies fight cancer.. What is unique about our design is the simplicity of the single-polymer composition that can precisely deliver tumor antigens to immune cells while stimulating innate immunity. These actions result in safe and robust production of tumor-specific T cells that kill cancer cells, said Dr. Jinming Gao, a Professor of Pharmacology and Otolaryngology in UT Southwesterns Harold C. Simmons Comprehensive Cancer Center.. A study outlining this research, published online in Nature Nanotechnology, reported that the nanovaccine had ...
Both aerobic and anaerobic membrane bioreactors (MBRs) are able to remove contaminants of emerging concern from wastewater at high efficiencies. However, the main bottleneck of this technology is membrane biofouling. Coating heavy metal nanoparticles on the surface of membrane has been proposed as an effective antifouling strategy. Nevertheless, metal nanoparticles can potentially result in detrimental impact on the overall functionality of the MBRs. This book chapter aims to understand how nanoparticles impact MBRs. To achieve this aim, the chapter starts off by illustrating the antibacterial mechanisms of nanoparticles. The chapter then critically reviews past studies that illustrate the antibacterial effect of nanoparticles against pure bacterial cultures and biofilm-associated populations. Finally, the chapter evaluates if the presence of nanoparticles would affect the overall performance of aerobic and anaerobic biological processes. Specifically, the impact of heavy metal nanoparticles on ...
In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1) as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions. Â Physicochemical properties such as water absorption capacity (WAC), water vapor permeability (WVP) and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in
Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.
The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing
This thesis consists of three parts, which revolve around the fabrication of multifunctional glyconanomaterials (cellulose nanocrystals, chitin nanocrystals, mesoporous silica nanoparticles) and the development of their applications in biorecognition and nanomedicine.. Part one presents a detailed introduction to glyconanomaterials, focusing on cellulose nanocrystals, chitin nanocrystals and mesoporous silica nanoparticles, including their general preparations, properties and applications.. Part two demonstrates dually modified cellulose and chitin nanocrystals. They are prepared by TEMPO-mediated oxidation, followed by conjugation with a fluorescent dye and carbohydrate ligands. The two functional nanocrystals are applied in carbohydrate-lectin recognition and bacterial imaging as new types of glyconanomaterials.. Part three describes two types of drug delivery systems based on carbohydrate- conjugated mesoporous silica nanoparticles: the first type is a trehalose- functionalized nanoparticle ...
Background and Aims: Drug resistance, particularly methicillin resistant in Staphylococcus aureus strain is a major worldwide public health concern. The present study aimed to synthetize selenium nanoparticles, investigate its antibacterial effect and its ability to be used as ampicillin nanocarrier. Materials and Methods: Selenium nanoparticles were synthetized via chemical regeneration of ...
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size |200 nm and encapsulation efficiency |80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate |6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite
In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane water content was decreased by an increase of nanoparticle concentration. Ion exchange capacity was also improved initially by an increase of nanoparticle content ratio and then slightly decreased. The membrane fixed ionic concentration, membrane potential, transport number and permselectivity were all increased by an increase of additive loading ratio. The membrane ionic permeability was enhanced initially by an increase of nanoparticle concentration up to 0.5 %wt in the membrane matrix and then decreased by more additive content ratio from 0.5 to 4 %wt. Membrane ionic resistance was declined by using TiO2
Americas Gold Nanoparticles Market Analysis by Type (nanorods, nanoshells , nanocages) by Application (photodynamic therapy, diagnostics, medical imaging), by End-users (Hospitals, Clinics, Dental clinics) Global Industry Analysis, Size, Share, Growth, Trends, and - Forecast to 2027. Market Synopsis of Gold nanoparticles Market Scenario. The market for Gold nanoparticles is increasing rapidly due to increasing advancement in nanotechnologies. The factors that influence the growth of Gold nanoparticles market; expanding medical diagnostics industry, increasing growth in advance healthcare technology, high advantages in medicinal imaging applications and many others. As per the American Nano Society, nanotechnology is a field of science which manages the investigation of nano size. In medical field, gold nanoparticles, titanium dioxide, zinc oxide, and calcium phosphate are significantly used nanoparticles. These particles all things considered represented a piece of the overall industry of more ...