TY - JOUR. T1 - Intracellular insulin-responsive glucose transporter (GLUT4) distribution but not insulin-stimulated GLUT4 exocytosis and recycling are microtubule dependent. AU - Shigematsu, Satoshi. AU - Khan, Ahmir H.. AU - Kanzaki, Makoto. AU - Pessin, Jeffrey E.. PY - 2002. Y1 - 2002. N2 - To investigate the potential role of microtubules in the regulation of insulin-responsive glucose transporter (GLUT4) trafficking in adipocytes, we examined the effects of microtubule depolymerizing and stabilizing agents. In contrast to previous reports, disruption or stabilization of microtubule structures had no significant effect on insulin-stimulated GLUT4 translocation. However, consistent with a more recent study (Molero, J. C., J. P. Whitehead, T. Meerloo, and D. E. James, 2001, J Biol Chem 276:43829-43835) nocodazole did inhibit glucose uptake through a direct interaction with the transporter itself independent of the translocation process. In addition, the initial rate of GLUT4 endocytosis was ...
The effect of insulinopenic diabetes on the expression of glucose transporters in the small intestine was investigated. Enterocytes were sequentially isolated from jejunum and ileum of normal fed rats, streptozotocin-diabetic rats, and diabetic rats treated with insulin. Facilitative glucose transporter (GLUT) 2, GLUT5, and sodium-dependent glucose transporter 1 protein content was increased from 1.5- to 6-fold in enterocytes isolated from diabetic animals in both jejunum and ileum. Insulin was able to reverse the increase in transporter protein expression seen after induction of diabetes. There was a four- to eightfold increase in the amount of enterocyte glucose transporter mRNA after diabetes with greater changes in sodium-dependent glucose transporter 1 and GLUT2 than in GLUT5 levels. In situ hybridization showed that after the induction of diabetes there was new hybridization in lower villus and crypt enterocytes that was reversed by insulin treatment. Thus, the increase in total hexose ...
Buy our Human Glucose Transporter GLUT4 peptide. Ab34088 is a blocking peptide for ab33780 and has been validated in BL. Abcam provides free protocols, tips…
There are no specific protocols for Recombinant Human Glucose Transporter GLUT4 protein (ab114176). Please download our general protocols booklet
It has been postulated that a glucose transporter of beta cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, we subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated beta-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia (glucose at 29 +/- 5 mg/dl), GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days (blood glucose at 57 +/- 7 mg/dl vs. 120 +/- 10 mg/dl in saline-infused control rats), GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively (P = 0.001). After 12 days (glucose at 54 +/- 8 mg/dl), GLUT-2 mRNA signal density was undetectable whereas proinsulin mRNA was reduced by 51%. After 12 days of hypoglycemia, the Km for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a ...
Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed
Insulin stimulates glucose transport in isolated fat cells by activation of glucose transporters in the plasma membranes and through translocation of the glucose transporter sub-types GLUT4 (insulin-regulatable) and GLUT1 (HepG2 transporter). The protein kinase C-stimulating phorbol ester phorbol 12-myristate 13-acetate (PMA) is able to mimic partially the effect of insulin on glucose transport, apparently through stimulation of carrier translocation. In order to ascertain whether protein kinase C is involved in the translocation signal to both carrier sub-types, we determined the effect of PMA on the subcellular distribution of GLUT1 and GLUT4 by immunoblotting with specific antibodies directed against these transporters. Isolated rat fat cells (4 x 10(6) cells/ml) were stimulated for 20 min with insulin (6 nM) or PMA (1 nM). 3-O-Methylglucose transport was determined and plasma membranes and low-density microsomes were prepared for Western blotting. 3-O-Methylglucose transport was stimulated ...
Articular cartilage is an avascular connective tissue in which the availability of oxygen and glucose is significantly lower than synovial fluid and plasma. Glucose is an important metabolic fuel and structural precursor that plays a key role in the synthesis of extracellular matrix macromolecules in articular cartilage. However, glucose concentrations in cartilage can fluctuate depending on age, physical activity and endocrine status. Chondrocytes are glycolytic cells and must be able to sense the quantities of oxygen and glucose available to them in the extracellular matrix and respond appropriately by adjusting cellular metabolism. Consequently chondrocytes must have the capacity to survive in an extracellular matrix with limited nutrients and low oxygen tensions. The molecular mechanisms responsible for allowing chondrocytes to adapt to these harsh environmental conditions are poorly understood. In this article we present a novel dual model of oxygen and glucose sensing in chondrocytes ...
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated
We demonstrated the specificity of the GLUT4 antagonist, indinavir, in cultured cells and observed that inhibition of GLUT4 in endothelium-denuded mouse aortas reduced basal glucose uptake by approximately half, supporting the conclusion that GLUT4 is a major glucose transporter that participates in basal, as well as in insulin-stimulated, glucose uptake in VSMCs in vivo. We also found that GLUT4 and other glucose transporters specifically and differentially contribute to VSMC contraction. Moreover, this differential contribution to contraction varies depending on the contractile agonist. We also observed that GLUT4 expression in vessels from hypertensive animals was diminished, and that indinavir caused a less profound attenuation of maximal 5-HT-mediated contraction in these vessels. We have found that chronic knockout of the GLUT4 gene results in augmented arterial reactivity to the same agonists that elicited attenuated reactivity in response to indinavir. Similar increases in reactivity ...
PI3-kinase signal transduction in diabetes and cancer; molecular mechanisms of cancer cell metastasis and radiation/chemotherapy resistance; tumor suppressor genes with emphasis on NHERF scaffold proteins; transgenic mouse models Current studies in our lab focus on: -Identification of molecular signals targeting the activity and surface expression of insulin-sensitive glucose transport proteins (phosphorylation, ubiquitination, endosomal recycling) -Functional characterization and localization of facilitative glucose transporter GLUT12 in tumor cells -Role of nutrient (glucose) uptake in decreased sensitivity to radiation and chemotherapy: contribution of glucose transporters to radiation survival, glucose transporter expression levels as a predictive marker of radioresistance -Significance of NHERF/Akt/SGK interaction in cancer cell growth and metastasis -Generation of transgenic mouse ...
250 µCi quantities of 2-[14C(U)]-Deoxy-D-Glucose (300-350mCi/mmol) are available for your research. Application of [14C]Deoxy-D-Glucose can be found in: glucose transporter isoform GLUT4 gene regulation and mechanisms in insulin resistance, selectively suppressing the quinolinic acid-induced enhancement of anaerobic glycolysis in glial cells, stimulatory effect of d-ephedrine on ß3-adrenoceptors in adipose tissue of rats, glucose utilization in the brain during acute seizure as a useful biomarker for the evaluation of anticonvulsants, etc. ...
250 µCi quantities of 2-[14C(U)]-Deoxy-D-Glucose (300-350mCi/mmol) are available for your research. Application of [14C]Deoxy-D-Glucose can be found in: glucose transporter isoform GLUT4 gene regulation and mechanisms in insulin resistance, selectively suppressing the quinolinic acid-induced enhancement of anaerobic glycolysis in glial cells, stimulatory effect of d-ephedrine on ß3-adrenoceptors in adipose tissue of rats, glucose utilization in the brain during acute seizure as a useful biomarker for the evaluation of anticonvulsants, etc. ...
We used transtrophectodermal 3-O- methyl glucose flux studies and also polyclonal antibodies raised against either the human erythrocyte glucose transport protein or an artificial peptide homologous to the rat brain glucose transporter C-terminus to characterize and localize the glucose transporter system in the rabbit embryon.
TY - JOUR. T1 - Immunoelectron microscopic demonstration of insulin-stimulated translocation of glucose transporters to the plasma membrane of isolated rat adipocytes and masking of the carboxyl-terminal epitope of intracellular GLUT4. AU - Smith, Robert M.. AU - Charron, Maureen J.. AU - Shah, Neelima. AU - Lodish, Harvey F.. AU - Jarett, Leonard. PY - 1991/8/1. Y1 - 1991/8/1. N2 - Polyclonal antibodies to the amino- or carboxyl-terminal peptide sequences of the GLUT4 transporter protein were used in immunoelectron microscopic studies to demonstrate the location and insulin-induced translocation of GLUT4 in intact isolated rat adipocytes. Labeling of untreated adipocytes with the amino-terminal antibody revealed 95% of GLUT4 was intracellular, associated with plasma membrane invaginations or vesicles contiguous with or within 75 nm of the cell membrane. Insulin treatment increased plasma membrane labeling ≈13-fold, to 52% of the total transporters, and decreased intracellular labeling ...
Complementary DNA encoding a facilitative glucose transporter was isolated from a human hepatoma cell line (HepG2) cDNA library and subcloned into a metal-inducible mammalian expression vector, pLEN (California Biotechnology) containing human metallothionein gene II promoter sequences. Chinese hamster ovary (CHO) cells transfected with this transporter expression vector, pLENGT, exhibited a 2-17-fold increase in immunoreactive HepG2-type glucose transporter protein, as measured by protein immunoblotting with antipeptide antibodies directed against the HepG2-type glucose transporter C-terminal domain. Expression of the human glucose transporter was verified by protein immunoblotting with a mouse polyclonal antiserum that recognizes the human but not the rodent HepG2-type transporter. 2-Deoxy-D-glucose uptake was increased 2-7-fold in transfected cell lines. Polyclonal antisera directed against purified red blood cell glucose transporter were raised in several rabbits. Antiserum from one rabbit, delta,
The subject invention concerns materials and methods for treating oncological disorders in a person or animal using any agent or compound that inhibits uptake of glucose into a cell. The subject invention also concerns methods for inducing apoptosis and inhibiting the proliferation or survival of a cell. In one embodiment, the methods comprise administering an effective amount of an agent or compound that inhibits the activity of one or more glucose transporter proteins, such as Glut-1. An antibody that binds to and inhibits a glucose transporter protein can be used in the present methods.
TY - JOUR. T1 - 4F2hc stabilizes GLUT1 protein and increases glucose transport activity. AU - Ohno, Haruya. AU - Nakatsu, Yusuke. AU - Sakoda, Hideyuki. AU - Kushiyama, Akifumi. AU - Ono, Hiraku. AU - Fujishiro, Midori. AU - Otani, Yuichiro. AU - Okubo, Hirofumi. AU - Yoneda, Masayasu. AU - Fukushima, Toshiaki. AU - Tsuchiya, Yoshihiro. AU - Kamata, Hideaki. AU - Nishimura, Fusanori. AU - Kurihara, Hiroki. AU - Katagiri, Hideki. AU - Oka, Yoshitomo. AU - Asano, Tomoichiro. N1 - Copyright: Copyright 2011 Elsevier B.V., All rights reserved.. PY - 2011/5. Y1 - 2011/5. N2 - Glucose transporter 1 (GLUT1) is widely distributed throughout various tissues and contributes to insulin- independent basal glucose uptake. Using a split-ubiquitin membrane yeast two-hybrid system, we newly identified 4F2 heavy chain (4F2hc) as a membrane protein interacting with GLUT1. Though 4F2hc reportedly forms heterodimeric complexes between amino acid transporters, such as LAT1 and LAT2, and regulates amino acid uptake, ...
Abstract. Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter ...
PubMed comprises more than 30 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Glucose Transporter GLUT6兔多克隆抗体(ab119272)可与人样本反应并经WB, ICC/IF实验严格验证。所有产品均提供质保服务,中国75%以上现货。
Shop a large selection of products and learn more about Glucose Transporter GLUT8 Rabbit anti-Mouse, Rat, Polyclonal, Novus Biologicals:: 100 µg; Unconjugated.
购买我们的人Glucose Transporter GLUT2肽。Ab105630为合成肽并经过Blocking实验验证。Abcam提供免费的实验方案,操作技巧及专业的支持。中国80%以上现货。
An accelerated rate of glucose transport is among the most characteristic biochemical markers of cellular transformation. To study the molecular mechanism by which transporter activity is altered, cultured rodent fibroblasts transfected with activated myc, ras, or src oncogenes were used. In myc-transfected cells, the rate of 2-deoxy-D-glucose uptake was unchanged. However, in cells transfected with activated ras and src oncogenes, the rate of glucose uptake was markedly increased. The increased transport rate in ras- and src-transfected cells was paralleled by a marked increase in the amount of glucose transporter protein, as assessed by immunoblots, as well as by a markedly increased abundance of glucose transporter messenger RNA. Exposure of control cells to the tumor-promoting phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) for 18 hours had a similar effect of increasing the rate of glucose transport and the abundance of transporter messenger RNA. For ras, src, and TPA, the ...
Type 2 diabetes (T2D) can be viewed as a failure of homeostatic mechanisms that promote nutrient turnover and storage in response to hormonal cues. Although the factors that favor disease progression are heterogeneous, evidence from prospective human studies indicates that impairment of insulin-dependent glucose uptake and utilization is an early event in disease pathogenesis (1). The largest fraction of insulin-dependent glucose disposal (∼70%) occurs in skeletal muscle and is mediated by the insulin-responsive glucose transporter Glut4 (2). A quantitatively smaller contribution (5-20%) is provided by adipose tissue (3). That skeletal muscle is an important site of insulin resistance in humans and that impaired insulin action in muscle leads to adaptive changes in nutrient use from carbohydrates to lipids and to compensatory β-cell hyperplasia are beyond dispute (4). Similarly, insulin resistance in adipose tissue is contributory to the pathogenesis of diabetes not only through impaired ...
In skeletal muscle, acute insulin treatment results in the recruitment of the GLUT4 glucose transporter from intracellular vesicular structures to the plasma membrane. The precise nature of these intracellular GLUT4 stores has, however, remained poorly defined. Using an established skeletal-muscle fractionation procedure we present evidence for the existence of two distinct intracellular GLUT4 compartments. We have shown that after fractionation of crude muscle membranes on a discontinuous sucrose gradient the majority of the GLUT4 immunoreactivity was largely present in two sucrose fractions (30 and 35%, w/w, sucrose; denoted F30 and F35 respectively) containing intracellular membranes of different buoyant densities. Here we show that these fractions contained 44±6 and 49±7% of the crude membrane GLUT4 reactivity respectively, and could be further discriminated on the basis of their immunoreactivity against specific subcellular antigen markers. Membranes from the F30 fraction were highly ...
The oxidation of glucose represents a major source of metabolic energy for mammaliancells. However, because the plasma membrane is impermeable to polar molecules such as glucose, the cellular uptake of this important nutrient is accomplished by membrane-associated carrier proteins that bind and transfer it across the lipid bilayer. Two classes of glucose carriers have been described in mammalian cells: the Na+-glucose cotransporter and the facilitative glucose transporter. The Na+-glucose cotransporter transports glucose against its concentration gradient by coupling its uptake with the uptake of Na+ that is being transported down its concentration gradient. Facilitative glucose c rriers accelerate the transport of glucose down its concentration gradient by facilitative diffusion, a form of passive transport. cDNAs have been isolated from human tissues encoding a Na+-glucose-cotransporter protein and five functional facilitative glucosetransporter isoforms. The Na+-glucose cotransporter is ...
S. cerevisiae has membrane proteins that act as glucose receptors. Glucose binds to these receptors and generates an intracellular signal. In the Rgt2/Snf3 pathway, these two proteins act as glucose receptors. The Rgt2 and Snf3 proteins resemble hexose transporters in structure but have long cytoplasmic tails that are required for signal transduction [7]. Glucose binding to these transmembrane proteins initiates signals that activate a pathway that allows hexose transporter gene expression by repressing Rgt1 function [8].. An additional pathway that involves transcriptional changes in response to glucose is the stimulation of adenylyl cyclase and the increase in intracellular cyclic AMP. This pathway includes a G-protein coupled receptor (Gpr1) and two G proteins Gpa1 and 2, necessary for the glucose-specific increase in cAMP [9,10]. Finally, glucose activation of adenylyl cyclase leads to activation of the cAMP-dependent protein kinase A (PKA). Upon activation of PKA by cAMP the Rap1 ...
ISHIKAWA Nobuhisa , OGURI Tetsuya , ISOBE Takeshi , FUJITAKA Kazunori , KOHNO Nobuoki Japanese journal of cancer research : gann 92(8), 874-879, 2001-08-31 医中誌Web 参考文献32件 ...
Membrane transport in cells is a fundamental biological process that is mediated by various channel and transporter proteins. A major type of such proteins is secondary active membrane transporters, which use a solute gradient to drive the translocation of other substrates. The largest secondary transporter protein family known is the major facilitator superfamily (MFS), with more than one hundred thousand members identified to date. These proteins transport ions, sugars, sugar-phosphates, drugs, neurotransmitters, nucleosides, amino acids, peptides, and other hydrophilic solutes. Members of this superfamily are ubiquitous in all three kingdoms of living organisms, and many have medical or pharmacological relevance. For example, the mammalian glucose transporter Glut4 from muscle and adipose cells is responsible for their glucose uptake, a process that is impaired in type II diabetes. Inherited mutations in a related transporter, Glut1 from erythrocyte and brain blood barrier, cause Glucose ...
The human glucose transporter GLUT1 is abundant in red blood cells, the blood-brain barrier and epithelial cells, where it mediates the transport of the energy metabolite, glucose. In the present work some properties of GLUT1, including affinity binding of both substrates and inhibitors, transport rates as well as permeabilities of aromatic amino acids and drug-membrane interactions were analyzed by chromatographic methods.. Reconstitution by size-exclusion chromatography on Superdex 75 from a detergent with a low CMC that provides monomeric GLUT1 was examined regarding D-glucose- and CB binding as well as D-glucose transport. Upon steric immobilization in Superdex 200 gel beads, residual detergent could be washed away and dissociation constants in the same range as reported for binding to GLUT1 reconstituted from other detergents were obtained. The transport rate into the GLUT1 proteoliposomes was low, probably due to residual detergent. Binding to GLUT1 at different pH was analyzed and the ...
GLUT5 antibody (solute carrier family 2 (facilitated glucose/fructose transporter), member 5) for WB. Anti-GLUT5 pAb (GTX47818) is tested in Human samples. 100% Ab-Assurance.
Mouse Monoclonal Anti-Glucose Transporter GLUT6 Antibody (7E3). Validated: WB, ICC/IF, IHC, IHC-P. Tested Reactivity: Human. 100% Guaranteed.
One hallmark of cancer is the accelerated metabolism, high energy requirements, and increased glucose uptake by the tumor cells, the latter being the first and rate-limiting step for glucose metabolism. Glucose transport into the tumor cell is mediated by facilitative high-affinity glucose transporter (GLUT) proteins. Among the 14 GLUT proteins, expression of GLUT1 in normal organs is nearly exclusively restricted to the blood brain barrier, while other GLUTs are also expressed in a wide variety of vital organs such as liver and heart. Interestingly, GLUT1 expression is highly regulated by hypoxia-inducible factor (HIF)-1α, a key driver of tumor progression. In line with this finding, GLUT1 over-expression was found to be associated with tumor progression and poor overall survival in various tumor indications. Consequently, GLUT1 represents a potential target for cancer treatment. Therefore, we have developed a highly-selective GLUT1 inhibitor, namely BAY-876, with selectivity over GLUT2, 3, ...
Glucose Transporter Inhibitor IV, WZB117 - CAS 1223397-11-2 - Calbiochem Glucose Transporter Inhibitor IV, WZB117, CAS 1223397-11-2, is a fast-acting, irreversible blocker of GLUT1 in RBCs. Also inhibits glucose transport in cancer cells (IC50 ~ 500 nM in A549 cells). - Find MSDS or SDS, a COA, data sheets and more information.
GLUT4 is the major glucose transporter in skeletal muscle. GLUT4 cycles to and from the plasma membrane and its exocytic rate is accelerated by insulin and muscle contraction to achieve a new steady state with more GLUT4 proteins at the muscle cell surface. To gain a better understanding of the molecular and cellular mechanisms that govern GLUT4 protein recycling, we developed an in vitro model in which myc-epitope-tagged GLUT4 or GLUT4-GFP is expressed in L6 skeletal muscle cells. The myc-epitope is inserted into an exofacial domain that is accessible to anti-myc antibodies from the outside of non-permeabilized cells, allowing one to count the number of transporters at the cell surface ...
Global antibody supplier and research reagent supplier to the life science community. Find antibodies and reagents all backed by our Guarantee+.
Facilitative glucose transporter. This isoform likely mediates the bidirectional transfer of glucose across the plasma membrane of hepatocytes and is responsible for uptake of glucose by the beta cells; may comprise part of the glucose-sensing mechanism of the beta cell. May also participate with the Na(+)/glucose cotransporter in the transcellular transport of glucose in the small intestine and kidney ...
One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the PI3K/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least 4 discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin-stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the
Gentaur molecular products has all kinds of products like :search , AbD \ RABBIT ANTI GLUCOSE TRANSPORTER 6-POLYCLONAL ANTIBODY \ 0100-0572 for more molecular products just contact us
Gentaur molecular products has all kinds of products like :search , FabGennix \ Glucose Transporter 1, WB control \ PC-Glut 1 for more molecular products just contact us
The regulation of blood glucose levels in humans, in response to insulin, is essential to survival. This response is mediated through the insulin responsive glucose transporter GLUT4. In response to insulin stimulation GLUT4 is trafficked from intracellular insulin sensitive stores (GSVs GLUT4 storage vesicles) to the plasma membrane of fat and muscle cells allowing uptake of glucose into these cells and lowering of plasma glucose levels. Previous work from our lab has identified that ubiquitination and subsequent deubiquitination of GLUT4 is required for entry and stability in GSVs. This balance of ubiquitination and deubiquitination in mammalian cells is carried out by E3 ligases and deubiqutinating enzymes (DUBs). It appears that E3 ligases allow for targeted entry of GLUT4 into insulin sensitive GSVs and that the DUB USP25 is required for GLUT4 to stably maintained in these GSVs. Using a model developed in our lab my thesis looked at key steps of ubiquitination and deubiquitination to try ...
Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. Because glucose is a vital source of energy for all life, these transporters are present in all phyla. The GLUT or SLC2A family are a protein family that is found in most mammalian cells. 14 GLUTS are encoded by human genome. GLUT is a type of uniporter transporter protein. Most non-autotrophic cells are unable to produce free glucose because they lack expression of glucose-6-phosphatase and, thus, are involved only in glucose uptake and catabolism. Usually produced only in hepatocytes, in fasting conditions other tissues such as the intestines, muscles, brain, and kidneys are able to produce glucose following activation of gluconeogenesis. In Saccharomyces cerevisiae glucose transport takes place through facilitated diffusion. The transport proteins are mainly from the Hxt family, but many other transporters have been identified. GLUTs are integral membrane proteins that ...
Transcription of the yeast HXT2 and HXT4 genes, which encode glucose transporters, is induced only by low levels of glucose. This low-glucose-induced expression is mediated by two independent repression mechanisms: in the absence of glucose, transcription of both genes is prevented by Rgt1p, a C6 zinc cluster protein; at high levels of glucose, expression of HXT2 and HXT4 is repressed by Mig1p. Only at low glucose concentrations are both repressors inactive, leading to a 10- to 20-fold induction of gene expression. Mig1p and Rgt1p act directly on HXT2 and HXT4 by binding to their promoters. This transcriptional regulation is physiologically very important to the yeast cell because it causes these glucose transporters to be expressed only in low-glucose media, in which they are required for growth. ...
Shop UDP-galactose transporter ELISA Kit, Recombinant Protein and UDP-galactose transporter Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
From the abstract: ... Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD [Huntingtons Disease]. ... Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. ... To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. ... Our study ...
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1 , strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, attenuating its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced ...
Airley, Rachel, Evans, Andrew, Mobasheri, Ali and Hewitt, Stephen M. (2010) Glucose transporter Glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays. Annals of Anatomy - Anatomischer Anzeiger, 192 (3). pp. 133-138. ISSN 0940-9602 Airley, Rachel, Loncaster, Juliette, Davidson, Susan, Bromley, Mike, Roberts, Stephen, Patterson, Adam V., Hunter, Robin, Stratford, Ian and West, Catharine M.L. (2001) Glucose transporter Glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clinical cancer research, 7 (4). pp. 928-934. ISSN 1078-0432 Airley, Rachel, Loncaster, Juliette, Raleigh, James A., Harris, Adrian L., Davidson, Susan E., Hunter, Robert D., West, Catharine M.L. and Stratford, Ian J. (2003) GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: Relationship to pimonidazole binding. International Journal of Cancer, 104 (1). pp. 85-91. ...
In the kidney, TWIK1 was localized in the brushborder and in subapical vesicles of the proximal tubule. Interestingly, expression and localization in the brushborder membrane of late proximal tubule (S3) were much stronger in female mice compared to males. Testosterone treatment of female mice led to reduced TWIK1 levels in the S3 segment suggesting a role of androgens in the regulation of TWIK1. In this nephron segment, TWIK1 colocalized with the sodium-dependent glucose transporter SGLT1. Similar to TWIK1, SGLT1 also showed sex-dependent expression and localization. We hypothesize that TWIK1 plays a role for the repolarization of the membrane voltage after depolarization of the luminal membrane by electrogenic transport systems, e.g. by Na+-coupled glucose transport. By this mechanism, TWIK1 would stabilize the driving force for voltage-dependent electrogenic substrate transport. In fact, TWIK1-/- mice exhibited a reduced maximal transport capacity for glucose ...
FUNCTION: [Summary is not available for the mouse gene. This summary is for the human ortholog.] This gene encodes a zinc-dependent aminopeptidase that cleaves vasopressin, oxytocin, lys-bradykinin, met-enkephalin, dynorphin A and other peptide hormones. The protein can be secreted in maternal serum, reside in intracellular vesicles with the insulin-responsive glucose transporter GLUT4, or form a type II integral membrane glycoprotein. The protein catalyzes the final step in the conversion of angiotensinogen to angiotensin IV (AT4) and is also a receptor for AT4. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008 ...
The facilitative glucose transporter Glut-1 is overexpressed and confers poor prognosis in a wide range of solid tumours. The peri-necrotic pattern of expression often seen in human tumour samples is linked with its transcriptional control in hypoxic conditions by hypoxia-inducible factor HIF-1 or through a reduced rate of oxidative phosphorylation. Hypoxia-regulated genes offer promise as novel therapeutic targets as a means of preventing the proliferation and eventual metastatic spread of tissue originating from residual chemically and radio resistant hypoxic cells that have survived treatment. Inhibiting the expression or functionality of Glut-1 may be a way of specifically targeting hypoxic cells within the tumour that depend upon a high rate of glucose uptake for anaerobic glycolysis. We used an array of formalin-fixed, paraffin-embedded samples of the NCI-60 panel of cell lines to carry out immunohistochemical detection of Glut-1 and to select possible candidate lead compounds by COMPARE ...
TY - JOUR. T1 - Dynamics of insulin-stimulated translocation of GLUT4 in single living cells visualised using green fluorescent protein. AU - Dobson, SP. AU - Livingston, C. AU - Gould, GW. AU - Tavaré, JM. PY - 1996. Y1 - 1996. M3 - Article (Academic Journal). VL - 393. SP - 179. EP - 184. JO - FEBS Letters. JF - FEBS Letters. SN - 0014-5793. ER - ...
Insulin stimulates blood sugar uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. mechanism. Consistent with a role impartial of AS160 we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic GLUT4 knockdown does not affect IRAP trafficking demonstrating that IRAP traffics impartial of GLUT4. In sum we show that IRAP is usually both cargo and a key regulator of the insulin-regulated pathway. INTRODUCTION Insulin stimulates glucose uptake into adipose and muscle cells by inducing translocation of glucose transporter 4 (GLUT4) glucose transporters from intracellular compartments to the plasma membrane (PM; Huang and Czech 2007 ; Antonescu for 7 min. GLUT4-made up of compartments were isolated by incubation with GFP beads according to ...
Similar to what has been shown for the Na+-coupled glucose transporter 1 (SGLT1) (31), SGK1 stimulates the facilitated glucose transporter GLUT1 by enhancing transporter abundance in the plasma membrane. The effect requires the catalytical activity of the kinase. SGK1 shuttles between cytoplasm and nucleus in a stimulus-dependent manner (38). The serum-induced nuclear import of SGK1 suggests that SGK1 acts at a transcriptional level. In fact, SGK1 has been shown to modulate the forkhead transcription factor FKHRL1 (39). Thus, SGK1 might regulate glucose transport in part by increasing GLUT1 transcript levels. However, the stimulation of glucose transport in Xenopus oocytes point to posttranscriptional regulation of GLUT1, as GLUT1 mRNA has been injected thus circumventing transcription. In addition, Western blotting of whole-cell lysates exclude GLUT1 regulation at a translational level.. SGK1 is not effective through phosphorylation of GLUT1, since the Ser-to-Ala mutation in the SGK consensus ...
Abnormalities of the glucose transporter at the blood-brain barrier and in brain in Alzheimers disease.: We have previously demonstrated the glucose transporte
PubMed comprises more than 30 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
View Notes - cells08-Transport2-2009 from BIO 106 at Conn College. Lect 8 Transport 2: Channels; Nerves GlucoseGlucose-Na+ Symport Protein In the previous slide, what is the source of energy to move
Insulin and GLUT 4 - A signal transduction pathway. What is GLUT 4. Glucose transporter type 4, also known as GLUT4, is a protein that in humans is encoded by the GLUT4 gene. GLUT4 is the...
A free platform for explaining your research in plain language, and managing how you communicate around it - so you can understand how best to increase its impact.
DMD presents important research in pharmacology and toxicology and is a valuable resource in drug design, drug metabolism, drug transport, expression of drug metabolizing enzymes and transporters, and regulation of drug metabolizing enzyme and transporter gene expression.. ...
Steven Horwitz In support of George Selgins comment defending the idea that Says Law allows for general gluts if money is in excess demand, let me quote from my piece on Austrian economics and Says Law that can be found...
Steven Horwitz In support of George Selgins comment defending the idea that Says Law allows for general gluts if money is in excess demand, let me quote from my piece on Austrian economics and Says Law that can be found...