The Drosophila kismet gene was identified in a screen for dominant suppressors of Polycomb, a repressor of homeotic genes. Here we show that kismet mutations suppress the Polycomb mutant phenotype by blocking the ectopic transcription of homeotic genes. Loss of zygotic kismet function causes homeotic transformations similar to those associated with loss-of-function mutations in the homeotic genes Sex combs reduced and Abdominal-B. kismet is also required for proper larval body segmentation. Loss of maternal kismet function causes segmentation defects similar to those caused by mutations in the pair-rule gene even-skipped. The kismet gene encodes several large nuclear proteins that are ubiquitously expressed along the anterior-posterior axis. The Kismet proteins contain a domain conserved in the trithorax group protein Brahma and related chromatin-remodeling factors, providing further evidence that alterations in chromatin structure are required to maintain the spatially restricted patterns of ...
Recommended Readings:. Chekulaeva, M. and A. Ephrussi. 2004. "Drosophila Development: RNA Interference Ab Ovo." Current Biology 14 (11): R428-R430. Hachet, O. and A. Ephrussi. 2001. "Drosophila Y14 Shuttles to the Posterior of the Oocyte and is Required for Oskar mRNA Transport." Current Biology 11 (21): 1666-1674. Jambor, H., C. Brunel, and A. Ephrussi. 2011. "Dimerization of Oskar 3′ UTRs Promotes Hitchhiking for RNA Localization in the Drosophila Oocyte." RNA 17 (12): 2049-2057. Krauss, J., S. López de Quinto, C. Nüsslein-Volhard, and A. Ephrussi. 2009. "Myosin-V Regulates Oskar mRNA Localization in the Drosophila Oocyte." Current Biology 19 (12): 1058-1063. Vanzo, N., A. Oprins, D. Xanthakis, A. Ephrussi, and C. Rabouille. 2007. "Stimulation of Endocytosis and Actin Dynamics by Oskar Polarizes the Drosophila Oocyte." Developmental Cell 12 (4): 543-555. Vanzo, N. F. and A. Ephrussi. 2002. "Oskar Anchoring Restricts Pole Plasm Formation to the Posterior of the Drosophila Oocyte." ...
THE imaginal discs of the Drosophila larva have long served as a model system in which to understand the control of organ size. Imaginal discs are epithelial sacs that, following metamorphosis, will form much of the adult tissue. The primordia of these discs are set aside in the embryo as small groups of 20-50 cells that remain diploid while much of the rest of the animal becomes polyploid. Over the 4 days that span the three larval instars, these primordia proliferate by ∼1000-fold to approach their final size. The size of the imaginal disc at the initiation of pupation is a major determinant of the size of the adult organ following metamorphosis. This size is highly regular, reflecting the importance for appropriate physiology and functioning of, for example, the complex optics of the compound eye or the aerodynamics of the wing and haltere flight organs. Thus, tight developmental controls must exist to permit sufficient but not excessive growth of the imaginal discs.. Classic and ...
The microtubule (MT) cytoskeleton is reorganized during myogenesis as individual myoblasts fuse into multinucleated myotubes. Although this reorganization has long been observed in cell culture, these findings have not been validated during development, and proteins that regulate this process are largely unknown. A novel postmitotic function has been identified for the cytokinesis proteins RacGAP50C (Tumbleweed) and Pavarotti as essential regulators of MT organization during Drosophila myogenesis. The localization of the MT nucleator gamma-tubulin changes from diffuse cytoplasmic staining in mononucleated myoblasts to discrete cytoplasmic puncta at the nuclear periphery in multinucleated myoblasts, and this change in localization depends on RacGAP50C. RacGAP50C and gamma-tubulin colocalize at perinuclear sites in myotubes, and in RacGAP50C mutants gamma-tubulin remains dispersed throughout the cytoplasm. Furthermore, the mislocalization of RacGAP50C in pavarotti mutants is sufficient to ...
In this study, we demonstrate that Dscam endodomain variants are dynamically and differentially expressed in the developing Drosophila CNS. This conclusion derives from: (1) the analysis of Dscam transcript compositions by RT-PCR, (2) the localization of specific Dscam endodomains by depleting the alternatives via RNAi against exon 19, exon 23, or the unique exon-exon junctions derived from skipping of exon 19 or exon 23 (Fig. 2), and (3) the direct visualization of Dscam+19 using Ab19 as opposed to labeling all the Dscam isoforms with Ab18 (Fig. 3). Postembryonic neuronal morphogenesis uses Dscam variants lacking exons 19 and 23 (Fig. 4C), while Dscam+19 plays a more important role in the wiring of embryonic neural tracts (Fig. 4F). Skipping exon 19 prevents accumulation of Dscams in neuronal cell bodies, implicating a mechanism for regulating Dscam protein targeting by the alternative splicing of exon 19 (Figs. 6, 7). In addition, exon 23 is dispensable for most Dscam-dependent neuronal ...
The tubular epithelium of the Drosophila tracheal system forms a network with a stereotyped pattern consisting of cells and branches with distinct identity. The tracheal primordium undergoes primary branching induced by the FGF homolog Branchless, differentiates cells with specialized functions such as fusion cells, which perform target recognition and adhesion during branch fusion, and extends branches toward specific targets. Specification of a unique identity for each primary branch is essential for directed migration, as a defect in either the EGFR or the Dpp pathway leads to a loss of branch identity and the misguidance of tracheal cell migration. Here, we investigate the role of Wingless signaling in the specification of cell and branch identity in the tracheal system. Wingless and its intracellular signal transducer, Armadillo, have multiple functions, including specifying the dorsal trunk through activation of Spalt expression and inducing differentiation of fusion cells in all fusion ...
The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNAi regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.. ...
Wounding, apoptosis, or infection can trigger a proliferative response in neighboring cells to replace damaged tissue. Studies in Drosophila have implicated c-Jun amino-terminal kinase (JNK)-dependent activation of Yorkie (Yki) as essential to regeneration-associated growth, as well as growth associated with neoplastic tumors. Yki is a transcriptional coactivator that is inhibited by Hippo signaling, a conserved pathway that regulates growth. We identified a conserved mechanism by which JNK regulated Hippo signaling. Genetic studies in Drosophila identified Jub (also known as Ajuba LIM protein) as required for JNK-mediated activation of Yki and showed that Jub contributed to wing regeneration after wounding and to tumor growth. Biochemical studies revealed that JNK promoted the phosphorylation of Ajuba family proteins in both Drosophila and mammalian cells. Binding studies in mammalian cells indicated that JNK increased binding between the Ajuba family proteins LIMD1 or WTIP and LATS1, a kinase ...
Benign tumors accumulate mutations that enable them to progress to malignancy and metastasis. Although Yki overexpression promotes cell proliferation and inhibits apoptosis, Yki expression does not normally lead to the formation of malignant tumors in the Drosophila wing epithelia. Our findings show that inactivation of the BAP complex in discs expressing Yki results in the formation of giant larvae, a phenomenon characteristic of larvae with neoplastic tumors. The overgrown imaginal discs in these animals exhibit features of malignant transformation, including loss of epithelial polarity and expression of the proinvasive marker Mmp1. Moreover, when transplanted to a normal host, fragments of these discs produced tumors that grew and spread to kill the host.. The tumor suppressive role of the BAP complex appears to be context dependent. Overexpression of EGFR and Yki each results in tissue hyperplasia. Yki regulates cell proliferation and represses apoptosis by regulating target genes, including ...
The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as amorphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal dorsal group genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactusfunction results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus ...
Increasing evidence implicates the Hippo signalling pathway as a major mediator of contact inhibition of growth. In agreement with this model, genetic analysis in Drosophila and mice showed that this pathway restrains cell proliferation and promotes apoptosis to limit organ size and suppress tumorigenesis [[83],[84],[85]]. The core kinase cascade of this pathway-Hippo (MST1/2)-Salvador (WW45)-Warts (Lats1/2)-has been well characterized in Drosophila and is conserved in mammals, whereas its upstream regulation, which is rather complex, seems to have diverged after the separation of arthropods and chordates. In Drosophila, the atypical cadherin Fat and the apical polarity protein Crumbs activate the core kinase cascade through the FERM domain protein Expanded [[84],[86]]. Interestingly, genetic epistasis experiments showed that Merlin cooperates with Expanded to activate the Hippo pathway in the fly [[32]]. Mammalian cells lack a clear functional homologue of Fat [[87],[88]]. A recent study ...
The Hippo pathway inactivates genes involved in organ size and when aberrant, can lead to cancer. To control organ size, the Hippo pathway inhibits Yorkie (Yki), a transcriptional coactivator that works with Scalloped (Sd), a DNA binding protein. When active, Yki translocates into the nucleus and initiates transcription. Conversely, when inactive, Yki remains in the cytoplasm. However, my work shows that cytoplasmic, inactive Yki interacts with other proteins in the Hippo pathway by recruiting them to the plasma membrane. Accordingly, this study challenges the notion that cytoplasmic Yki is inactive and instead, may play a dual role in the Hippo pathway.
An exceptionally soft and smooth but also robust lightweight tartan - in our view the worlds finest. It will be woven to order for you, using traditional methods, by the worlds last artisan tartan weaving mill, deep in the Scottish Borders. Its an
An exceptionally soft and smooth but also robust lightweight tartan - in our view the worlds finest. It will be woven to order for you, using traditional methods, by the worlds last artisan tartan weaving mill, deep in the Scottish Borders. Its an
Once upon a time, there was an excellent Italian tenor named Luciano Pavarotti.He didnt have the biggest voice in the world, or the sweetest. He didnt make the most dramatic of sounds, or the most
Find freelance Big Brain Design professionals, consultants, freelancers & contractors and get your Job done remotely online. Post Jobs for free and outsource work.
Medicine Fav-store specialize in supplying special featured herbal medecines, developed to improve your life and makes better your health. We present a 60 day full money back guarantee. Neuroblast medicineGirdin Is an Intrinsic Regulator of Neuroblast Chain ....
Hi, I have a 7 yr old yorkie who I am concerned about but Im not sure if I have just been googling too much :) She currently weighs 8.5 down from 9.5 recently and 10 overall. We have been adamen...
We propose that the six genes previously classified as Polycomb group genes in which loss-of-function or antimorphic mutations show intergenic noncomplementation with mutations in trithorax group genes and increase the penetrance caused by double heterozygosis of mutations in trithorax group genes belong in a distinct group (Table 6). We propose that this group be called the ETP (Enhancers of trithorax and Polycomb mutations) group. Loss-of-function mutations in this group of genes enhance the dominant phenotype caused by Polycomb mutations like mutations in Polycomb group genes but also enhance the phenotype caused by heterozygosity for double mutations in trithorax group genes such as ash1VF101 trxb11 and brm2 trxe2 like mutations in trithorax group genes. Jürgens (1985) estimated that there were ∼40 genes in the Polycomb group based on the enhancement of the Polycomb mutant phenotype by a sample of deficiencies. We suggest that this number may be an overestimate. Many of the genes in which ...
Previous experiments have shown two germline stem cell genes, bam and bgcn, to be under strong positive selection in Drosophila melanogaster and Drosophila simulans (Bauer DuMont et al. 2007). This prompted the question of whether the same pattern of selection observed in these two species was present in the germline stem cell genes of other Drosophila lineages? The Aquadro Lab has been sequencing many germline stem cell genes in Drosophila species, and the answer to this question so far has been that some lineages show strong positive selection and some do not. This observation led the Aquadro Lab to begin to test hypotheses about the driver - or drivers - of the positive selection in the germline stem cell genes across some Drosophila lineages. One hypothesis proposed by Bauer DuMont et al. (2007) is that coevolution with pathogens such as the reproductive parasite, Wolbachia pipientis, infecting the germline could be driving this observed selection. This project looked for signs of selection ...
Cell adhesion molecule that plays a role in neuronal self-avoidance. Promotes repulsion between specific neuronal processes of either the same cell or the same subtype of cells. Mediates within retinal amacrine and ganglion cell subtypes both isoneuronal self-avoidance for creating an orderly dendritic arborization and heteroneuronal self-avoidance to maintain the mosaic spacing between amacrine and ganglion cell bodies (PubMed:10925149). Receptor for netrin required for axon guidance independently of and in collaboration with the receptor DCC. In spinal chord development plays a role in guiding commissural axons projection and pathfinding across the ventral midline to reach the floor plate upon ligand binding (PubMed:18585357, PubMed:19196994). Enhances netrin-induced phosphorylation of PAK1 and FYN (PubMed:15169762). Mediates intracellular signaling by stimulating the activation of MAPK8 and MAP kinase p38 (PubMed:18585357, PubMed:19196994). Adhesion molecule that promotes lamina-specific ...
Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity. We show that the transcription factor Omb forms, in fact, a symmetrical gradient on both sides of the A/P compartment boundary. Disruptions of the Omb gradient lead to a re-organization of the epithelial cytoskeleton and to a retraction of cells toward the basal membrane suggesting that the Omb gradient is required for correct epithelial morphology. Moreover, by analysing the shape of omb gain- and loss-of-function clones, we find that Omb promotes cell sorting along the A/P axis in a concentration-dependent manner. Our findings show that Omb distribution in the wing imaginal disc is described by a gradient rather than a step
A protein encoded by a gene in band 22 of the long arm of human chromosome 21. The gene contains multiple exons which allow multiple mRNAs to be transcribed by alternative splicing (q.v.). The transcripts are differentially expressed in different substructures of the adult brain. The DSCAM is a member of the immunoglobulin domain superfamily (q.v.). These isoforms may be involved in the patterning of neural networks by selective adhesions between axons. See innate immunity. ...
Kitagawa M., Oyama T., Kawashima T., Yedvobnick B., Kumar A., Matsuno K., Harigaya K.. Mastermind (Mam) has been implicated as an important positive regulator of the Notch signaling pathway by genetic studies using Drosophila melanogaster. Here we describe a biochemical mechanism of action of Mam within the Notch signaling pathway. Expression of a human sequence related to Drosophila Mam (hMam-1) in mammalian cells augments induction of Hairy Enhancer of split (HES) promoters by Notch signaling. hMam-1 stabilizes and participates in the DNA binding complex of the intracellular domain of human Notch1 and a CSL protein. Truncated versions of hMam-1 that can maintain an association with the complex behave in a dominant negative fashion and depress transactivation. Furthermore, Drosophila Mam forms a similar complex with the intracellular domain of Drosophila Notch and Drosophila CSL protein during activation of Enhancer of split, the Drosophila counterpart of HES. These results indicate that Mam is ...
TY - JOUR. T1 - The actin-binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo. AU - Suyama, Ritsuko. AU - Jenny, Andreas. AU - Curado, Silvia. AU - Pellis-van Berkel, Wendy. AU - Ephrussi, Anne. PY - 2009/4/14. Y1 - 2009/4/14. N2 - During Drosophila oogenesis, oskar mRNA is transported to the posterior pole of the oocyte, where it is locally translated and induces germ-plasm assembly. Oskar protein recruits all of the components necessary for the establishment of posterior embryonic structures and of the germline. Tight localization of Oskar is essential, as its ectopic expression causes severe patterning defects. Here, we show that the Drosophila homolog of mammalian Lasp1 protein, an actin-binding protein previously implicated in cell migration in vertebrate cell culture, contributes to the accumulation of Oskar protein at the posterior pole of the embryo. The reduced number of primordial germ cells in embryos derived from lasp mutant females can be ...
In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8 (approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic transcriptional changes remain largely unknown. We developed an original gene clustering method based on discretized transition profiles, and applied it to datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly up-regulated during ZGA. De novo motif discovery returned nine motifs over-represented in their non-coding sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda, Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin
Author Summary Morphogens are signaling molecules that trigger specific responses in cells in a concentration-dependent manner. The formation of morphogen gradients is essential for the patterning of tissues and organs. Decapentaplegic (Dpp) is the Drosophila homolog of the bone morphogenic proteins in vertebrates and forms a morphogen gradient along the anterior-posterior axis of the Drosophila wing imaginal disc, a single-cell layered epithelium. Dpp determines the growth and final size of the wing disc and serves as an ideal model system to study gradient formation. Despite extensive studies the mechanism by which morphogen gradients are established remains controversial. In the case of Dpp two mechanisms have been postulated, namely extracellular diffusion and receptor-mediated transcytosis. In the first model Dpp is suggested to move by diffusion through the extracellular matrix of a tissue, whereas in the latter model Dpp is transported through the cells by receptor-mediated uptake and re
TY - JOUR. T1 - JAK/STAT and the GATA factor Pannier control hemocyte maturation and differentiation in Drosophila. AU - Minakhina, Svetlana. AU - Tan, William. AU - Steward, Ruth. PY - 2011/1/1. Y1 - 2011/1/1. N2 - The lymph gland is the major site of hematopoiesis in Drosophila. During late larval stages three types of hemocytes are produced, plasmatocytes, crystal cells, and lamellocytes, and their differentiation is tightly controlled by conserved factors and signaling pathways. JAK/STAT is one of these pathways which have essential roles in vertebrate and fly hematopoiesis. We show that Stat has opposing cell-autonomous and non-autonomous functions in hemocyte differentiation. Using a clonal approach we established that loss of Stat in a set of prohemocytes in the cortical zone induces plasmatocyte maturation in adjacent hemocytes. Hemocytes lacking Stat fail to differentiate into plasmatocytes, indicating that Stat positively and cell-autonomously controls plasmatocyte differentiation. We ...
In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation
Monoclonal antibodies were prepared against a 46,000 mol wt major cytoplasmic protein from Drosophila melanogaster Kc cells. These antibodies reacted with the 46,000 and a 40,000 mol wt protein from Kc cells. Some antibodies showed cross-reaction with 55,000 (vimentin) and 52,000 mol wt (desmin) proteins from baby hamster kidney (BHK) cells that form intermediate sized filaments in vertebrate cells. In indirect immunofluorescence, the group of cross reacting antibodies stained a filamentous meshwork in the cytoplasm of vertebrate cells. In Kc cells the fluorescence seemed to be localized in a filamentous meshwork that became more obvious after the cells had flattened out on a surface. These cytoskeletal structures are heat-labile; the proteins in Kc or BHK cells rearrange after a brief heat shock, forming juxtanuclear cap structures.
Cyclin Y is a highly conserved member of the Cyclin superfamily of proteins. In Drosophila the Cyclin Y gene (CycY) is required for progression through several stages of development but the specific pathways that Cyclin Y belongs to and that account for its requirement are not known. Studies in human and Drosophila cell lines have shown that membrane-localized Cyclin Y is required for phosphorylation of the wingless/Wnt co-receptor, arrow/LRP6, and for full activation of the canonical wingless/Wnt pathway. CycY null Drosophila, however, do not phenocopy loss-of-function mutations in canonical wingless pathway genes, suggesting that Cyclin Y may have additional roles outside the wingless pathway in vivo. To identify roles for Cyclin Y in Drosophila I used RNAi to knock down CycY expression in 31 distinct tissue patterns. The screen revealed that expression of the CycY shRNA in specific tissue patterns causes larval lethality and other developmental defects. Knockdown of CycY but not arrow in imaginal
N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins1, 2, 3, 4, 5, 6, 7. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir)8, 9, 10, 11, 12. In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl)13. However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain3. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models5, 7, 14, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is ...
Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics
TY - JOUR. T1 - DCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. AU - Nibu, Yutaka. AU - Zhang, Hailan. AU - Bajor, Ewa. AU - Barolo, Scott. AU - Small, Stephen. AU - Levine, Michael. PY - 1998/12/1. Y1 - 1998/12/1. N2 - The pre-cellular Drosophila embryo contains 10 well characterized sequence-specific transcriptional repressors, which represent a broad spectrum of DNA-binding proteins. Previous studies have shown that two of the repressors, Hairy and Dorsal, recruit a common co-repressor protein, Groucho. Here we present evidence that three different repressors, Knirps, Kruppel and Snail, recruit a different co-repressor, dCtBP. Mutant embryos containing diminished levels of maternal dCtBP products exhibit both segmentation and dorsoventral patterning defects, which can be attributed to loss of Kruppel, Knirps and Snail activity. In contrast, the Dorsal and Hairy repressors retain at least some activity in dCtBP mutant embryos, dCtBP interacts ...
In multicellular organisms all cells in one individual have an identical genotype, and yet their bodies consist of many and very different tissues and thus many different cell types. Somehow there must be a difference in how genes are interpreted. So, there must be signals that tell the genes when and where to be active and inactive, respectively. In some instances a specific an expression pattern (active or inactive) is epigenetic; it is established and maintained throughout multiple rounds of cell divisions. In the developing Drosophila embryo, the proper expression pattern of e.g. the homeotic genes Abd-B and Ubx is to be kept active in the posterior part and silenced in the anterior. Properly silenced homeotic genes are crucial for the correct segmentation pattern of the fly and the Polycomb group (Pc-G) proteins are vital for maintaining this type of stable repression.. As part of this thesis, Suppressor of zeste 12 (Su(z)12) is characterized as a Drosophila Pc-G gene. Mutations in the gene ...
Remarkably, a motif corresponding to the Tramtrack (TTK) binding motif was discovered with the de novo approach. TTK is a maternal repressor, which is progressively titrated as the NC ratio increases during early mitotic cycles, thereby releasing the expression of zygotic genes [5]. Surprisingly, the TTK binding motif is found over-represented in the sequences of pre-cellular activated blastoderm genes and of the genes with the discrete signature "Lu u s D s s H ", but not in the sequences of genes known to depend on the NC ratio, which might be explained by the intervention of some other factors in this mechanism [5].. The TTK protein has been reported to physically interact with TRL proteins and to repress TRL-mediated even-skipped activation [20]. TTK could act either directly by binding DNA and repressing the transcription of specific target genes, or indirectly by repressing an activator such as Trl. Interestingly, the TTK motif is significantly under-represented (sig = 5) in upstream ...
Looking for online definition of Big Brain in the Medical Dictionary? Big Brain explanation free. What is Big Brain? Meaning of Big Brain medical term. What does Big Brain mean?
Acar, M., et al. (2006). Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 133: 1979-1989. PubMed ID: 16624856 Alifragis, P., et al. (1997). A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc. Natl. Acad. Sci. 94(24): 13099-13104. PubMed ID: 9371806 Bardin, A. J., et al. (2010). Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137(5): 705-14. PubMed ID: 20147375 Barndt, R. J., Dai, M. and Zhuang, Y. (2000). Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol. Cell Biol. 20: 6677-6685. PubMed ID: 10958665 Brown, N. L., et al. (1996). daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev. Biol. 179: 65-78. PubMed ID: 8873754 Buszczak, M., Paterno, S. and Spradling, A. C. ...
Polyamine transport is elevated in many tumor types, suggesting that toxic polyamine-drug conjugates could be targeted to cancer cells via the polyamine transporter (PAT). We have previously reported the use of Chinese hamster ovary (CHO) cells and its PAT-deficient mutant cell line, CHO-MG, to screen anthracene-polyamine conjugates for their PAT-selective targeting ability. We report here a novel Drosophila-based model for screening anthracene-polyamine conjugates in a developing and intact epithelium (Drosophila imaginal discs), wherein cell-cell adhesion properties are maintained. Data from the Drosophila assay are consistent with previous results in CHO cells, indicating that the Drosophila epithelium has a PAT with vertebrate-like characteristics. This assay will be of use to medicinal chemists interested in screening drugs that use PAT for cellular entry, and it offers the possibility of genetic dissection of the polyamine transport process, including identification of a Drosophila PAT.
An in vivo screen of 86 RNAi lines, representing the majority of annotated Drosophila phosphatases/regulators, for altered activity rhythms was carried out. The screen identified a total of 19 candidate genes (Table 1) that altered clock function upon RNAi knockdown in Drosophila clock cells. Further genetic validation of one candidate showed that the RPTP Lar is required for the development of axonal projections from circadian pacemaker neurons that support rhythmic activity in constant darkness but not during light:dark cycles (Agrawal and Hardin 2016).. As expected, a majority of these candidates were not validated upon further analysis of independent genetic reagents (Table 2). However, these reagents consisted of additional P element inserts, where the P element insertion site may not interfere with gene function, or strains that could be used for overexpression, which also may not impact the function of a protein that is already at saturating levels. Therefore, a lack of validation with P ...
Receptors for Wingless and other signalling molecules of the Wnt gene family have yet to be identified. We show here that cultured Drosophila cells transfected with a novel member of the frizzled gene family in Drosophila, Dfz2, respond to added Wingless protein by elevating the level of the Armadillo protein. Moreover, Wingless binds to Drosophila or human cells expressing Dfz2. These data demonstrate that Dfz2 functions as a Wingless receptor, and they imply, in general, that Frizzled proteins are receptors for the Wnt signalling molecules ...
Applications are invited for a postdoc position and a full-time technician = position in Drosophila epigenetics research laboratory of Dr. Tulin at the = Fox Chase Cancer Center, Philadelphia, PA. Both positions planned for at = least three years, with possible renewal. The successful applicants will = use Drosophila model system to study epigenetics of development and = cancer. The primary research focus of Dr. Tulin=92s lab is on = fundamentals of chromatin reprogramming and RNA fate regulation during = normal development and carcinogenics, as well as on translating = fundamental research for clinical applications in oncology. Projects in = Dr. Tulin=92s lab cover the molecular mechanisms of the chromatin = remodeling and regulation of gene expression and employ Drosophila model = and in vitro assays as well as human cells, mouse models. Applicants for the postdoctoral position should have a Ph.D. in molecular = biology, molecular genetics, biochemistry, or a related field and 0-3 = years of ...
Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, |5 billion paired-end reads from |100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate |2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor |1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in
TY - JOUR. T1 - TGF-β family signaling in drosophila. AU - Upadhyay, Ambuj. AU - Moss-Taylor, Lindsay. AU - Kim, Myung Jun. AU - Ghosh, Arpan C.. AU - OConnor, Michael B.. PY - 2017/9. Y1 - 2017/9. N2 - The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.. AB - The transforming growth factor β ...
Author Summary Organisms such as the fruitfly Drosophila melanogaster have long been used as model systems to understand complex aspects of human biology. Work on Drosophila antimicrobial immunity has led to identification of mechanisms underlying human innate immunity, such as the use of Toll-like receptors for recognizing antigen and initiating humoral immune responses. Flies and humans are also infected by larger parasites against which they mount immune blood-cell based responses, but the genetic basis for cellular immunity is poorly characterized. In nature, flies are often infected by parasitoid wasps that lay their eggs in fly larvae, inducing a cellular immune response in the flies. Fly blood cells surround the wasp egg and form a tightly connected capsule leading to death of the egg in a process called encapsulation, which is similar to human granuloma formation. In this study we identified eight new genes that are important for encapsulation. These genes are part of the N-glycosylation pathway
The patterning of the imaginal discs in Drosophila melanogaster is a progressive process that, like the patterning of the larval epidermis during embryogenesis, requires the activity of segment polarity genes. One segment polarity gene, wingless, encodes a homolog of the mouse proto-oncogene Wnt-1 and plays a prominent role in the patterning of the larval epidermis and the imaginal discs. However, whereas the function of wingless in the embryo is initially associated with a pattern of stripes along the anteroposterior axis that are part of a Cartesian coordinate system, it is shown here that during imaginal development wingless is associated with a pattern of sectors that provide references for a polar coordinate system homologous to that postulated in a well-known model for the regeneration of insect and vertebrate limbs. ...
The Drosophila brahma (brm) gene encodes an activator of homeotic genes that is highly related to the yeast transcriptional activator SWI2 (SNF2), a potential helicase. To determine whether brm is a functional homolog of SWI2 or merely a member of a family of SWI2-related genes, we searched for additional Drosophila genes related to SWI2 and examined their function in yeast cells. In addition to brm, we identified one other Drosophila relative of SWI2: the closely related ISWI gene. The 1,027-residue ISWI protein contains the DNA-dependent ATPase domain characteristic of the SWI2 protein family but lacks the three other domains common to brm and SWI2. In contrast, the ISWI protein is highly related (70% identical) to the human hSNF2L protein over its entire length, suggesting that they may be functional homologs. The DNA-dependent ATPase domains of brm and SWI2, but not ISWI, are functionally interchangeable; a chimeric SWI2-brm protein partially rescued the slow growth of swi2- cells and ...
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene. ...
TY - JOUR. T1 - Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. AU - Schaeffer, Eric. AU - Smith, Dean. AU - Mardon, Graeme. AU - Quinn, William. AU - Zuker, Charles. PY - 1989/5/5. Y1 - 1989/5/5. N2 - We have isolated and characterized two new protein kinase C (PKC) genes from D. melanogaster. One, dPKC98F, maps to chromosome region 98F and displays over 60% amino acid sequence identity with members of a recently described "PKC-related" subfamily in mammals. The other, dPKC53E(ey), maps to region 53E 4-7 on the second chromosome and lies within 50 kb of a PKC gene previously characterized (dPKC). While dPKC98F transcripts are expressed throughout development, expression of the two genes mapping at cytogenetic location 53E is primarily in adults. dPKC98F and the previously reported 53E gene are transcribed predominantly in brain tissue. In contrast, dPKC53E(ey) is transcribed only in photoreceptor cells. We ...
Drosophila Models of Human Disease was founded in 2012 by Stephanie Mohr, PhD, who has more than fifteen years of experience in Drosophila genetics and related research. She is the Director of the Drosophila RNAi Screening Center in the Department of Genetics at Harvard Medical School. Grant support for the DRSC and related activities includes NIH NIGMS R01 GM067761 (N. Perrimon PI and S.M. Co-PI) and NIH NCRR/ORIP R24 RR032668 (N. Perrimon PI ...
TY - JOUR. T1 - Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. AU - Flores, Gail V.. AU - Daga, Andrea. AU - Kalhor, Hamid R.. AU - Banerjee, Utpal. PY - 1998/9. Y1 - 1998/9. N2 - In the developing Drosophila eye, individual cell fates are specified when general signaling mechanisms are interpreted in the context of cell-specific transcription factors. Lozenge, a Runt/AML1/CBFA1-like transcription factor, determines the fates of a number of neuronal and non-neuronal cells by regulating the expression of multiple fate-determining transcription factors. The Lozenge protein is expressed in the nuclei of the cells that it patterns and also in their undifferentiated precursors. An enhancer element located within the second intron of the lozenge gene is responsible for its eye-specific expression. Lozenge is not itself a cell-specific transcription factor, rather it prepatterns the ...
Gene expression is regulated by the chromatin environment and various cis-regulatory elements. Gene activators and repressors target specific regulatory elements in the genome to regulate nearby genes. But they function only in limited regions called domains. In each domain, genes are regulated independently without interference from outside. Boundary elements (insulators), binding sites for insulator proteins, are proposed to separate neighboring domains. One function of insulators is to block interactions between an enhancer and a promoter if positioned between them; the second function is to block the spreading of certain chromatin states along chromatin. BEAF-32 (with two 32 kDa variants: BEAF-32A and BEAF-32B) is one of insulator proteins. The binding of BEAF at the insulator scs, which was originally found at the edge of 87A heat shock puff on Drosophila polytene chromosome, is essential for the insulator activities. We examined the heat shock induced histone modifications at the region of the
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three ...
Dear Dr. Kim van der Linde I keep living Drosophila virilis collected at a beer brewery in Sapporo. However, this strain is old, collected about 20 years ago. With best wishes, Watabe Kim van der Linde wrote: , Dear List, , , For a futhur project, we want to use Drosophila virilis. For our , project, we will need a large outbred stock. The question is, does , someone has such a stock and is willing to share, or where would there , be a good source to establish such a outbred stock. , , Regards, , , Kim van der Linde , -- , http://www.kimvdlinde.com , , , _______________________________________________ , Dros mailing list , Dros at net.bio.net , http://www.bio.net/biomail/listinfo/dros --------------------------------- Prof. Dr. WATABE Hideaki Biological Laboratory Sapporo Campus Hokkaido University of Education Ainosato 5-3-1, Sapporo 002-8075 Japan e-mail: watabe at sap.hokkyodai.ac.jp Tel. +81-11-778-0342 Fax. +81-11-778-8822 ...
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Schneider Drosophila Medium with L-Glutamine, 500ml      Schneider’s Drosophila Medium was originally developed for the culture of Drosophila cells but can also be used for the culture
In this study, we have used an automated image analysis pipeline to screen through images from a high-content, genome-wide RNAi screen for genes whose activity is rate-limiting for the growth of Drosophila cells in culture. In doing so, we identified a number of known and novel genes regulating cell size. Interestingly, this screen identified a novel role for autocrine signaling through Pvfs and the receptor tyrosine kinase Pvr in the control of the autonomous growth of Drosophila cells in culture. Previous studies have suggested roles for Pvf/Pvr signaling in the control of cell migration [23, 27, 30], morphogenesis [25, 26, 31], cell viability [22] and proliferation [28, 29]. However, to our knowledge this is the first clear example of this pathway controlling cell size. This reduction in the size of Pvr RNAi cells was accompanied by a reduction in cell proliferation, as revealed by reduced cell numbers in the absence of significant apoptosis (data not shown), and by a delay in the passage of ...
The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different
Credit: Team Helfrich-Förster. In 1989, the Würzburg biologists Alois Hofbauer and Erich Buchner reported a surprising finding in the journal "Naturwissenschaften": They had identified a new pair of eyelets in drosophila unknown until then. The fruit fly was considered an important model organism for zoologists and geneticists even back then with scores of scientists showing an interest in the tiny insect. But they had all failed to detect the additional eyes -- no wonder given their microscopic size: Each eyelet consists of just four photoreceptor cells.. In spite of this, the Hofbauer-Buchner eyelets seem to play a major role in the life of drosophila. A study conducted by scientists from the University of Würzburg with colleagues from the University of Michigan and the University of Bristol has come to this conclusion.. Drosophilas activity peaks in the morning and in the late afternoon and they rest during the hottest time of the day. The tiny sensory organs evidently influence when this ...
MicroRNA evolution and expression during Drosophila development / Evolutionary diversification at multiple levels of variation in Drosophila wing ...
The Drosophila Turandot A (TotA) gene was recently shown to encode a stress-induced humoral factor which gives increased resistance to the lethal effects of high temperature. Here we show that TotA belongs to a family of eight Tot genes distributed at three different sites in the Drosophila genome. All Tot genes are induced under stressful conditions such as bacterial infection, heat shock, paraquat feeding or exposure to ultraviolet light, suggesting that all members of this family play a role in Drosophila stress tolerance. The induction of the Tot genes differs in important respects from the heat shock response, such as the strong but delayed response to bacterial infection seen for several of the genes.. ...
The Atlas of Drosophila Morphology: Wild-type and Classical Mutants is the guide every Drosophila researcher wished they had when first learning genetic markers, and the tool they wish they had now as a handy reference in their lab research. Previously, scientists had only poor-quality images or sketches to work with, and then scattered resources online - but no single visual resource quickly at their fingertips when explaining markers to new members of the lab, or selecting flies to do their genetic crosses, or hybrids.. This alphabetized guide to Drosophila genetic markers lays flat in the lab for easy referencing. It contains high-resolution images of flies and the appropriate marker on the left side of each page and helpful information for the marker on the facing page, such as symbol, gene name, synonyms, chromosome location, brief informative description of the morphology, and comments on marker reliability. A companion website with updated information, useful links, and additional data ...
How is Enabled Homolog of Drosophila abbreviated? ENAH stands for Enabled Homolog of Drosophila. ENAH is defined as Enabled Homolog of Drosophila very rarely.
The Annual Drosophila Research Conference is the premier meeting for Drosophila researchers. As many as 1,000 presentations cover the full diversity of Drosophila investigations, from genetics to molecular biology, cell biology, development, immunology, physiology, neuroscience, evolution, and more.. ...
Protocol for performing ATAC-seq on nuclei isolated from Drosophila melanogaster stage 5 embryos that were flash frozen and then cut in half along the anterior-posterior midline....
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a
Store-operated Ca(2+) entry (SOCE) occurs when loss of Ca(2+) from the endoplasmic reticulum (ER) stimulates the Ca(2+) sensor, STIM, to cluster and activate the plasma membrane (PM) Ca(2+) channel, Orai. Inositol 1,4,5-trisphosphate receptors (IP3R) are assumed to regulate SOCE solely by mediating ER Ca(2+) release. We show that in Drosophila neurons, mutant IP3R attenuate SOCE evoked by depleting Ca(2+) stores with thapsigargin. In normal neurons, store depletion caused STIM and IP3R to accumulate near the PM, association of STIM with Orai, clustering of STIM and Orai at ER-PM junctions, and activation of SOCE. These responses were attenuated in neurons with mutant IP3R and rescued by over-expression of STIM with Orai. We conclude that after depletion of Ca(2+) stores in Drosophila, translocation of IP3R to ER-PM junctions facilitates the coupling of STIM to Orai that leads to activation of SOCE.. ...
In D. melanogaster, the subdivision of dorsal ectoderm into amnioserosa (AS) and dorsal epidermis is controlled by the combined actions of two morphogens of the TGF-β family, Decapentaplegic (Dpp) and Screw (Scw). They form an extracellular gradient with peak levels of Dpp/Scw signalling in the dorsal-most region of the embryo. Dpp/Scw signalling is transduced to the nucleus by a complex containing the phosphorylated Smad transcription factor, pMad and the co-Smad, Medea, which are responsible for the transcriptional activation of a number of targets in specific dorsal territories, including zerknullt (zen) gen. zen encodes a homeobox transcription factor, which is expressed for a brief period of time in the early developing embryo and is required for all aspects of AS formation, including the initial cell shape changes that drive the morphogenesis of the AS epithelium. However, the number and nature of Zen-target genes involved in AS differentiation subsequent to its specification are currently
Sox proteins encompass an evolutionarily conserved family of transcription factors with critical roles in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown. Using a combination of genome-wide binding analysis and gene expression profiling, we show that SoxNeuro directs embryonic neural development from the early specification of neuroblasts through to the terminal differentiation of neurons and glia. To address the issue of functional redundancy and compensation at a genomic level, we compare SoxNeuro and Dichaete binding, identifying common and independent binding events in wild-type conditions, as well as instances of compensation and
The fruit fly is the common laboratory assistant that can almost drive you crazy! (A whop bop a lu a, whop bam boo..)|br /| Also loves fruit cake!
Joseph G. C. Yeoh, Aniruddha A. Pandit, Meet Zandawala, Dick R. Nässel, Shireen-Anne Davies, Julian A. T. Dow. 2017. DINeR - Database for Insect Neuropeptide Research. Insect Biochemistry and Molecular Biology 86: 9-19.. Olga I. Kubrak, Sören Nylin, Thomas Flatt, Dick R. Nässel, Olof Leimar. 2017. Adaptation to fluctuating environments in a selection experiment with Drosophila melanogaster. Ecology and Evolution 7: 3796-3807.. Jiangnan Luo, Yiting Liu, Dick R. Nassel. 2017. Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed. Frontiers in Molecular Neuroscience 10.. Yiting Liu, Sifang Liao, Jan A. Veenstra, Dick R. Nässel. 2016. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Scientific Reports 6.. Olga I. Kubrak, Lucie Kucerova, Ulrich Theopold, Sören Nylin, Dick R. Nässel. 2016. Characterization of Reproductive Dormancy ...
Summary Hypomorphic mutants affecting the Drosophila insulin/IGF signal pathway are reported to increase longevity in females but not in males. To understand this sex-difference, we conducted a large-scale demographic study with three new isogenic strains of alleles at chico, the insulin-receptor s...
Cells in intestinal epithelia turn over rapidly due to damage from digestion and toxins produced by the enteric microbiota. Gut homeostasis is maintained by intestinal stem cells (ISCs) that divide to replenish the intestinal epithelium, but little is known about how ISC division and differentiation are coordinated with epithelial cell loss. We show here that when enterocytes (ECs) in the Drosophila midgut are subjected to apoptosis, enteric infection, or JNK-mediated stress signaling, they produce cytokines (Upd, Upd2, and Upd3) that activate Jak/Stat signaling in ISCs, promoting their rapid division. Upd/Jak/Stat activity also promotes progenitor cell differentiation, in part by stimulating Delta/Notch signaling, and is required for differentiation in both normal and regenerating midguts. Hence, cytokine-mediated feedback enables stem cells to replace spent progeny as they are lost, thereby establishing gut homeostasis ...
This is a dataset generated by the Drosophila Regulatory Elements modENCODE Project led by Kevin P. White at the University of Chicago. It contains ChIP-seq data generated on Solexa Genome Analyzer for 6 Histone modifications (H3K9me3, H3K27me3, H3K4me3, H3K4me1, H3K27Ac, H3K9Ac), PolII and CBP/p300. Each factor has been studied for 12 different time-points of Drosophila development. Keywords: Epigenetics For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf For each combination of time-point and antibody, triplicate ChIP experiments have been performed and hybridized on Agilent 244K arrays. The hybridizations have been verified by sequencing one replicate of IP and one replicate of Input following Solexa sequencing procedure.
Motivation: The highly coordinated expression of thousands of genes in an organism is regulated by the concerted action of transcription factors, chromatin proteins and epigenetic mechanisms. High-throughput experimental data for genome wide in vivo protein-DNA interactions and epigenetic marks are becoming available from large projects, such as the model organism ENCyclopedia Of DNA Elements (modENCODE) and from individual labs. Dissemination and visualization of these datasets in an explorable form is an important challenge.. Results: To support research on Drosophila melanogaster transcription regulation and make the genome wide in vivo protein-DNA interactions data available to the scientific community as a whole, we have developed a system called Flynet. Currently, Flynet contains 101 datasets for 38 transcription factors and chromatin regulator proteins in different experimental conditions. These factors exhibit different types of binding profiles ranging from sharp localized peaks to ...
Commitments to developmental pathways are often made and maintained in groups of cells. Such commitments are conferred by the products of selector genes, many of which are homeobox genes. Homeobox genes can maintain their expression by directly autoregulating their own transcription. Here, we report a case where positive autoregulation of Ultrabithorax, a homeotic Drosophila gene, is at least partly indirect and mediated by the extracellular signal molecules that are products of the genes wingless and decapentaplegic. Indirect autoregulatory mechanisms may be used to ensure coordinate maintenance of selector gene activity in groups of cells.. ...
TY - JOUR. T1 - A novel tyrosine kinase-independent function of Drosophila abl correlates with proper subcellular localization. AU - Henkemeyer, Mark. AU - West, Steven R.. AU - Gertler, Frank B.. AU - Hoffmann, F. Michael. PY - 1990/11/30. Y1 - 1990/11/30. N2 - The axonal localization of the Drosophila abl protein and its genetic interactions with the disabled and fasciclin I genes implicate this cytoplasmic tyrosine kinase in the process of axonal pathfinding. Several changes at the amino terminus of abl permitted proper function and localization of the altered proteins. In contrast, the presence of human c-abl type 1a amino-terminal sequences or the murine c-abl carboxy-terminal domain interfered with function and axonal locallzation. Rescue of phenotypes caused by mutations in abl alone did not require tyrosine kinase activity, indicating a novel kinase-independent function for the properly localizaed abl protein. However, abl kinase activity was required to rescue the mutant phenotypes in ...
Discs large 5 (Dlg5) is a member of the MAGUK family of proteins which typically serve as molecular scaffolds and mediate signaling complex formation and localization. In vertebrates, Dlg5 has been shown to be responsible for polarization of neural progenitors and to associate with Rab11 positive vesicles in epithelial cells. In Drosophila, however, the function of Dlg5 is not well documented. We have identified dlg5 as an essential gene that shows embryonic lethality. dlg5 embryos display partial loss of primordial germ cells (PGCs) during gonad coalescence between stages 12-15 of embryogenesis. Loss of Dlg5 in germline and somatic stem cells in the ovary results in the depletion of both cell lineages. Reduced expression of Dlg5 in the follicle cells of the ovary leads to a number of distinct phenotypes, including defects in egg chamber budding, stalk cell overgrowth, and ectopic polar cell induction. Interestingly, loss of Dlg5 in follicle cells results in abnormal distribution of a critical ...
Neural precursors often generate distinct cell types in a specific order, but the intrinsic or extrinsic cues regulating the timing of cell fate specification are poorly understood. Here we show that Drosophila neural precursors (neuroblasts) sequentially express the transcription factors Hunchback …
The Drosophila compound eye forms a stereotypical lattice of ~800 ommatidia (Fig. 1A). Overexpression of Drosophila pink1 causes a disorganization of the ommatidial array and roughening of the external eye morphology (Fig. 1B). The physiological relevance of this phenotype to the normal function of the Pink1/Parkin pathway can be inferred since the rough eye, resulting from pink1 overexpression, is significantly suppressed by removal of Parkin, which acts downstream of Pink1 (Fig. 1C,K). Furthermore, overexpression of both pink1 and parkin results in a severe rough eye phenotype, which greatly exceeds that conferred by pink1 or parkin overexpression alone (Fig. 1D and supplementary material Fig. S1B). These data are consistent with the finding that the pink1 overexpression phenotype is derived from amplified signaling through the normal physiological targets of Pink1, which commends this system as a useful tool to test whether certain genes interact with pink1.. The PD-linked mitochondrial ...
The genetic tools available in Drosophila have facilitated our understanding of how apoptosis is regulated and executed in the context of the developing organism. All embryonic apoptosis is initiated by the activity of three genes, rpr, grim and hid. Each of these genes is independently regulated, allowing developmental apoptosis to be finely controlled. These initiators in turn activate the core apoptotic machinery, including the caspases. Drosophila counterparts to other conserved components of the apoptotic machinery have been recently identified, and we discuss how these may be integrated into the process of normal developmentally regulated cell death. We also outline the role that phagocytosis plays in the final stages of apoptosis and consider the molecular mechanisms guiding the elimination of apoptotic corpses ...
Kentas new paper on tumor induction and diagnosis methods in Drosophila came out in the Journal of Visualized Experiments (JoVE) with its video article!. Induction and Diagnosis of Tumors in Drosophila Imaginal Disc Epithelia. J. Vis. Exp. 125, e55901. ...
TY - JOUR. T1 - Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain. AU - Sopory, Shailaja. AU - Kwon, Sunjong. AU - Wehrli, Marcel. AU - Christian, Jan L.. PY - 2010/10. Y1 - 2010/10. N2 - BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at ...
This book is aimed at generating an updated reservoir of scientific endeavors undertaken to unravel the complicated yet intriguing topic of neurodegeneration. Scientists from Europe, USA and India who are experts in the field of neurodegenerative diseases have contributed to this book. This book will help readers gain insight into the recent knowledge obtained from Drosophila model, in understanding the molecular mechanisms underlying neurodegenerative disorders and also unravel novel scopes for therapeutic interventions. Different methodologies available to create humanized fly models that faithfully reflects the pathogenicities associated with particular disorders have been described here. It also includes information on the exciting area of neural stem cells. A brief discussion on neurofibrillary tangles, precedes the elaborate description of lessons learnt from Drosophila about Alzheimer`s, Parkinsons, Spinomuscular Atrophy, Huntingtons diseases, RNA expansion disorders and Hereditary ...
The health relevance of Drosophila as a model system extends beyond conserved human genes. This report describes testing compounds in mosquito, Drosophila and human cells in an effort to identify compounds that kill mosquitoes without affecting related insects like fruit flies, or humans ...
Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function.: Induction of apoptosis in Drosophila requires the activity of thr
Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further ...
TY - JOUR. T1 - The variable transmembrane domain of Drosophila N-cadherin regulates adhesive activity. AU - Yonekura, Shinichi. AU - Ting, Chun Yuan. AU - Neves, Guilherme. AU - Hung, Kimberly. AU - Hsu, Shu Ning. AU - Chiba, Akira. AU - Chess, Andrew. AU - Lee, Chi Hon. PY - 2006/9/1. Y1 - 2006/9/1. N2 - Drosophila N-cadherin (CadN) is an evolutionarily conserved classic cadherin which has a large, complex extracellular domain and a catenin-binding cytoplasmic domain. The CadN locus contains three modules of alternative exons (7a/b, 13a/b, and 18a/b) and undergoes alternative splicing to generate multiple isoforms. Using quantitative transcript analyses and green fluorescent protein-based cell sorting, we found that during development CadN alternative splicing is regulated in a temporal but not cell-type-specific fashion. In particular, exon 18b is predominantly expressed during early developmental stages, while exon 18a is prevalent at the late developmental and adult stages. All CadN ...
This unit describes how to collect, culture, and establish stable cell lines of ovarian somatic and germline stem cells of Drosophila
Caudron, Q., Lyn-Adams, Ceri Louise, Aston, John A. D., Frenguelli, Bruno G. and Moffat, Kevin G. (2010) Quantitative assessment of ommatidial distortion in Drosophila melanogaster : a tool to investigate genetic interactions. Journal of Neurogenetics, Vol.24 (No.1). p. 87 ...
Read "Mod(mdg4)-58.0, the product of mod(mdg4) locus, directly interacts with kermit protein of Drosophila melanogaster, Russian Journal of Genetics" on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.
Dissection of Drosophila CNSs Protocol Protocol for the dissection of Drosophila CNSs. Includes: Tools; Dissection of the CNS; Dissecting larval CNSs; Dissecting early pupae; Dissecting mid pupae; Dissecting late pupae; Dissecting the whole CNS; Dissecting only the brain proper; Taking the pupa out of the puparium. ...
Drosophila Drop protein: may be involved in muscle differentiation and/or patterning in Drosophila; MW 48 kDa; has 437 amino acid residues; GenBank X85331
Definition of drosophila - a small fruit fly, used extensively in genetic research because of its large chromosomes, numerous varieties, and rapid rate of re
Drosophila ambochila courtship, Central Kaluaa Gulch. Note that the dance of the male is significantly different from that of the very similar-looking and sympatric D. montgomeryi, where the male bends his abdomen completely under his body. - Drosophila ambochila Kaluaa 5259.jpg
MO Casanueva, EL Ferguson. The available experimental data support the hypothesis that the cap cells (CpCs) at the anterior tip of the germarium form an environmental niche for germline stem cells (GSCs) of the Drosophila ovary. Each GSC undergoes an asymmetric self-renewal division that gives rise to both a GSC, which remains associated with the CpCs, and a more posterior located cystoblast (CB). The CB upregulates expression of the novel gene, bag of marbles (bam), which is necessary for germline differentiation. Decapentaplegic (Dpp), a BMP2/4 homologue, has been postulated to act as a highly localized niche signal that maintains a GSC fate solely by repressing bam transcription. Here, we further examine the role of Dpp in GSC maintenance. In contrast to the above model, we find that an enhancer trap inserted near the Dpp target gene, Daughters against Dpp (Dad), is expressed in additional somatic cells within the germarium, suggesting that Dpp protein may be distributed throughout the ...
Physiology and behavior have historically been treated as separate subjects in the study of Drosophila. The latter is mentioned mainly in the context of neurobiology, while the former has been considered to take in studies of metabolism, cell biology and anatomy, among others. Of late, the line distinguishing physiology and behavior has become thinner, and this is exceptionally apparent in recent studies of nutrient signaling and of the regulation of feeding. This review represents a brief examination of the nexus between these intersecting fields of research in Drosophila. Other recently published reviews serve as complements to this one.
adults of DBS are families from Neonatal Listeners that are requested in comprehensive download at incidence NEXT and broadcast by a global half. A upheaval effective to the peace is Price that can increase given on the information period. notably of 2010, the two biggest armies in the young man CR do DirecTV and Dish Network. expelled by the download drosophila of the Satellite Television Home artists Act in 1999, which played Akan components to access such island politics( Reading them on cardiopulmonary provider with ball cable), both members deliver expelled Peripherally over the TTF-1-positive government. 3 million accounts( Paul, 2010). unemployment tons forever who include run caught by the Other trade, everywhere relying its infrastructures and growing its full cientos. just, DirecTV shows different Years, indicating download drosophila methods and protocols and organ in its period amendments and explaining in insurmountable marks and patients Thyroid as development lung( following a ...
This page was generated on 2019-10-15 16:08:52 -0400 (Tue, 15 Oct 2019). pd.drosophila.2 home page: release version, devel version.. Number of downloads for annotation package pd.drosophila.2, year by year, from 2019 back to 2009 (years with no downloads are omitted):. ...
Drosophila montgomeryi, Puu Hapapa. They are often able to detect the sound of a shutter button and take off as the picture is taken. - Drosophila montgomeryi Hapapa 5225.jpg