TY - JOUR. T1 - Efficacy and safety of single-agent pertuzumab, a human epidermal receptor dimerization inhibitor, in patients with non-small cell lung cancer. AU - Herbst, Roy S.. AU - Davies, Angela M.. AU - Natale, Ronald B.. AU - Dang, Thao P.. AU - Schiller, Joan H.. AU - Garland, Linda L.. AU - Miller, Vincent A.. AU - Mendelson, David. AU - Van Den Abbeele, Annick D.. AU - Melenevsky, Yulia V. AU - De Vries, Daniel J.. AU - Eberhard, David A.. AU - Lyons, Benjamin. AU - Lutzker, Stuart G.. AU - Johnson, Bruce E.. PY - 2007/10/15. Y1 - 2007/10/15. N2 - Purpose: Pertuzumab, a first-in-class human epidermal receptor 2 (HER2) dimerization inhibitor, is a humanized monoclonal anti-HER2 antibody that binds HER2s dimerization domain and inhibits HER2 signaling. Based on supporting preclinical studies, we undertook a Phase II trial of pertuzumab in patients with recurrent non - small cell lung cancer (NSCLC). Experimental Design: Patients with previously treated NSCLC accessible for core biopsy ...
Semantic Scholar extracted view of A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. by Kermit L. Carraway et al.
WXG100 proteins form dimeric complexes, studied using FRET.(A) Schematic diagram of the FRET experiments. Fluorescence donor, Alexa 488 (green), and fluorescenc
Pertuzumab, a humanized monoclonal antibody and the first in the class of agents called the HER2 dimerization inhibitors, impairs the ability of HER2 to bind to other members of the HER family, MW: 148 KD ...
Comparison of the dimeric interactions of SARAH domains based on computational alanine scanning. (a, b, c) Ribbon representations depicting the side chains of residues having dimeric interactions derived from the computational alanine scanning of SARAH dimeric interfaces are shown for the MST1-RASSF5 SARAH heterodimer (a), the MST2 SARAH homodimer (b) and the MST1 SARAH homodimer (c). Residues with ΔΔGbind > 1.0 kcal mol−1 in computational alanine scanning are represented as stick models. Among the residues, Trp369, Ile374 and Glu387 of RASSF5 and Phe437 and Leu440 of MST2 are not seen in the figure and are not labelled for clarity. Residues that have polar interactions in the dimeric interface are shown in green. Red balls represent the water molecules mediating the hydrogen bonds between the two protomers. For the MST1-RASSF5 SARAH heterodimer (a), the light blue ribbon represents the backbone structure of the MST1 SARAH domain and the light pink ribbon represents that of the RASSF5 SARAH ...
Autor: Richter, Klaus et al.; Genre: Zeitschriftenartikel; Im Druck veröffentlicht: 2003; Titel: Sti1 is a non-competitive inhibitor of the Hsp90 ATPase - Binding prevents the N-terminal dimerization reaction during the ATPase cycle
Signaling by receptor tyrosine kinases (RTKs) involves ligand-induced dimerization of receptors within the plasma membrane, triggering subsequent downstream signaling events. Although the transmembrane domains play an important role in dimerization, the importance of their interactions in transmembrane signaling is not clearly understood. Here, I highlight recent research that describes the intrinsic propensity of the single transmembrane domains of all 58 human RTKs to self-interact and suggest that these interactions could be exploited for designing peptides to inhibit signaling through these receptors. Such "interceptor" peptides would be potentially valuable as therapeutic tools for treating disease symptoms caused by excessive or ectopic RTK signaling.. ...
Antibodies for proteins involved in protein dimerization activity pathways, according to their Panther/Gene Ontology Classification
Journal Article: Structures of the Sgt2/SGTA Dimerization Domain with the Get5/UBL4A UBL Domain Reveal an Interaction that Forms a Conserved Dynamic Interface ...
Christian Ebeling wrote: , , Hello, , i need for my project membran proteins from any organism which forms a , specific heterodimer with a strong affinity. This heterodimer should , also have the property of easy overproduction and purification in , E.coli. Has anyone an idea? Na/K-ATPase and H/K-ATPase both are heterodimers of a catalytic alpha- and a beta-subunit which seems to work as a kind of scaffold for alpha. These proteins have definetly been expressed in Xenopus oocytes and in yeast, I am not sure about E. coli (the beta subunit is a glycoprotein ...
Hello, i need for my project membran proteins from any organism which forms a specific heterodimer with a strong affinity. This heterodimer should also have the property of easy overproduction and purification in E.coli. Has anyone an idea? Christian e-mail: cebelin at gwdg.de ...
We will determine the contributions of the four receptor tyrosine kinase (RTK) domains to the energetics of RTK lateral dimerization. The six receptors chosen f...
S combinations, the sets of GPCR dimers are almost entirely unknown and thus their dominant roles are still poorly understood. Techniques to observe the
Nikki works on characterizing pharmaceutically relevant membrane protein complexes to link changes in structure and dynamics to function. Namely, she works with a G protein-coupled receptor called the adenosine A2a receptor to elucidate structural details and functional consequences of homo-dimerization. The A2a receptor regulates cardiac function and several processes within the central nervous system; the outcome of this research will facilitate improved rational drug design to target A2a receptor oligomers in the treatment of disorders such as inflammation, fibrosis, schizophrenia and Parkinsons disease.. ...
ID1 / BHLHB24, 0.4 ml. |div class=value|The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with members of the basic HLH family of transcription factors.
Na+/H+ antiporter of 386 aas and 13 predicted TMSs, NapA. The 3-d structure is known (PDB# 4BWZ; 4BZ2; 4BZ3). In the NapA structure, the core and dimerization domains are in different positions to those seen in the E. coli NhaA, and a negatively charged cavity is open to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding directly. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface (Lee et al. 2013). ...
Antibodies to confirm expression iDimerize Homodimer (DmrB) and Heterodimer (DmrA and DmrC) system fusion proteins. Also detects FKBP12 and FRB fusions from ARGENT Regulation Kits.
Antibodies to confirm expression iDimerize Homodimer (DmrB) and Heterodimer (DmrA and DmrC) system fusion proteins. Also detects FKBP12 and FRB fusions from ARGENT Regulation Kits.
May be involved in intracellular vesicle traffic. Inhibits ATF4-mediated transcription, possibly by dimerizing with ATF4 to form inactive dimers that cannot bind DNA. May be involved in regulating bone mass density through an ATF4-dependent pathway. May be involved in cell cycle progression.
It might be tempting to make a 1X soltuion with primers included, store it in the freezer, and thaw it as you need to use it. The problem with this: primer dimers may amplify. Obviously the degree to which this is an issue will depend on your primers, but it is likely worth avoiding by sticking with the 2X freezer stock. Also, there may be issues with the proteins stability upon freezing in a lower buffer/stabilizer concentration ...
1B72: Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation.
4FMM: Dimeric Sfh3 has structural changes in its binding pocket that are associated with a dimer-monomer state transformation induced by substrate binding.
Sigma-Aldrich offers abstracts and full-text articles by [Javier A Menendez, Barbara Schroeder, Susan K Peirce, Luciano Vellon, Adriana Papadimitropoulou, Ingrid Espinoza, Ruth Lupu].
The first examples of carbonyl heterocubane-type clusters, [Fe4(μ3-Q)2(μ3-AsMe)2(CO)12] (2, Q = Se (a), Te (b)), which simultaneously contain elements of group 15 and 16, were obtained by thermolysis of [Fe3(μ3-Q)(μ3-AsMe)(CO)9] (1) in acetonitrile. The clusters 2 possess a cubic Fe4Q2As2 core with alternati
Moonens, K., Y. Hamway, M. Neddermann, M. Reschke, N. Tegtmeyer, T. Kruse, R. Kammerer, R. Mejías-Luque, B. B. Singer, S. Backert, et al., adhesin HopQ disrupts dimerization in human CEACAMs., EMBO J, vol. 37, issue 13, 2018 Jul 02. ...
A dimer is a macromolecule that is composed of two equal components (monomers). These components can be identical (homodimer) or slightly different (heterodimer). ...
PROMER performs both functions of primer and probe in a single nucleic acid. As a result, PROMER requires smaller amount of oligos, reduces dimer formation, and is more cost-effective. ...
The importance of ErbB receptors in development is proven from the analysis of genetically modified mice. Indeed, null mutations in individual ErbB loci are lethal. More specifically, depending upon the genetic background of the host, loss of ErbB1 leads to embryonic or perinatal lethality with mice showing abnormalities in multiple organs including the brain, skin, lung and gastrointestinal tract (Miettinen et al., 1995; Sibilia and Wagner, 1995; Threadgill et al., 1995; Sibilia et al., 1998). ErbB2 null mice die at midgestation (E10.5) due to trabeculae malformation in the heart (Lee et al., 1995), a phenotype that is shared by ErbB4 knockout mice (Gassmann et al., 1995). In addition, through genetic rescue of heart development via myocardial expression of an ErbB2 transgene, a further role for ErbB2 in peripheral nervous system development has been demonstrated (Morris et al., 1999). In the case of ErbB3, most knockout mice die by E13.5, displaying normal heart trabeculation but defective ...
The ErbB family of receptors is dysregulated in a number of cancers, and the signaling pathway of this receptor family is a critical target for several anti-cancer drugs. Therefore, a detailed understanding of the mechanisms of receptors activation is critical. However, despite a plethora of biochemical studies and single particle tracking experiments, the early molecular mechanisms involving epidermal growth factor (EGF) binding and EGF receptor (EGFR) dimerization are not as well understood. Due to the large disparity of time and length scales involved in receptor dimerization reactions, we adapt the coarse-grained Monte Carlo (CGMC) simulation framework to enable the simulation of in vivo receptor diffusion and dimerization. Using the CGMC method, spatial modeling of ligand-mediated membrane receptor dimerization reaction dynamics was performed. Furthermore, the simulations demonstrate the importance of spatial heterogeneity in membrane receptor localization. Mathematical models, especially ...
Full title: Berry phase induced dimerization in one-dimensional quadrupolar systems. Lecturer: Karlo Penc (Wigner Res. Inst.). We investigate the effect of the Berry phase on quadrupoles that occur, for example, in the low-energy description of spin models. Specifically, we study here the one-dimensional bilinear-biquadratic spin-one model. An open question for many years about this model is whether it has a nondimerized fluctuating nematic phase. The dimerization has recently been proposed to be related to Berry phases of the quantum fluctuations. We use an effective low-energy description to calculate the scaling of the dimerization according to this theory and then verify the predictions using large scale density-matrix renormalization group simulations, giving good evidence that the state is dimerized all the way up to its transition into the ferromagnetic phase. We furthermore discuss the multiplet structure found in the entanglement spectrum of the ground state wave functions.. ...
To test the hypothesis that the difference in the directions of DNA bending induced by transcription activation domains linked to the bZIP region of Fos versus Jun was due to a preferred orientation of heterodimer binding to the AP‐1 site, we examined bending at additional binding sites. The relative directions of DNA bending induced by the transcription activation domains fused to the Fos versus Jun bZIP domains at the M, X, MX, XM and X6G sites were similar (Figure 5), suggesting that Fos-Jun heterodimers bind to these sites in the same preferred orientation. These AP‐1 sites share an asymmetric central C:G base pair. To examine the influence of this central base pair on the orientation of heterodimer binding and to explore the relationship between binding orientation and DNA bending, we examined DNA bending at two sites that contained a central G:C base pair. One site (W) is identical to the M site with the exception of transversion of the central C:G base pair to a G:C base pair. The ...
There are ten isozymes of adenylyl cyclases in mammals, adenylyl cyclase type I-X, (ADCY I-X); In mammals adenylyl cyclase plays an important role in signal transduction pathways in which cAMP is a secondary messenger[12]. ADCY I-IX all share a general structure; They are composed of two trans-membrane regions (M1, M2) which are composed of six membrane-spanning helices and function to keep the enzyme anchored in the membrane, and two cytoplasmic regions (C1, C2) which can be further sub divided (C1a, C1b, C2a, C2b) and are responsible for all catalytic activity, and regulation by G-proteins and forskolin[12]. In solution, the C1a and C2a domains can form heterodimers with each other, either in the same or different enzymes, or they can form homodimers with their identical units on different enzymes[3]. The C1b domain is very large (≈15 kDa) with many regulatory sites, and has a variable structure across isozymes; while the C2b domain is nearly non-existent in many isozymes, and has yet to be ...
There are ten isozymes of adenylyl cyclases in mammals, adenylyl cyclase type I-X, (ADCY I-X); In mammals adenylyl cyclase plays an important role in signal transduction pathways in which cAMP is a secondary messenger[13]. ADCY I-IX all share a general structure; They are composed of two trans-membrane regions (M1, M2) which are composed of six membrane-spanning helices and function to keep the enzyme anchored in the membrane, and two cytoplasmic regions (C1, C2) which can be further sub divided (C1a, C1b, C2a, C2b) and are responsible for all catalytic activity, and regulation by G-proteins and forskolin[13]. In solution, the C1a and C2a domains can form heterodimers with each other, either in the same or different enzymes, or they can form homodimers with their identical units on different enzymes[3]. The C1b domain is very large (≈15 kDa) with many regulatory sites, and has a variable structure across isozymes; while the C2b domain is nearly non-existent in many isozymes, and has yet to be ...
The discovery of potent and selective prostamide antagonists provided definitive evidence for a separate pharmacological entity and, in turn, impetus for cloning the receptor. Clues for the identity of the receptor were provided by taking into account the existent, pertinent information at that point in time. This is summarized as follows: 1) prostamide F2α and bimatoprost-responsive preparations also responded to PGF2α (although in many cases PGF2α activation was not accompanied by responses to prostamide F2α and its analogs); 2) bimatoprost-induced ocular hypotensive activity was abolished in FP receptor knockout mice (Crowston et al., 2005; Ota et al., 2005); 3) an FP receptor mRNA splicing variant was shown to be active (Pierce et al., 1997, Fujino et al., 2000); 4) prostanoid receptor heterodimerization was shown to create novel activation/binding sites (Wilson et al., 2004). These data suggested that the FP receptor gene was key to encoding the prostamide receptor. Thus, attention was ...
Thus, caspase-8 has a crucial pro-survival role in shutting off RIPK1 and preventing it from inducing necroptosis. But how, then, does a cell wherein caspase-8 is activated not die by apoptosis instead? How does it live to develop into a healthy mouse or human? Caspase-8 activates through dimerization; two molecules of caspase-8 are forcefully brought together to form an active complex. The previously mentioned adapter protein FADD is essential for initiating this process of dimerization, but recent evidence has shown that once a few dimers are formed around clusters of FADD, more caspase-8 dimers can form independent of FADD. An important clue comes from the observation that caspase-8 does not only activate when it dimerises with itself to form a homodimer, but can also when it forms a dimer with its cousin, FLIP (FLICE-like Inhibitory Protein), to form a heterodimer. FLIP is similar to caspase-8 but has no protease activity, it is an inactive caspase homologue. The heterodimer is active, but ...
HNF1 homeobox A (hepatocyte nuclear factor 1 homeobox A), also known as HNF1A, is a human gene on chromosome 12. It is ubiquitously expressed in many tissues and cell types. The protein encoded by this gene is a transcription factor that is highly expressed in the liver and is involved in the regulation of the expression of several liver-specific genes. Mutations in the HNF1A gene have been known to cause diabetes. The HNF1A gene also contains one of 27 SNPs associated with increased risk of coronary artery disease. The HNF1A gene resides on chromosome 12 at the band 12q24.2 and contains 9 exons. This gene produces 8 isoforms through alternative splicing. This protein belongs to the HNF1 homeobox family. It contains 3 functional domains: an N-terminal dimerization domain (residues 1-32), a bipartite DNA-binding motif containing an atypical POU-homeodomain (residues 98-280), and a C-terminal transactivation domain (residues 281-631). There is also a flexible linker (residues 33-97) which connects ...
Shop Jun dimerization protein ELISA Kit, Recombinant Protein and Jun dimerization protein Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
Procaspase-3 is the dimeric precursor of the apoptosis-executioner caspase-3 that displays little activity in vitro. The interface of the procaspase-3 dimer plays a critical role in zymogen maturation, although the active sites are not located at the dimer interface. We show that replacement of valine 266, the residue at the center of the procaspase-3 dimer interface, with arginine or glutamate results in an increase in enzyme activity of about 25-60-fold, representing a pseudo-activation of the procaspase. In contrast, substitution of V266 with histidine abolishes the activity of the procaspase-3 as well as that of the mature caspase. This mutant can be activated by protein exposure at pH 5, followed by dialysis at neutral pH. While the mutations do not affect the dimeric properties of the procaspase, we show that the V266E mutation may affect the formation of a loop bundle that is important for stabilizing the active sites. In contrast, the V266H mutation affects the positioning of loop L3, ...
The major findings of this study are as follows: (1) Adeno-virus-mediated gene transfer of c-jun and c-fos can effectively and specifically establish an experimental model for AP-1 activation in human ECs, (2) AP-1 activation can directly induce gene expression of an adhesion molecule, ICAM-1, and a chemokine, MCP-1, which are considered to be the molecular markers of EC activation and are implicated in various EC pathological processes, from inflammation to atherogenesis, (3) The AP-1-mediated induction of ICAM-1 can occur independently of activation of the NF-κB pathway.. AP-1 transcription factors are formed through dimerization between the members of the Fos and Jun families.27 Recent studies have suggested AP-1 to be an important regulator in endothelial function and pathological processes. First, the AP-1 binding motif has been identified as a recurrent sequence in the promoters of many genes biologically significant in the conversion of ECs into a proinflammatory or procoagulant status, ...
GXXXG-Mediated Parallel and Antiparallel Dimerization of Transmembrane Helices and Its Inhibition by Cholesterol: Single-Pair FRET and 2D IR ...
The invention provides a catalytic method for the dimerization or codimerization or oligomerization, particularly selectively, of olefins, carried out under pressure, in a reaction zone 1 containing a solid catalyst bed into which is disposed a plurality of hollow internal spaces 6.3 defined by walls and through which an autogenous thermoregulation fluid flows, in the form of a sheet, after passing through a central distributing zone 6.1 and distributing zones 6.2 and before passing through collecting zones 6.4 and into a central collecting zone 6.5.
The self heating process of Tetrafluoroethylene caused by an exothermic dimerization reaction was studied. The heat of reaction can lead to a thermal explosion by the decomposition of the Tetrafluoroethylene.. Different reaction kinetics, including multistep kinetics, were used to describe the mass balance. The COMSOL Chemical Engineering Module was used to perform the simulation which was validated by experiments and yielded well-correlating results.. ...
Journal Article: Incomplete Peierls-like chain dimerization as a mechanism for intrinsic conductivity and optical transparency: A La-Cu-O-S phase with mixed-anion layers as a case study ...
MORAN, JAMES PAUL, "POLAR EFFECTS ON THE RATES OF FORMATION AND DIMERIZATION OF FREE RADICALSFROM ETHYL ACETATE" (1963). Doctoral Dissertations. AAI6403549 ...
Thermochemistry of HO2 + HO2 → H2O4: Does HO2 Dimerization Affect Laboratory Studies?: Self-reaction is an important sink for the hydroperoxy radical (HO2) in t
In dimerization To 1-Butene, Axens proposes a portfolio of technology licenses, catalysts, adsorbents and services such as consulting, software or operations support to respond to your operational n
Dimerization ranitidine - All Drugs Without a Prescription. We accept Bitcoin. We work 20 years. We have over 800.000 satisfied customers.
Biological Process: cranial nerve development; endocardial cushion development; ERBB2 signaling pathway; heart development; MAPK cascade; negative regulation of cell adhesion; negative regulation of ERBB signaling pathway; negative regulation of neuron apoptosis; negative regulation of secretion; negative regulation of signal transduction; neuron apoptosis; peptidyl-tyrosine phosphorylation; peripheral nervous system development; phosphatidylinositol phosphorylation; phosphoinositide 3-kinase cascade; positive regulation of cardiac muscle tissue development; positive regulation of gene expression; positive regulation of phosphoinositide 3-kinase cascade; positive regulation of protein kinase B signaling; regulation of cell motility; regulation of cell proliferation; Schwann cell differentiation; signal transduction; transmembrane receptor protein tyrosine kinase signaling pathway; wound healing ...
Filament formation is required for most of the functions of actin. However, the intermonomer interactions that stabilize F-actin have not been elucidated because of a lack of an F-actin crystal structure. The Holmes muscle actin model suggests that a
On the cover: Twenty-five TLR4 TIR dimer models in which the BB loop of one TIR domain interacts with the E helix of the other. Toshchakov et al. screened a library of TLR4 TIR-derived decoy peptides to demonstrate that peptides derived from these regions inhibit TLR4 signaling by binding to the TLR4 TIR. Toshchakov, V. Y., H. Szmacinski, L. A. Couture, J. R. Lakowicz, and S. N. Vogel. 2011. Targeting TLR4 signaling by TLR4 Toll/IL-1 receptor domain-derived decoy peptides: Identification of the TLR4 Toll/IL-1 receptor domain dimerization interface. J. Immunol. 186: 4819-4827. ...