Intracellular cAMP and cGMP levels are increased in response to a variety of hormonal and chemical stimuli; these nucleotides play key roles as second messenger signals in modulating myriad physiological processes. The cAMP-dependent protein kinase and cGMP-dependent protein kinase are major intrace …
A comparative analysis on protein kinases encoded in the completely sequenced genomes of two plant species, namely Arabidopsis thaliana and Oryza sativa spp japonica cv. Nipponbare is reported in the current study. We have analysed 836 and 1386 kinases identified from A. thaliana and the $O$. sativa genomes respectively. Their classification into known subfamilies reveals selective expansions of the plant receptor kinase subfamily comprising of Ser/Thr receptor kinases. The presence of calciumdependent kinases, and potential absence of cyclic nucleotide-dependent protein kinase of the type found in other (non-plant) eukaryotes, are other notable features of the two plant kinomes described here. An analysis on domain organisation of each of the protein kinases encoded in the plant genome has been carried out. Uncommon composition of functional domains like nuclear translocation factor domain, redox sensor domain (PAS), ACT and lectin domains are observed in few protein kinases shared between the ...
Welcome to the weekly Orientation for The Career Center (NYC). Please bring your card with you if you are a member of an entertainment union. Orientation for The Career Center (NYC) is held every Monday at 12 nn and some Monday evenings at 5 pm.. ...
Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP) elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases (PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results: We modeled dynamically concentration-dependent responses of pathway ...
annotations (the reliablity of the annotated protein expression using immunohistochemically (IH) stained on human tissues, the reliablity of the annotated protein expression in immunofluorescently (IF) stained human cell lines, tissue specificity (the distribution of antibody staining or protein expression in human cell types), cell line specificity (the distribution of RNA abundance in cell lines) and subcellular location (based on immunofluorescent staining of cell lines ...
C1q TNF Related Protein 3 (CTRP3) is a member of a family of secreted proteins that exert a multitude of biological effects. Our initial work identified CTRP3s promise as an effective treatment for Nonalcoholic fatty liver disease (NAFLD). Specifically, we demonstrated that mice fed a high fat diet failed to develop NAFLD when treated with CTRP3. The purpose of this current project is to identify putative receptors which mediate the hepatic actions of CTRP3. Methods We used Ligand-receptor glycocapture technology with TriCEPS™-based ligand-receptor capture (LRC-TriCEPS; Dualsystems Biotech AG). The LRC-TriCEPS experiment with CTRP3-FLAG protein as ligand and insulin as a control ligand was performed on the H4IIE rat hepatoma cell line. Results Initial analysis demonstrated efficient coupling of TriCEPS to CTRP3. Further, flow cytometry analysis (FACS) demonstrated successful oxidation and crosslinking of CTRP3-TriCEPS and Insulin-TriCEPS complexes to cell surface glycans. Demonstrating the
For years, scientists have been in disagreement as to whether the amyloid plaques cause Alzheimers disease or whether they are a byproduct of some other process. This is the first animal model to show that amyloid and deficits in learning and memory are associated, says D. Stephen Snyder, Ph.D., Program Director, Etiology of Alzheimers Disease, NIA. However, whether the deficits are caused by or merely correlate with the presence of amyloid remains unresolved. Further testing with this model may help us understand the relationship between plaques and behavior, something we need to know for the development of effective drug therapies ...
This project collected, examined, and analyzed 217 fish representing three species at 10 stations in the U.S. portion of the Yukon River Basin (YRB) from May to October 2002. Four sampling sites were located on the Yukon River; two were located on the Porcupine River, and one site was on each of the Ray, Tanana, Tolavana, and Innoko Rivers. Norther pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) were weighed and measured, and examined in the field for external and internal lesions, and liver, spleen, and gonads were weighed to compute somatic indices. Selected tissues and fluids were collected and preserved for analysis of fish health and reproductive biomarkers. Composite samples of whole fish from each station were grouped by species and gender and analyzed for organochlorines and elemental contaminants and for dioxin-like activity using H4IIE rat hepatoma cell bioassay....
The aim of this PhD thesis was to elucidate the structural and functional differences of CBS-PPases in comparison to family II PPases lacking the regulatory insert. To this end, we expressed, purified and characterized the CBS-PPases from Clostridium perfringens (cpCBS-PPase) and Moorella thermoacetica (mtCBS-PPase), the latter lacking a DRTGG domain. Both enzymes are homodimers in solution and display maximal activity against PPi in the presence of Co2+ and Mg2+. Uniquely, the DRTGG domain was found to enable tripolyphosphate hydrolysis at rates similar to that of PPi. Additionally, we found that AMP and ADP inhibit, while ATP and AP4A activate CBSPPases, thus enabling regulation in response to changes in cellular energy status ...
Nitrogenase is a complex metal-containing enzyme that catalyzes the conversion of nitrogen gas to ammonia. During nitrogenase catalysis the Fe protein and the molybdenum-iron protein associate and dissociate in a manner resulting in the hydrolysis of two molecules of MgATP and the transfer of at least one electron to the MoFe protein. The role of nucleotide binding and hydrolysis in nitrogenase catalysis is one of the most fascinating aspects of nitrogenase function. The Fe protein upon binding to MgATP undergoes a huge conformational change which is important for subsequent steps of nitrogenase reaction mechanism. Therefore structural characterization of the Fe protein bound to MgATP will provide a basis on how MgATP binding promotes the complex formation whereas hydrolysis to MgADP leads to the dissociation of the macromolecular complex structure. Towards these ends we have conducted structural studies on a site-directed variant of the Fe protein which is a close mimic of the MgATP ...
The concentration of guanosine 3′,5′-monophosphate (cGMP) controls the response to light in the retina. Binding of cGMP to a plasma membrane cation channel maintains a small calcium flux. Light promotes the degradation of cGMP, allowing these cyclic nucleotide-gated channels to close, resulting in hyperpolarization and a fall in intracellular calcium concentration. Production of cGMP is intimately associated with this changing calcium concentration such that when calcium is high, guanylyl cyclase-activating proteins (GCAPs) inhibit guanylate cyclase (GC) activity, and when calcium is low, GCAPs activate GC activity. However, in vitro the responsiveness of GCAPs to calcium is outside the range of calcium concentrations present in the retina. Peshenko and Dizhoor report that the Mg2+ concentration sets the dynamic range of calcium concentrations over which GCAPs regulate GC activity in assays with recombinant GCAP and outer segment membranes or mouse retina homogenate. Tryptophan fluorescence ...
Biology (11th Edition) answers to Chapter 50 - Osmotic Regulation and the Urinary System - Review Questions - Synthesize 1b including work step by step written by community members like you. Textbook Authors: Raven, Peter; Johnson, George; Mason, Kenneth; Losos, Jonathan; Singer, Susan , ISBN-10: 1-25918-813-2, ISBN-13: 978-1-25918-813-8, Publisher: McGraw-Hill Education