Fingerprint Dive into the research topics of Duplication of the Distal Long Arm of Chromosome 15: Report of Three New Patients and Review of the Literature. Together they form a unique fingerprint. ...
Test Instructions Navigate to Site Administration , Development , Purge all caches and Purge all caches View the div#notice element on the Purge all caches page, itself a div.generalbox, and note that bottom left and bottom right corners now have the same border-radius as top right and top left corners. Alternatively, navigate to Site Administration , Notifications; there are usually a few div.generalbox elements there upon which you can verify the change. Alternatively, view or create a Web page resource and then view the resource. The content is presented inside a div.generalbox. All corners should have the same border-radius ...
Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (ANT1), FSHD-related gene 1 (FRG1), FRG2 and DUX4c, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (DUX4) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing FRG1 has been generated, displaying skeletal muscle defects. Results: In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and FRG1 gene promoter, and FRG1 expression, in control and FSHD cells. The FRG1 gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in ...
A recent finding by medical geneticists sheds new light on how facioscapulohumeral muscular dystrophy develops and how it might be treated. More commonly known as FSHD, the devastating disease affects both men and women. FSHD is usually an inherited genetic disorder, yet sometimes appears spontaneously via new mutations in individuals with no family history of the condition. "People with the condition experience progressive muscle weakness and about 1 in 5 require wheelchair assistance by age 40," said Dr. Daniel G. Miller, University of Washington (UW) associate professor of pediatrics in the Division of Genetic Medicine. Dr. Miller and his worldwide collaborators study the molecular events leading to symptoms of FSHD in the hopes of designing therapies to prevent the emergence of symptoms or reduce their severity. In the November 11, 2012 online issue of Nature Genetics, Dr. Miller and Dr. Silvere M. van der Maarel of Leiden University in The Netherlands, along with an international team, ...
Wolf-Hirschhorn syndrome was first documented in 1961: a child with midline fusion defects. Subsequent cytogenetic studies revealed a chromosomal deletion of the short arm of chromosome 4. Clinical features include mental retardation, seizures, distinct facial appearance, and midline closure defects. The former Pitt-Rogers-Danks syndromes, caused by overlapping 4p deletions, now are considered as a part of Wolf-Hirschhorn syndrome.
Facioscapulohumeral muscular dystrophy (FSHD) affects over 25,000 people in the USA alone, making it one of the most prevalent genetic diseases. The genetic mutation underlying FSHD is usually a reduction in the copy number of a macrosatellite repeat on chromosome 4 referred to as D4Z4 (van Deutekom et al., 1993; Wijmenga et al., 1992). This repeat is GC-rich, highly methylated and normally subjected to repeat-induced silencing, which is disrupted in an allele-specific manner by contractions to 10 or fewer copies (van Overveld et al., 2003) or is disrupted on all D4Z4 repeats owing to mutation in the chromatin protein SMCHD1 (de Greef et al., 2009; Hartweck et al., 2013; Lemmers et al., 2012). When silencing at D4Z4 breaks down, an RNA transcript encoding the DUX4 protein (Gabriëls et al., 1999) is expressed. The presence of a poly(A) signal downstream of the D4Z4 repeats on chromosome 4 (chr4) (Dixit et al., 2007) leads to DUX4 expression and explains why disease is associated only with ...
TY - JOUR. T1 - Facioscapulohumeral muscular dystrophy region gene 1 Is a dynamic RNA-associated and actin-bundling protein. AU - Sun, Chia Yun Jessica. AU - Van Koningsbruggen, Silvana. AU - Long, Steven W.. AU - Straasheijm, Kirsten. AU - Klooster, Rinse. AU - Jones, Takako I.. AU - Bellini, Michel. AU - Levesque, Lyne. AU - Brieher, William M.. AU - Van Der Maarel, Silvère M.. AU - Jones, Peter L.. PY - 2011/8/12. Y1 - 2011/8/12. N2 - FSHD region gene 1 (FRG1) is a dynamic nuclear and cytoplasmic protein that, in skeletal muscle, shows additional localization to the sarcomere. Maintaining appropriate levels of FRG1 protein is critical for muscular and vascular development in vertebrates; however, its precise molecular function is unknown. This study investigates the molecular functions of human FRG1, along with mouse FRG1 and Xenopus frg1, using molecular, biochemical, and cellular-biological approaches, to provide further insight into its roles in vertebrate development. The nuclear ...
Facioscapulohumeral muscular dystrophy (FSHD) isan enigmatic inherited disorder, while the disease locus for this condition was mapped some 17 years ago and the mutations associated with the disease are known, the exact identity of the FSHD gene remains elusive
We report on a 4-year-old girl who presented with microcephaly, multiple minor anomalies of face and limbs, congenital heart defect, hypotonia, neuropsychomotor delay, deafness and seizures. A GTG-banded karyotype identified an additional fragment of unknown origin on the terminal region of 4p. Parental karyotypes were normal. FISH analysis using a whole chromosome paint probe for chromosome 4 and subtelomere probes showed a signal on the entire add (4) chromosome and loss of the 4p subtelomere region, respectively. Additional analysis using microsatellite markers for chromosome 4 and whole-genome array comparative genomic hybridization (array-CGH) identified a duplication of the region 4p13 4p16.3. Her karyotype was thus interpreted as an inverted duplication with terminal deletion of 4p: 46,XX,der(4)(:p13 p16.3::p16.3 qter). The clinical features of our patient differed from those typically observed in Wolf-Hirschhorn syndrome and were more compatible with duplication 4(p14 p16.3), with ...
Cooper and Hirschhorn first documented Wolf-Hirschhorn syndrome in 1961. They described a child with midline fusion defects, and subsequent cytogenetic studies revealed a chromosomal deletion of the short arm of chromosome 4.
Epigenetic Gene expression and Chromatin dynamics in Facioscapulohumeral Muscular Dystrophy (FSHD). Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating genetic condition manifest by weakness of facial and upper extremity musculature that presents in the 2nd decade of life. The causative genetic event is a contraction of a subtelomeric array of repeated 3.3 kb sequence units residing on one of two common alleles of chromosome 4. How this array contraction translates into cellular differences that result in weakness of select muscle groups is a fascinating question that is not presently understood. Each D4Z4 repeat unit contains a large open reading frame that encodes a putative double homeodomain containing protein named DUX4 making aberrant expression, or expression of aberrant DUX4 isoforms an attractive mechanism for FSHD pathology. Our long term objectives are to understand how muscle strength is compromised as a result of molecular events initiated by these contractions. With ...
Part 1 (dose escalation, open-label) Part 1 will consist of up to 6 cohorts (A to F) of patients and will evaluate multiple ascending dose levels of ACE-083 in either the tibialis anterior (TA) or biceps brachii (BB) muscle. Patients in each cohort will be enrolled in a 4-week screening period before beginning treatment. A Safety Review Team (SRT) will meet to review data for each cohort when at least 4 patients within a cohort have completed their Day 43 visit prior to dose escalation.. Part 2 (randomized, double-blind, placebo-controlled) Prior to the initiation of Part 2, a review of safety and efficacy data from Part 1 will be conducted to determine whether cohorts for one or both muscles will be pursued in Part 2, as well as the recommended dose level for each muscle. A total of up to 40 new patients (20 patients per muscle) may be enrolled and randomized (3:2) to receive either ACE-083 (n=12) or placebo (n=8) unilaterally or bilaterally (if both sides are affected per inclusion criteria) ...
Author Summary Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary human myopathy affecting groups of skeletal muscles in the face and shoulders. Despite recent advances on the molecular cascade initiated by its main genetic cause, with identification of DUX4 as the main pathogenic agent, how this leads to the specific clinical picture is still poorly understood. Here, we investigated the role of the FAT1 protocadherin gene, located near the FSHD locus, which was repressed by DUX4 in human muscle cells. Disruption of the mouse Fat1 gene causes muscular and non-muscular phenotypes highly reminiscent of FSHD symptoms. We show that Fat1 is required in migrating muscle precursors, and that the altered muscle shapes caused by Fat1 mutations are predictive of early onset defects in muscle integrity in adult mutants, with a topography matching the map of muscles affected in FSHD. In humans, we observed FAT1 lowering in muscle but not brain of foetal cases with canonical FSHD1, and identified
Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD.
Deletion of a subset of the D4Z4 macrosatellite repeats in the subtelomeric region of chromosome 4q causes facioscapulohumeral muscular dystrophy (FSHD) when occurring on a specific haplotype of 4qter (4qA161). Several genes have been examined as candidates for causing FSHD, including the DUX4 homeobox gene in the D4Z4 repeat, but none have been definitively shown to cause the disease, nor has the full extent of transcripts from the D4Z4 region been carefully characterized. Using strand-specific RT-PCR, we have identified several sense and antisense transcripts originating from the 4q D4Z4 units in wild-type and FSHD muscle cells. Consistent with prior reports, we find that the DUX4 transcript from the last (most telomeric) D4Z4 unit is polyadenylated and has two introns in its 3-prime untranslated region. In addition, we show that this transcript generates (i) small si/miRNA-sized fragments, (ii) uncapped, polyadenylated 3-prime fragments that encode the conserved C-terminal portion of DUX4 and ...
Derepression of in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of ...
NSD3 antibody (Wolf-Hirschhorn syndrome candidate 1-like 1) for ICC/IF, IHC-P, WB. Anti-NSD3 pAb (GTX55733) is tested in Human, Mouse, Rat samples. 100% Ab-Assurance.
Learn more about important health issues for FSHD patients, click on the boxes below to learn about specific FSHD health conditions & symptions
If you use this products in your scientific publication, it should be cited in the publication as: Creative Bioarray cat no. If your paper has been published, please click here to submit the Pub Med ID of your paper to get a coupon. ...
Wolfram syndrome (DIDMOAD) is a rare inherited disorder that occurs due to damage to the optic nerve resulting in a worse vision over time.
Wolfram syndrome is a rare genetic condition which affects several systems at the same time thus producing a classic set of symptoms.
Stephen Wolfram demonstrates powerful features in Wolfram Mathematica 9 and Wolfram|Alpha and discusses CDF (Computable Document Format), mobile and cloud implementations.
Melzner, F. , Mark, F. C. , Bock, C. , Langenbuch, M. , Boutilier, R. G. , Claireaux, G. , Gutowska, M. , Wolfram, K. and Pörtner, H. O. (2006 ...
TY - JOUR. T1 - Genetic and physical mapping on chromosome 4 narrows the localization of the gene for facioscapulohumeral muscular dystrophy (FSHD). AU - Mills, K. A.. AU - Buetow, K. H.. AU - Xu, Y.. AU - Ritty, T. M.. AU - Mathews, K. D.. AU - Bodrug, S. E.. AU - Wijmenga, C.. AU - Balazs, I.. AU - Murray, J. C.. PY - 1992/1/1. Y1 - 1992/1/1. N2 - We have used a combination of classical RFLPs and PCR-based polymorphisms including CA repeats and single-strand conformation polymorphisms to generate a fine-structure genetic map of the distal long arm of chromosome 4q. This map is now genetically linked to the pre-existing anchor map of 4pter-4q31 and generates, for the first time, a complete linkage map of this chromosome. The map consists of 32 anchor loci placed with odds of greater than 1,000:1. The high-resolution map in the cytogenetic region surrounding 4q35 provides the order 4cen-D4S171-F11-D4S187-D4S163-D4S139-4qter. When we used somatic cell hybrids from a t(X;4)(p21;q35) translocation, ...
1: Lemmers RJ, Wohlgemuth M, van der Gaag KJ, van der Vliet PJ, van Teijlingen CM, de Knijff P, Padberg GW, Frants RR, van der Maarel SM. Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am J Hum Genet 2007; 81(5):884-94.. 2: Ehrlich M, Jackson K, Tsumagari K, Camaño P, Lemmers RJ. Hybridization analysis of D4Z4 repeat arrays linked to FSHD.Chromosoma 2007; 116(2):107-16.. 3: Lemmers RJ, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der MaarelSM. Somatic mosaicism in FSHD often goes undetected.Ann Neurol 2004 Jun; 55(6):845-50.. 4: Lemmers RJ, Osborn M, Haaf T, Rogers M, Frants RR, Padberg GW, Cooper DN, van der Maarel SM, Upadhyaya M. D4F104S1 deletion in facioscapulohumeral muscular dystrophy: phenotype, size, and detection. Neurology 2003 Jul 22; 61(2):178-83.. 5: Lemmers RJ, de Kievit P, Sandkuijl L, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM. Facioscapulohumeral muscular dystrophy is uniquely associated ...
The parental origin of the de novo deleted chromosome 4 was studied in five cases of Wolf-Hirschhorn syndrome using polymorphic probes mapping in the 4p16.3 region. In all the patients the deleted chromosome was found to be of paternal origin and these results, together with similar ones obtained by another group, make the preferential paternal origin of the de novo chromosome 4 deletion highly significant.. ...
A number of histone methyltransferases have been identified and biochemically characterized, but the pathologic roles of their dysfunction in human diseases like cancer are not well understood. Here, we demonstrate that Wolf-Hirschhorn syndrome candidate 1 (WHSC1) plays important roles in human carcinogenesis. Transcriptional levels of this gene are significantly elevated in various types of cancer including bladder and lung cancers. Immunohistochemical analysis using a number of clinical tissues confirmed significant up-regulation of WHSC1 expression in bladder and lung cancer cells at the protein level. Treatment of cancer cell lines with small interfering RNA targeting WHSC1 significantly knocked down its expression and resulted in the suppression of proliferation. Cell cycle analysis by flow cytometry indicated that knockdown of WHSC1 decreased the cell population of cancer cells at the S phase while increasing that at the G(2)/M phase. WHSC1 interacts with some proteins related to the WNT pathway
Wolf-Hirschhorn syndrome answers are found in the Tabers Medical Dictionary powered by Unbound Medicine. Available for iPhone, iPad, Android, and Web.
FSHD is the third most common muscular dystrophy in man with an estimated incidence of 54 per million. Patients suffer from progressive and irreversible weakness and wasting of the facial, shoulder and upper arm muscles. Approximately 20% of gene carriers become wheelchair dependent. There is no cure for FSHD.. Scientists at LUMC, in collaboration with other academic institutions, have discovered two novel target mechanisms whereby the two forms of FSHD can arise. The mechanisms represent targets for therapeutic intervention.. In addition, cell lines and mouse models of FSHD have been developed and can be used to further research the disease and/or to screen and validate potential therapeutics.. The collaborating institutions represent world-leading expertise in the field of FSHD and can also provide ongoing expertise.. Partner companies are now sought for research collaborations in this field, and licensing of key technologies available at the institutions.. ...
The genetic lesion diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which in turn is what ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate gene whose misexpression may lead to FSHD. As FSHD pathology is most prominent in the musculature, most research and therapy efforts have focused on muscle cells. However, between 50-75% of FSHD patients also exhibit retinal vasculopathy and FSHD muscle has increased levels of vascular-endothelial related transcripts, suggesting an underappreciated vascular component to the disease. Using Xenopus laevis as a model, we have shown a previously unsuspected role for FRG1 in the development of both muscular and vascular structures. Furthermore, overexpression of frg1 displays disrupted muscle and dilated and tortuous vessels, phenocopying the symptoms of FSHD patients. Thus, our work strongly supports a role for FRG1 in FSHD disease pathology ...
The goal of this study is to confirm the genetic status of Registry members with suspected FSHD. Genetic testing (DNA testing) by a blood draw can determine whether a patient has FSHD1, FSHD2, or neither. Clinical trials for FSHD often require patients to have had a genetically confirmed FSHD to participate. This study will increase the number of Registry members able to participate in future clinical trials ...
The information provided herein should not be used for diagnosis or treatment of any medical condition. A licensed medical practitioner should be consulted for diagnosis and treatment of any and all medical conditions. Copyright 2016 Oxbridge Solutions Ltd®. Any distribution or duplication of the information contained herein is strictly prohibited. Oxbridge Solutions Ltd® receives funding from advertising but maintains editorial independence. GPnotebook stores small data files on your computer called cookies so that we can recognise you and provide you with the best service. If you do not want to receive cookies please do not use GPnotebook ...
Article originally appeared on musculardystrophynews.com, October 10, 2017. Resolaris (ATYR1940) improved the muscle strength of nearly two-thirds of adolescents and young adults with early-onse
Study showed that the variability in clinical severity of facioscapulohumeral muscular dystrophy in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation ...
If you are a newly diagnosed parent of a child with Wolf-Hirschhorn Syndrome, this is the place to start. This site is about people just like you.
Yale pharmacology professor Barbara Ehrlich and her team have uncovered a mechanism driving a rare, lethal disease called Wolfram Syndrome and also a potential treatment. Their findings appear in the July 6 edition of Proceedings of the National Academy of Sciences.
Stephen Wolfram introduces the Wolfram Language, with overview and demonstrations, in a video showing the power of this symbolic programming language.
Develop cloud applications, perform high-throughput data analysis or host your knowledge-based startup on Wolframs infrastructure with Wolfram Cloud.
Myotonic dystrophy (DM) and facioscapulohumeral muscular dystrophy (FSHD) are inherited disorders characterized by progressive muscle weakness and loss of muscle tissue. The purpose of this registry is to connect people with DM or FSHD with researchers studying these diseases. The registry will offer individuals with DM and FSHD an opportunity to participate in research that focuses of their diseases. The registry will also help scientists to accomplish research on DM and FSHD and to distribute their findings to patients and care providers ...
SUMMARY Wolf-Hirschhorn syndrome (WHS) is caused by deletions in the short arm of chromosome 4 (4p) and occurs in about one per 20,000 births. Patients with WHS display a set of highly variable characteristics including craniofacial dysgenesis, mental retardation, speech problems, congenital heart defects, short stature and a variety of skeletal anomalies. Analysis of patients with 4p deletions has identified two WHS critical regions (WHSCRs); however, deletions targeting mouse WHSCRs do not recapitulate the classical WHS defects, and the genes contributing to WHS have not been conclusively established. Recently, the human FGFRL1 gene, encoding a putative fibroblast growth factor (FGF) decoy receptor, has been implicated in the craniofacial phenotype of a WHS patient. Here, we report that targeted deletion of the mouse Fgfrl1 gene recapitulates a broad array of WHS phenotypes, including abnormal craniofacial development, axial and appendicular skeletal anomalies, and congenital heart defects. ...
Mutations in human and/or mouse homologs are associated with this disease. Synonyms: Landouzy Dejerine muscular dystrophy; Landouzy-Dejerine muscular dystrophy; Landouzy-Dejerine muscular dystrophy; Muscular dystrophy, Landouzy-Dejerine
PubMed Central Canada (PMC Canada) provides free access to a stable and permanent online digital archive of full-text, peer-reviewed health and life sciences research publications. It builds on PubMed Central (PMC), the U.S. National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature and is a member of the broader PMC International (PMCI) network of e-repositories.
An NIH funded, Senatory Paul D. Wellstone Muscular Dystrophy Cooperative Research Center (MDCRC) has recently been established entitled Biomarkers for therapy of FSHD (facioscapulohumeral muscular dystrophy). This multi-institutional MDCRC will be directed by Charles Emerson, Ph.D. at Boston Biomedical Research Institute. The PI (in addition to having a project that is not being reviewed by the IRB at this time) is a co-director of the Centers Cell core. This core will be a national repository of muscle tissue, cells, and DNA for studies in FSHD.
We report on an 8-month-old girl with a novel unbalanced chromosomal rearrangement, consisting of a terminal deletion of 4p and a paternal duplication of terminal 11p. Each of these is associated with the well-known clinical phenotypes of Wolf-Hirschhorn syndrome (WHS) and Beckwith-Wiedemann syndrome (BWS), respectively. She presented for clinical evaluation of dysmorphic facial features, developmental delay, atrial septal defect (ASD), and left hydro-nephrosis. High-resolution cytogenetic analysis revealed a normal female karyotype, but subtelomeric fluorescence in situ hybridization (FISH) analysis revealed a der(4)t(4;11) (pter;pter). Both FISH and microarray CGH studies clearly demonstrated that the WHS critical regions 1 and 2 were deleted, and that the BWS imprinted domains (ID) 1 and 2 were duplicated on the der(4). Parental chromosome analysis revealed that the father carried a cryptic balanced t(4;11)(pter;pter). As expected, our patient manifests findings of both WHS (a growth ...
Background Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35. FSHD2 is caused by pathogenic mutations of the SMCHD1 gene.. Both genetic defects lead to D4Z4 DNA hypomethylation. In the presence of a polymorphic polyadenylation signal (PAS), DNA hypomethylation leads to inappropriate expression of the D4Z4-encoded DUX4 transcription factor in skeletal muscle. Currently, hypomethylation is not diagnostic per se because of the interference of non-pathogenic arrays and the lack of information about the presence of DUX4-PAS. ...
PubMed journal article A gene for Holt-Oram syndrome maps to the distal long arm of chromosome 1 were found in PRIME PubMed. Download Prime PubMed App to iPhone or iPad.
Am J Med Genet A. 2013 Jul;161A(7):1759-62. doi: 10.1002/ajmg.a.35966. Epub 2013 May 21. Case Reports; Research Support, Non-U.S. Govt
Health,Boston MA (PRWEB) January 24 2013 Facioscapulohumeral muscular dystrophy (FSHD) is a disease most people have never heard of even though it is one of the most common forms of muscular dystrophy. Having a name that is daunting to pronounce and spell doesnt help. But being an
Summary: DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy. DUX4 acts mainly as a transcriptional activator that inhibits myogenesis by orchestrating a gene expression profile representative of a more stem-cell-like state. ...
Labeled FISH probes for identification of subtelomere aberrations using Fluorescent In Situ Hybridization Technique. (Technology) (FE0030) - Products - Abnova