Shop Glutamate/aspartate import solute-binding protein ELISA Kit, Recombinant Protein and Glutamate/aspartate import solute-binding protein Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
K12340 tolC; outer membrane protein K12530 rtxB; ATP-binding cassette, subfamily B, bacterial RtxB K12530 rtxB; ATP-binding cassette, subfamily B, bacterial RtxB K12531 rtxE; ATP-binding cassette, subfamily B, bacterial RtxE K12532 rtxD; membrane fusion protein, RTX toxin transport system K12532 rtxD; membrane fusion protein, RTX toxin transport system K12536 hasD; ATP-binding cassette, subfamily C, bacterial exporter for protease/lipase K12537 hasE; membrane fusion protein, protease secretion system K13408 raxA; membrane fusion protein K13409 raxB; ATP-binding cassette, subfamily B, bacterial RaxB K02452 gspC; general secretion pathway protein C K02453 gspD; general secretion pathway protein D K02454 gspE; general secretion pathway protein E [EC:7.4.2.8] K02455 gspF; general secretion pathway protein F K02456 gspG; general secretion pathway protein G K02457 gspH; general secretion pathway protein H K02458 gspI; general secretion pathway protein I K02459 gspJ; general secretion pathway protein J ...
K07636 phoR; two-component system, OmpR family, phosphate regulon sensor histidine kinase PhoR [EC:2.7.13.3] K07658 phoB1; two-component system, OmpR family, alkaline phosphatase synthesis response regulator PhoP K01077 E3.1.3.1; alkaline phosphatase [EC:3.1.3.1] K01077 E3.1.3.1; alkaline phosphatase [EC:3.1.3.1] K02040 pstS; phosphate transport system substrate-binding protein K04771 degP; serine protease Do [EC:3.4.21.107] K04771 degP; serine protease Do [EC:3.4.21.107] K07650 cssS; two-component system, OmpR family, sensor histidine kinase CssS [EC:2.7.13.3] K07770 cssR; two-component system, OmpR family, response regulator CssR K02406 fliC; flagellin K02406 fliC; flagellin K02406 fliC; flagellin K02406 fliC; flagellin K02406 fliC; flagellin K02405 fliA; RNA polymerase sigma factor for flagellar operon FliA K02556 motA; chemotaxis protein MotA K07651 resE; two-component system, OmpR family, sensor histidine kinase ResE [EC:2.7.13.3] K07775 resD; two-component system, OmpR family, response ...
The molecular determinants necessary and sufficient for recognition of its specific DNA target are contained in the C-domain (H-NSctd) of nucleoid-associated protein H-NS. H-NSctd protects from DNaseI cleavage a few short DNA segments of the H-NS-sensitive hns promoter whose sequences closely match the recently identified H-NS consensus motif (tCGt/aTa/tAATT) and, ... read more alone or fused to the protein oligomerization domain of phage λ CI repressor, inhibits transcription from the hns promoter in vitro and in vivo. The importance of H-NS oligomerization is indicated by the fact that with an extended hns promoter construct (400 bp), which allows protein oligomerization, DNA binding and transcriptional repression are highly and almost equally efficient with native H-NS and H-NSctd::λCI and much less effective with the monomeric H-NSctd. With a shorter (110 bp) construct, which does not sustain extensive protein oligomerization, transcriptional repression is less effective, but native H-NS, ...
InterPro provides functional analysis of proteins by classifying them into families and predicting domains and important sites. We combine protein signatures from a number of member databases into a single searchable resource, capitalising on their individual strengths to produce a powerful integrated database and diagnostic tool.
Link to Pubmed [PMID] - 26374675. Sci Rep 2015 Sep;5:14223. Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its ...
A search for factors that are necessary for the pathogenicity of Gram-negative microbes has identified many gene clusters that are closely related among different bacterial species (1). Several of these genetic loci encode type III secretion machines for the translocation of polypeptides across the bacterial double membrane envelope (1). Some mammalian pathogens such as Yersinia, Salmonella, Escherichia coli, Pseudomonas, and Shigella use type III machines for the injection of virulence factors into the cytosol of eukaryotic cells (2-7). A similar strategy is thought to be used by several plant pathogens; however, a direct demonstration of their protein injection has not yet been achieved (7). Salmonella typhimurium and perhaps other Gram-negative bacteria harbor two gene clusters that each specifies a type III machine (2). Mutants that abolish the function of individual type III machines arrest pathogenicity at distinct steps during Salmonella infection, indicating that protein secretion is ...
Our main project is on Type III Secretion Apparatus which is one of the most amazing biological devices. This apparatus which looks like a syringe can pass a whole protein molecule from a bacterial cell to a target eukaryotic cell. However, this apparatus is an organelle of pathogenic gram-negative bacterium such as Salmonella and Yersinia. So we are aiming at making this device safely available using E. coli. ...
Sara V. Pais. PhD Student. Project: Characterization of novel type III secretion effectors of Chlamydia trachomatis. Phone: +351 21 294 8530 ...
Approximately 20% of bacterial proteins have functions outside the cytoplasm ( 1 ). Consequently, all bacteria possess protein export pathways that transport proteins made in the cytoplasm beyond the cytoplasmic membrane. These exported proteins may remain in the bacterial cell envelope or be further secreted to the extracellular environment. Many exported proteins function in essential physiological processes. Additionally, in bacterial pathogens, many exported proteins have functions in virulence. Consequently, the pathways that export proteins are commonly essential and/or are important for pathogenesis. Across bacteria, including mycobacteria, there are conserved protein export pathways: the general secretion (Sec) and the twin-arginine translocation (Tat) pathways. Both Sec and Tat pathways are essential to the viability of Mycobacterium tuberculosis and both also contribute to virulence (L. Rank and M. Braunstein, unpublished; 2 - 4 ). In addition to these conserved pathways, bacterial pathogens
The PDB archive contains information about experimentally-determined structures of proteins, nucleic acids, and complex assemblies. As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The ...
The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The ...
Bacterial protein structures can expedite the development of novel antibiotics. Here is the latest research on bacterial proteins and the resolution of their structures. ...
As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
During infection, senses and responds to stress; such responses may be modulated by MisRS (NGO0177 and NGO0176), a two-component system that is a homolog of CpxRA. In , CpxRA senses and responds to envelope stress; CpxA is a sensor kinase/phosphatase for CpxR, a response regulator. When a mutant is grown in medium containing glucose, CpxR is phosphorylated by acetyl phosphate but cannot be dephosphorylated, resulting in constitutive activation. Kandler and coworkers (J. L. Kandler, C. L. Holley, J. L. Reimche, V. Dhulipala, J. T. Balthazar, A. Muszynski, R. W. Carlson, and W. M. Shafer, Antimicrob Agents Chemother 60:4690-4700, 2016, https://doi.org/10.1128/AAC.00823-16) showed that MisR (CpxR) is required for the maintenance of membrane integrity and resistance to antimicrobial peptides, suggesting a role in gonococcal survival Here, we evaluated the contributions of MisR and MisS (CpxA) to gonococcal infection in a murine model of cervicovaginal colonization and identified MisR-regulated genes ...
Our aims in this competitive renewal application are shaped by our observations during the previous funding period that confirmed the critical role of cyclooxyg...
MIT researchers have discovered why an unusually short bacterial protein can have many more interactions than would normally be expected of something its size.
Open full size. Functional types of settlements. The map "Functional types of settlements" is created using conventional symbols. It shows the distribution of settlements within the Baikal basin and their economic significance. The main content of the map is the network of urban and rural settlements with their population. The size of population is shown by the symbols of different sizes in accordance with the selected scale of nine gradations of the population size. The color of symbols shows the functional type of settlements determined based on the structure of employment of the local population in various sectors of economy.. A dominant role in the settlement network formed in the Baikal basin is played by large multi-functional industrial-transport, administrative-cultural, and scientific centers of the state (Ulaanbaatar) and regional (Irkutsk, Ulan-Ude, and Chita) significance.. Various specialized industrial and transport centers are almost exclusively confined to the railway lines. ...
Virulence, Disease and DefenseResistance to antibiotics and toxic compoundsCobalt-zinc-cadmium resistance Transcriptional regulator, MerR family ...
Gentaur molecular products has all kinds of products like :search , GenWay \ Hypothetical protein STARD7 - \ 10-288-22258F for more molecular products just contact us
Debby Brown, National Handi Quilter Educator, demonstrates how to use the TruStitch™ Stitch Regulation System on the HQ Sweet Sixteen sit-down machine. Clip is from Debbys video Sit-Down .... ...
hypothetical protein [hypothetical protein] GTGAGCGCGCCGCCGGCCGCCCTGTCGCCCACCGAGCGGGGCACGGAGTGCGACGCGCTG ATCGACGACTGGCTCGGGACCGACCTCGACGCGTGGACACGGAAGGTGGTGGCGCGGCAC TTCCACCCGGAGACCGGCAGTCCGTACTGGCTGCGGCGCGCCGCTGGACTGGGCTTCGAC GCGCGGGACATCACCCGCTATGACCAGCTCACGGCGTTCGGACCGTTCCCGGTGGACATC CTGCGCTCCCAGGACCCGGCGGATCTGGTGCCGCTCGACGTGCCGCGCCCGCTGACCGGC CGCGTCTGGGACACCGGCGGCACGACCGGCGCGCCCTGTCGGCTGTTCTACACACCCGCC ATGCTGCTGCACCGGGGCGCGTGGCGCCGCTGGTCCTTCGTCACCGAGGGGTTCACCCAG GGGCGGACCTGGCTCCAGGCGACCCCCACGGGACCGCATCTGATCGGCAACGGCATGTGG GAGGTGTCGGACCTGTACGCCGGTCAGGTGTACGGCGTCGACATGGACCCGCGCTGGGTC AAGCGGCTCATCCGGGCCGGCCGGCTGGCGGACGCGACCGAGTACACCACCCATCTGCTG GAGCAGGTCACCGACGTGCTCATCCACGGCCGGATCGACTACCTCAACACCACTCCCGCG CTCTTCCTGGCGCTGGTGCGCCGCCATCCCGAACTGGTCGCACCGCTGCGGGGGGTGCGG CTGAGCGGCACGCAGCTGAGCCCGGACATGTACCGGGACTTCATGGCCGCGATGGACGAC GGAATCTGCGGCCGCAGCTACGGCAACACCTTCGGCAACGCGGCGGGGCTGCCCGTCGAG CAGAACGCCGAACTCATGCCCTATGTTCCGAATTATCCACAGGTGACAATGAACGTCGTA ...
1.Grow cells to mid-log (~1x107 cells/ml; A600 = 0.7 or klett 80) and collect 1.5 ml cells in 1.5 ml microfuge tube (1 minute, 14000xg). It is important not to grow the cells to a high density as this method will not work well ...
hypothetical protein] GTGCACTTCCACGACGACTCTCTCTTCCCGGAGAACCAGGAGAAGTTGGTCATCCAGGCC GCGCCGTACGGGCCGGAGTGGCTGCCCGGCGACGCGGAGGACCTGCCGCTGACCATGGAC GAGCACGTCCAGGCGGCCGTCGACTGCCACAACGCCGGCGCGACCGTGCTGCACATCCAC GTCCGTGAGCTCGACGGCAAGGGCTCCAAGCGGATGTCCATGTTCAACGAGCTGCTCGGC CGGCTGCGCGAGGCCGTGCCGGACATGGTGCTGCAGATCGGCGGTTCGATCTCCTTCGCC CCCGAGGGCGAGGGCGGCGACGCCAAGTGGCTCGCGTACGACACCCGTCACCTGCTCGCC GAACTCACTCCGGCGCCCGACCAGGTGACCATCGCGATCAACACCAGCCAGATGAACATC GTCGAAATCATGAACGACGACGACCTGGCGGGCACCTCGATGGCGAAGCCCGACTACTAC CGCGCCTACCGCGACATGGTCGTCGAGGCCGGTCCGGACTTCTACCTGGAGCACCTCAAG AGGCTGCGCGCGAGCGGCATCCAGCCGCACTTCCAGCTCGCGCACCTGGCGCAGCTGGAG ACCGTCGAGCGGCTGATCCGCGCGGGCGTCCACACCGGCCCGCTGGTCCTCAACTACGTC GCCATAGGTGGCGGTTTCGCCGGTCGGCACCCGGCGGACCTGGTCGAGTTCATCCGTCGT GTACCGGACGGCGCCGTCCTCACGGTCGAGAGTTCCATGCGCGCCGTGGCCCCGATGAAC GCGGTGGCCATCGCCCTCGGCCAGCACGTGCGCGTCGGCAACGAGGACAACCTGTGGCGT GCCAAGGGCGAGCCGATGTCCTCCGTGGCGCAGGTCGAGCAGATGGTGCAGATCTCCGAG GCGCTCGGCCGGGACATCGCCACCGGCACGGACGCGAAGCGGATCTACCGGATCGGCGAG ...
The type 2 secretion system (often referred to as the type II secretion system or the T2SS) is protein secretion machinery found in various species of Gram-negative bacteria, including various human pathogens such as Pseudomonas aeruginosa and Vibrio cholerae. The type II secretion system is one of six protein secretory systems that are commonly found in gram negative bacteria along with the type I secretion system, the type III secretion system, The type IV secretion system, the chaperone/usher pathway, the autotransporter pathway/type V secretion system and the type VI secretion system (some bacteria also utilize the type VII secretion system). Like these other systems, the type II secretion system enables the transport of cytoplasmic proteins across the lipid bilayers that make up the cell membranes in gram negative bacteria. The type II secretion system is a membrane bound protein complex found in Gram-negative bacteria that is used to secrete proteins found in the cytoplasm of the bacteria ...
Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein-protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues, we propose ...
Many Gram-negative bacterial pathogens utilize type III secretion systems (TTSSs) for subverting the normal cellular functions of their target eukaryotic cells. The type III secretion apparatus (TTSA) functions like a syringe to inject proteins through an external needle and into a target cells membrane and cytosol. The TTSA basal body spans the bacterial inner and outer membranes, and the external needle is topped with a tip complex that controls the secretion and delivery of translocator and effector proteins. The needle is formed by the polymerization of ~120 copies of a small acidic protein that is conserved among diverse pathogens. At the tip of the needle, a tip complex is assembled by tip proteins into a ring-like structure which serves as a platform for the assembly of the translocon by translocator proteins. We use NMR spectroscopy to understand how the needle is assembled and how the tip complex is assembled on top of the needle. We determined the solution structures of the BsaL ...
Since their discovery in the 20th century, antibiotics have been prescribed for patients with bacterial infections. The first commercially available antibiotic was penicillin, which was discovered in 1928 by Alexander Fleming in St. Marys Hospital, UK. Penicillin was effective to inhibit the growth of disease-causing microorganisms. However, in 1947, four years after the mass-production of penicillin, the first penicillin resistance case was identified. Since then, scientists have been looking for new targets to inhibit the bacterial growth. Among them, the bacterial cell division protein, filament temperature-sensitive Z (FtsZ), is a promising target for the development of new antibiotics. FtsZ protein is an essential protein in bacterial cytoplasmic division. A GTPase active site is formed when two FtsZ monomers are joined together in head-to-tail manner. The presence of GTP induces the polymerization of FtsZ in the middle of the cell. FtsZ polymers act as a platform to recruit other cell ...
FtsZ plays an important role in bacterial cell division by polymerizing to form the Z ring at the site of cytokinesis. Phytochemicals are known to disrupt bacterial cell division through inhibition of FtsZ assembly. In the present study phytochemicals like eugenol, trans-cinnamic acid, 4-formyl cinnamic acid, naringenin and caffeic acid were were tested for their potential to inhibit cell division. Effect of these antimicrobial compounds on the growth of E. coli was determined and the inhibition of FtsZ assembly in vitro was investigated. The present study revealed trans-cinnamic acid as the most potent inhibitor of FtsZ assembly ...
Protein secretion in Pseudomonas aeruginosa involves different mechanisms. The type II and type III secretory pathways control the extracellular release of a wide range of substrates. The type I secretion process, or ABC transporter, was believed to be exclusively involved in alkaline protease secretion. Recently, it was discovered that a P. aeruginosa heme binding protein, HasAp, is also secreted by a type I process. We present here the identification of a third putative type I-dependent protein of P. aeruginosa, AprX. The function of this protein has not yet been elucidated but very interestingly it appears to be linked to the apr cluster, and organized in one single operon together with the aprD, -E and -F genes.
Bacteria propel themselves through liquid environments using rotation of a propeller like organelle, the flagellum. Flagella are energized by the membrane ion gradient and enable bacteria to swim towards nutrients and away from harmful substances. This unique nanomachine shares structural and functional similarities to the needle-like injectisome complex that pathogenic bacteria employ to inject virulence factors into eukaryotic host cells. Bacterial flagella and injectisomes contain a specialized protein export system, termed type III secretion, that functions to deliver structural subunits and effector proteins to the outside of the cytoplasmic membrane. Type III secretion systems are made of multiple proteins, however, the function of individual subunits and the molecular mechanism of protein translocation is poorly understood.,br /,The first part of this thesis reports that the flagellar type III secretion system functions as a proton-driven protein exporter and demonstrates that many ...
Pss may be transmitted from one generation of its host to the next via seeds. Hence, inoculation of bean seeds with relatively small numbers of bacteria at the time of planting was selected as a way to naturally initiate the plant-bacterial interaction in the field. The apparently normal growth of the type III secretion mutants on preemergent bean plants was unexpected given the in planta growth defects of hrp mutants observed in laboratory experiments (16, 23). After plant emergence, however, leaf population sizes of the hrcC and hrpJ mutants were significantly lower than B728a. Numbers of the mutants tended to remain constant or decline, even under conditions of intense rains, when population sizes of B728a and the hrpZ mutant increased significantly. The hrcC and hrpJ mutants behaved similarly, although the specific genes mutated and the nature of the mutations differed in the two constructs. Thus, mutations in hrp genes that affected the Hrp secretion system substantially reduced growth and, ...
Web server == https://rostlab.org/services/pEffect/ == Introduction == The type III secretion system is one of the causes of a wide range of bacterial infections in human, animals and plants. This system comprises a hollow needle-like structure localized on the surface of bacterial cells that injects specific bacterial proteins, the so-called effectors, directly into the cytoplasm of a host cell. During infection, effectors convert host resources to their advantage and promote pathogenicity. We - Tatyana Goldberg, Burkhard Rost and Yana Bromberg - at [http://bromberglab.org BrombergLab] and [http://rostlab.org/cms/ RostLab] developed a novel method, pEffect that predicts bacterial type III effector proteins. In our method, we combine sequence-based homology searches and advanced machine learning to accurately predict effector proteins. We use information encoded in the entire protein sequence for our predictions. == Method design == pEffect is a method that combines sequence ...
1. OlsenSJMacKinnonLCGouldingJSBeanNHSlutskerL 2000 Surveillance for foodborne-disease outbreaks-United States, 1993-1997. MMWR CDC Surveill Summ 49 1 62. 2. SchmidtHHenselM 2004 Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17 14 56. 3. GalanJEWolf-WatzH 2006 Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 567 573. 4. AbrahamsGLHenselM 2006 Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol 8 728 737. 5. GalanJE 2001 Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17 53 86. 6. WatermanSRHoldenDW 2003 Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5 501 511. 7. HueckCJ 1998 Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62 379 433. 8. EllermeierJRSlauchJM 2007 Adaptation to the host ...
The LysR-family regulator MexT modulates the expression of the MexEF-OprN efflux system in the human pathogen Pseudomonas aeruginosa. Recently, we demonstrated that MexT regulates certain virulence phenotypes, including the type-three secretion system and early attachment independent of its role in regulating MexEF-OprN. In this study, transcriptome profiling was utilized to investigate the global nature of MexT regulation in P. aeruginosa PAO1 and an isogenic mexEF mutant. Twelve genes of unknown function were highly induced by overexpressing MexT independent of MexEF-OprN. A well-conserved DNA motif was identified in the upstream regulatory region of nine of these genes and upstream of mexE. Reporter fusion analysis demonstrated that the expression of the genes was significantly induced by MexT in P. aeruginosa and a heterogenous Escherichia coli strain and that the conserved sequence was required for this induction. The conserved DNA motif was further characterized as the MexT binding site by ...
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatl …
HilA activates the expression of Salmonella enterica serovar Typhimurium invasion genes. To learn more about regulation of hilA, we isolated Tn5 mutants exhibiting reduced hilA and/or invasion gene expression. In addition to expected mutations, we identified Tn5 insertions in pstS, fadD, flhD, flhC, and fliA. Analysis of the pstS mutant indicates that hilA and invasion genes are repressed by the response regulator PhoB in the absence of the Pst high-affinity inorganic phosphate uptake system. This system is required for negative control of the PhoR-PhoB two-component regulatory system, suggesting that hilA expression may be repressed by PhoRPhoB under low extracellular inorganic phosphate conditions. FadD is required for uptake and degradation of long-chain fatty acids, and our analysis of the fadD mutant indicates that hilA is regulated by a FadDdependent, FadR-independent mechanism. Thus, fatty acid derivatives may act as intracellular signals to regulate hilA expression. flhDC and fliA encode
Sensor kinases play a key role in sensing and responding to environmental and physiological signals in bacteria. In this study we characterized a previously unknown orphan hybrid sensor kinase from Pseudomonas putida, which is conserved in several Pseudomonads. Inactivation of the gene coding for this sensor kinase, which we have named HskA, modified the expression of at least 85 genes in cells growing in a complete medium. HskA showed a strong influence on the composition of the electron transport chain. In cells growing exponentially in a complete medium, the absence of HskA led to a significant reduction in the expression of the genes coding for the bc1 complex and for the CIO and Cbb3-1 terminal oxidases. In stationary phase cells, however, lack of HskA caused a higher expression of the Cyo terminal oxidase and a lower expression of the Aa3 terminal oxidase. The HskA polypeptide shows two PAS (signal-sensing) domains, a transmitter domain containing the invariant phosphorylatable histidine ...
Summary The gram-positive bacterium Bacillus subtilis is well-known for its contributions to agricultural, medical, and food biotechnology and for the production of recombinant proteins. At present, about 60% of the commercially available technical enzymes are produced by Bacillus species. Furthermore, a large body of information concerning transcription, translation, protein folding and secretion mechanisms, genetic manipulation, and large-scale fermentation has been acquired. But so far, efficient and inexpensive expression vectors for B. subtilis are still missing. To fill this gap, a glycine-inducible expression system and a lysine-autoinducible one were explored and IPTG-inducible expression plasmids that allow overexpression and purification of proteins were constructed and analyzed. Furthermore, a technique with a useful promoter-probe plasmid to analyze strong promoters in B. subtilis was established, which allowed to study promoter and mRNA stabilizing elements to enhance the transcript ...
DnaA protein (a trans-acting element) and its binding sequence, DnaA-box: (a cis-acting element) are two elements essential for the initiation of chromosomal replication in Escherichia coli and other enteric bacteria. Recently these two elements have been found to be conserved in three Gram-positive bacteria (Bacillus subtilis, Micrococcus luteus and Mycoplasma capricolum) as well as in Gram-negative pseudomonads. DnaA protein was also found to be essential in the initiation of the replication of the B. subtilis chromosome, and regions containing multiple repeats of DnaA-box (DnaA-box region) are found to be active as autonomously replicating elements both in B. subtilis and pseudomonads. In this MicroReview we compare first the structures of these DnaA-box regions and their locations on the chromosome and then functional aspects of DnaA protein and DnaA-box regions in the initiation and regulation of chromosomal replication. From these observations we propose evolutionary relationships between ...
Our research seeks to elucidate the molecular basis for the temporal and spatial control of cell division. From bacteria to yeast to humans, cell division is initiated by the formation of a ring of a cytoskeletal protein at the nascent division site. This ring establishes the location of the division septum and serves as a framework for assembly of the division apparatus. In bacteria this ring is composed of the essential tubulin-like GTPase FtsZ. In response to an unidentified cell cycle signal, FtsZ polymerizes into a ring structure that serves as a framework on which the division machinery is assembled. As division proceeds, the FtsZ ring constricts, like a drawstring, at the leading edge of the invaginating septum. We focus our research on the regulatory networks that govern FtsZ ring formation in three model organisms, the soil bacterium Bacillus subtilis, E. coli, and the pathogen Staphylococcus aureus. To date, the signals that couple FtsZ ring formation and constriction to the cell cycle ...
The chromosome of Y. enterocolitica encodes a heat-stable enterotoxin, Yst, being related to STI. The capacity to produce Yst generally disappears during storage of the strains. In these strains, the yst gene is intact but remains silent. The pYV plasmid encodes the eleven secreted antihost proteins called Yops as well as the outer membrane protein YadA. The Yops are secreted by a novel, pYV-encoded secretion mechanism. This mechanism which does not involve the removal of an N-terminal signal sequence, is encoded by the pYV virA and virC loci. The virC locus contains 13 genes called yscA-M. The virA locus encodes the LcrD membrane protein. The yop, yadA and ysc genes form the yop regulon controlled by transcriptional activator VirF. Transcription of the yop, yadA, ysc and virF genes is controlled by temperature. A chromosome-encoded histone-like protein, called YmoA, is involved in the thermoregulation of the yop regulon, which suggests that this thermoregulation could result from ...
The CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress. In this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N
The σE-dependent extracytoplasmic stress response.σE is held at the membrane by the antisigma factor RseA. RseB binds to the periplasmic domain of RseA and pr
Shop Tryptophan-rich sensory protein ELISA Kit, Recombinant Protein and Tryptophan-rich sensory protein Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
The RTX toxin superfamily is a group of cytolysins and cytotoxins produced by bacteria. There are over 1000 known members with a variety of functions. The RTX family is defined by two common features: characteristic repeats in the toxin protein sequences, and extracellular secretion by the type I secretion systems (T1SS). The name RTX (repeats in toxin) refers to the glycine and aspartate-rich repeats located at the C-terminus of the toxin proteins, which facilitate export by a dedicated T1SS encoded within the rtx operon. RTX proteins range from 40 to over 600 kDa in size and all contain C-terminally located glycine and aspartate-rich repeat sequences of nine amino acids. The repeats contain the common sequence structure [GGXGXDX[L/I/V/W/Y/F]X], (where X represents any amino acid), but the number of repeats varies within RTX protein family members. These consensus regions function as sites for Ca2+ binding, which facilitate folding of the RTX protein following export via an ATP-mediated type 1 ...
The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization ...
Type III secretion systems (T3SS) in phytopathogenic bacteria were first described in the 80s. However, whereas numerous characterization studies have revealed the basic processes of assembly, structure and function in animal/human pathogenic systems, our knowledge about these processes in plant type III biosystems is considerably small in comparison. Nonetheless, in recent years we have witnessed important breakthroughs in our understanding on how phytopathogens employ, build and regulate their T3SS: new master transcriptional regulators have been discovered, the activity of already described regulators of the system have been thoroughly investigated, quorum sensing regulators and population dynamics have been found to determine the fine activation of the system, new plant-derived signals have been found to upregulate the phytopathogenic T3SS, and more. Moreover, a considerable weaponry of effectors targeting and tuning the plant responses have been identified and protein components of the core
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient
Typically comprised of ~12 different scaffold components, prokaryotic type IV secretion systems (T4SSs) translocate a variety of substrates across the cell envelope. Due to the ability to translocate large DNA segments (i.e., mobile genetic elements), some T4SSs contribute to the spread of antimicrobial resistance and virulence genes. Other T4SSs translocate smaller DNA segments and/or proteins into eukaryotic cells (e.g., arthropod, plant and human) in order to benefit bacterial survival. At least eight major groups of T4SSs are described and each group consists of minor variations on a common structural theme. Within a given bacterial genome, combinations of different T4SS groups can be encoded, and sometimes multiple copies of the same T4SS group can be present. As an example, two functionally divergent T4SSs (vir and trw) are found in many species of Bartonella, bacteria that are transmitted by arthropods such as ticks and fleas and cause a range of diseases including endocarditis. In species of
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA.. Mol Microbiol. 2017 Mar;103(6):973-991.. Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic tip complex translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator ...
Mutations showing specificity for normal growth or Mn(II)-dependent post-exponential phase cell division in Deinococcus radiodurans
Bacillus subtilis uses two-component signal transduction systems to sense intra- and extracellular stimuli to adapt to fluctuating environmental situations. Regulator aspartate phosphatases (Raps) have important roles in these processes, as they can dephosphorylate certain response-regulators, and are themselves subject to cell-density-controlled inhibition by secreted Phr (phosphate regulator) peptides. Eleven chromosomal genes encode this family of phosphatases, but in addition, certain strains contain endogenous plasmids with genes for homologous Rap-Phr systems. Plasmid pTA1060 encodes Rap60 and its antagonistic signalling molecule Phr60. Strikingly, expression of Rap60 in B. subtilis 168 strongly repressed the production of proteolytic enzymes. In fact, the transcription of the aprE gene, encoding a major extracellular protease, was shown to be decreased upon Rap60 expression, whereas this effect could be antagonized by the extracellular addition of synthetic Phr60 pentapeptide. Finally,
TY - JOUR. T1 - How Bacteria Subvert Animal Cell Structure and Function. AU - Jimenez, Alyssa. AU - Chen, Didi. AU - Alto, Neal M.. PY - 2016/10/6. Y1 - 2016/10/6. N2 - Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which ...
Creation and analysis of a lisK deletion mutant.A mutant, with a nonpolar 498-bp deletion in lisK from nucleotide 1872 to 2369, was created to confirm that the Tn917 insertion event was responsible for the enhanced survival at low pHH displayed by LO28-M9. The SOE (splicing by overlap extension) PCR procedure (13) was used to splice two 348-bp PCR products from either side of the sequence to be deleted. This hybrid was subsequently cloned into the temperature-sensitive shuttle vector pKSV7 (25) and transformed into LO28. An allelic exchange between the SOE product on pKSV7 and the intact gene resulted in the removal of a 498-bp sequence encoding one of the hydrophobic regions and the conserved histidine of the histidine kinase (Fig. 1A). The mutation was confirmed by PCR analysis, and the mutant was subsequently designated LO28ΔlisK.. Carbohydrate utilization (as assayed by API-CH50), listeriolysin O production on blood agar plates, and phospholipase production on egg yolk emulsion plates (all ...
Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC-FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix ...
One of the important mechanisms by which H. pylori infection leads to severe gastric disease is through the actions of the bacterial oncoprotein CagA [4], [10], [11], [54]. Translocation of CagA into gastric epithelial cells occurs through a T4SS-mediated process and requires multiple proteins encoded by the cag PAI [12], [14]-[17], [21]. Several H. pylori proteins required for CagA translocation are distantly related to components of T4SSs in other bacterial species and presumably have conserved functions [12], [21], [28], [43]. In the current study, we provide new insights into three components of the cag T4SS that lack homologs in other T4SSs - CagH, CagI, and CagL.. Prior to the current study, it was known that CagL can bind α5β1 integrin and can cause several alterations in host cells [21], [39], [42], [44], [45]. CagL was localized in various studies to several bacterial subcellular sites, including a soluble bacterial fraction [38], [43], the bacterial surface [42], and pili on the ...
Cooperativity in the structuring equilibria of FtsZ and Z-ring disassembly.The model that emerges out of the in vitro work led us to determine the amount of SulA required to inhibit Z-ring formation in vivo. SulA inhibited Z-ring formation in vivo with somewhat lower stoichiometry compared to what we observed in vitro. Quantitative immunoblotting revealed that MalE-SulA resulted in Z-ring disassembly when it reached ≤50% of the total cellular level of FtsZ. A previous study likewise found that a reduction in FtsZ levels by as little as 30 to 40% was sufficient to block cell division in E. coli (15). Why do Z rings disappear when the level of FtsZ decreases by only 30 to 50%?. It has been estimated that 30% of cellular FtsZ in E. coli is actually present in the Z ring (2). The estimates for intracellular concentration of FtsZ vary between strains but are generally 6 to 7 μM as we determined here (38, 61). This means that 2 μM of FtsZ is present in the ring with another 0.9 μM free in the ...
Biochemistry of Bacterial Multidrug Efflux Pumps. . Biblioteca virtual para leer y descargar libros, documentos, trabajos y tesis universitarias en PDF. Material universiario, documentación y tareas realizadas por universitarios en nuestra biblioteca. Para descargar gratis y para leer online.
p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.,/p> ,p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.,/p> ,p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).,/p> ,p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x,sup>64,/sup> + x,sup>4,/sup> + x,sup>3,/sup> + x + 1. The algorithm is described in the ISO 3309 standard. ,/p> ,p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.,br /> ,strong>Cyclic redundancy and other checksums,/strong>,br /> ,a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993),/a>),/p> Checksum:i ...
CP000667.PE286 Location/Qualifiers FT CDS_pept 328389..329336 FT /codon_start=1 FT /transl_table=11 FT /locus_tag="Strop_0286" FT /product="phosphate binding protein" FT /note="TIGRFAM: phosphate binding protein; PFAM: FT extracellular solute-binding protein, family 1" FT /db_xref="EnsemblGenomes-Gn:Strop_0286" FT /db_xref="EnsemblGenomes-Tr:ABP52771" FT /db_xref="GOA:A4X1M1" FT /db_xref="InterPro:IPR011862" FT /db_xref="InterPro:IPR024370" FT /db_xref="UniProtKB/TrEMBL:A4X1M1" FT /protein_id="ABP52771.1" FT /translation="MLSRRILAGTALAALALTGCSSNNNEDADGGEKLSGEVKVNGSST FT VAPLSEAAATFYREVQSGVNVSVGTSGTGGGFERFCKGETDISDASRPIKDSEIEACEA FT AGIQYKELIVANDALTVVVSKDNDWADCLTVDQLKAIWEPNSQITSWNQVDPSFPDEPL FT KLFGPGTDSGTFDYFTDEINGEEGASRTDYTASENDNVVVQGVAGTKGGLGYFGFTYFE FT ENADKLKALKVDGGSGCVEPSLKTAQENTYQPLSRPLFIYVSDSGVKKEQVADFVTFYI FT ERIDDIVTEAQYVPLTEEQKSTLQAEFDALKAAA" gtgctttcgc ggcgcatcct cgccggcacc gcgctcgccg cgctcgcgct taccggctgc 60 agcagcaaca acaacgaaga cgccgatggt ggcgagaagc tttcgggtga agtcaaggtc 120 ...
We study mechanisms of transcription regulation by the histone-like nucleoid-structuring protein HNS in commensal and pathogenic Escherichia coli. Specifically, we focus on mechanisms of de-repression by the LysR-type and FixJ/NarL-type transcription regulators such as LeuO, BglJ-RcsB and others, and their role in regulatory networks controlling pathogenicity. In addition, we analyze the interdependence of repression by H-NS and the rate of transcription. H-NS is an pleiotropic regulator and an architectural protein of the enterobacterial chromosome (the nucleoid), and it is important for silencing of loci acquired by horizontal gene transfer and for bacterial fitness. H-NS binds as dimer to specific nucleation sites located within an AT-rich sequence context, and then forms extended complexes by polymerization along the DNA (stiffening) and by building DNA-HNS-DNA bridges (bridging). Formation of HNS-DNA complexes next to promoters represses transcription by occluding RNA polymerase or, as ...
All about Survival: How to Prevail in Hostile Environments. LibraryThing is a cataloging and social networking site for booklovers
Type-III secretion systems (T3SSs) are responsible for the biosynthesis of flagella, and the interaction of many animal and plant pathogens with eukaryotic cells. T3SSs consist of multiple proteins which assemble to form an apparatus capable of exporting proteins through both membranes of Gram-negative bacteria in one step. Proteins conserved amongst T3SSS can be used for analysis of these systems using computational homology searching. By using tools including BLAST and HMMER in conjunction phylogenetic analysis this thesis examines the range of T3SSs, both in terms of the proteins they contain, and also the bacteria which contain them. In silico analysis of several of the conserved components of T3SSs shows similarities between them and other secretion systems, as well as components of ATPases. Use of conserved components allows for identification of T3SS loci in diverse bacteria, in order to assess in the different proteins used by different T3SSs, and to see where, in evolutionary space, ...
1) Kunst F, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis.. Nature 390(6657):249-56 PubMed: 9384377 ...
Deborah Hung Laboratory. We are facing an incredible challenge in the realm of infectious diseases that has been brought on by the convergence of three current phenomena - newly emerging infectious organisms, a global crisis in antibiotic resistance, and the threat of bioterrorism. A response to this challenge requires a renewed devotion to understanding the underlying mechanisms involved in infection and an increased commitment to the discovery of new antibiotics.. The goal of research in the Hung Lab is to understand in vivo mechanisms of bacterial pathogenesis by studying pathogen-host interactions. By merging the fields of chemical genetics and bacterial genetics/genomics, we hope to provide insight into possible new paradigms for addressing infectious diseases.. Despite recent, largely genetic, technical advances in the field of in vivo pathogen-host interactions, many important questions related to the mechanisms of bacterial pathogenesis remain unanswered, in part because of the inability ...
Bacillus subtilis comC protein: Type 4 prepilin-like proteins leader peptide processing enzyme; has prepilin peptidase (EC 3.4.23.43) as well as N-methyltransferase (EC 2.1.1.-) activities; amino acid sequence given in first source; may be a component of the DNA-processing apparatus of competent cells; cleaves pre-comGC; homologous to pilD protein; member of protease/transmethylase family; isolated from Bacillus subtilis; Do not confuse with comC, a peptide competence factor
Get information, facts, and pictures about Bacterial proteins at Encyclopedia.com. Make research projects and school reports about Bacterial proteins easy with credible articles from our FREE, online encyclopedia and dictionary.
1452 ko00001 KEGG Orthology (KO) 1017 ko01000 Enzymes 838 ko00002 KEGG pathway modules 358 ko01000 Enzymes 282 ko02000 Transporters 197 ko02000 Transporters 129 ko03000 Transcription factors 89 ko03400 DNA repair and recombination proteins 84 ko03016 Transfer RNA biogenesis 65 ko01002 Peptidases 61 ko02035 Bacterial motility proteins 58 ko02022 Two-component system 57 ko03011 Ribosome 56 ko03011 M00178 Ribosome, bacteria 52 ko02044 Secretion system 49 ko03009 Ribosome biogenesis 45 ko01007 Amino acid related enzymes 44 ko00002 KEGG pathway modules 39 ko01005 Lipopolysaccharide biosynthesis proteins 33 ko01001 Protein kinases 31 ko03011 M00179 Ribosome, archaea 28 ko03036 Chromosome 27 ko03110 Chaperones and folding catalysts 27 ko01003 Glycosyltransferases 26 ko03036 Chromosome 26 ko03032 DNA replication proteins 25 ko02044 Secretion system 20 ko03110 Chaperones and folding catalysts 20 ko01004 Lipid biosynthesis proteins 19 ko03009 Ribosome biogenesis 15 ko03012 Translation factors 13 ko02044 ...
Bacteria utilize sophisticated nanomachines to transport proteins, small molecules, and DNA across membranes to the extracellular environment. These transport machineries, also known as secretion systems, are involved in various cellular functions, such as adhesion to surfaces or host cells, cell-cell communication, motility (flagella), virulence effector protein secretion, and, notably, bacterial pathogenesis ( 1 - 5 ). Several of the identified protein secretion systems comprise large complexes that localize and assemble in and around the bacterial membrane(s), forming specialized channels through which the selected substrate(s) is actively delivered ( 6 - 9 ). Although exhibiting significant diversity in structure, substrate, and function, the dedicated type II, III, IV, and IV-pilus secretion systems (T2SS, T3SS, T4SS, and T4PS, respectively) in didermic Gram-negative bacteria each transport a specific subset of proteins to the extracellular milieu via passage through large stacked ring-shaped
The strong structural similarity between TrwB and other well known molecular motors, such as the ATP synthase or ring helicases, suggests that TrwB operates as a motor driving a DNA strand through the transport pore, using the energy derived from ATP hydrolysis. TrwB is the best model in a novel group of molecular motors involved in ssDNA transport across membranes; another example of biological molecular motors that convert chemical energy into mechanical work. We work with three ATPases that belong to the type IV secretion system: TrwB, TrwD and TrwK. These three motors are inserted in the inner membrane of the cell and are involved in different functions: DNA transport, protein unfolding and protein transport through the secretion channel, respectively. The results obtained with TrwB have enabled us to propose a common mechanism that could be shared by all members of this family of ATPases, regardless of their role. Continuing with this project, we will carry out structural and biochemical ...
incollection{2049386, author = {Hendrix, An and Jacobs, Koen and De Boeck, Astrid and Westbroeck, Wendy and Bracke, Marc and De Wever, Olivier}, booktitle = {Mouse as a model organism : from animal to cells}, editor = {Brakebush, Cord and Pihlananiemi, Taina}, isbn = {9789400707504}, language = {eng}, pages = {131--143}, publisher = {Springer}, title = {Experimental procedures to assay invasion-associated activities of primary cultured fibroblasts}, url = {http://dx.doi.org/10.1007/978-94-007-0750-4\_8}, year = {2011 ...
Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins ...
Two-component signal transduction pathways enable bacterium to sense and answer the setting. generally such pathways comprise a sensing element essentia..
E coli rssB protein: negative regulator of sigma(S) factor, Rpos; isolated from E. coli; this two-component response regulator affects sigma S-dependent proteins; it is implicated in the control of protein stability; has been sequenced; homologous proteins, namely, Mvia and Hnr found in other bacteria
Exposure to environmental insults generally occurs at low levels, making it challenging to measure bacterial responses to such interactions. Additionally, microbial behaviour and phenotype varies in differing bacterial types or growth phases, likely giving rise to growth- or species-specific responses to environmen
Whether its through a lab mishap or eating undercooked beef, becoming infected with pathogenic (disease-causing) E. coli is brutal. When E. coli infects a person, it attaches to the intestinal wall and the infection begins. There is a particular set of proteins that E. coli makes that allow the bacterium to be incredibly successful at infection. These structures, called the Type III secretion system, look and act like tiny syringes. They essentially "inject" their own DNA and proteins into the hosts cells. Not only do E. coli use Type III secretion to wreak havoc on the host, but they also can release a chemical called Shiga toxin. This toxin can enter cells, disrupt host protein synthesis, and even burst the intestinal cells. A build up of this toxin is extremely detrimental to the host. Although E. coli infections are relatively uncommon, they are serious business and cant be taken lightly. Now, I dont want you to think all E. coli are bad guys. Most E. coli are an integral part of our ...
Dipping your hands into 160-degree water is guaranteed to give you an immediate and severe scalding unless youre one of the few species of bacteria that manage to thrive in temperatures that would maim or kill the rest of the Earths inhabitants. How these heat-loving bacteria manage to survive such intense temperatures has puzzled scientists for decades, but a researcher at the University of Rochester has uncovered a trick proteins may use to bolster bacteria against the searing heat.. Weve found a protein with a section that is flapping back and forth between two configurations like a flag in a storm, says Kara Bren, associate professor of chemistry at the University. Nobody expected to find this. Weve always expected high-temperature proteins to be rigid to bolster their structure in such an extreme environment, but were seeing this unusual motion for the first time and its opening up new ways of understanding how life manages to adapt to even the harshest environments.. The protein, ...
B.S. Biology VA Tech. COURSES TAUGHT Intro Micro., Biotechnology, Topics in Pathogenesis. RESEARCH FOCUS Bacterial Pathogenesis of Pseudomonas aeruginosa and Mycobacterium species, Bacterial Signal Transduction. PERSONAL INTERESTS music, hiking, farming ...
Thank you for your interest in spreading the word about Biochemical Journal.. NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.. ...
Structural and functional homology between bacterial proteins and host antigens, called molecular mimicry, is considered as significant pathogenic fac
Many gram-negative plant pathogenic bacteria have acquired a highly conserved type III secretion system (T3SS) which enables them to inject so called ... ...
cremeglace writes Scientists say they may have discovered a way to develop cool new vaccines — and they mean that literally. By replacing essential genes in a mammalian pathogen with their counterparts from Arctic bacteria, they have created strains that provoke a protective immune response i...
Genetic information processingProtein fateProtein and peptide secretion and traffickingtype III secretion apparatus H+-transporting two-sector ATPase (TIGR02546; EC 3.6.3.14; HMM-score: 16.4) ...
We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time.Find out more ...
Strain sensitivity to different translation-inhibitory drugs. Wild type (WT) or gene deletion mutant strains (yploo9cΔ, yil137cΔ, ypl183w-aΔ, ydr056cCΔ and
In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.
CP000529.PE394 Location/Qualifiers FT CDS complement(396843..397241) FT /codon_start=1 FT /transl_table=11 FT /locus_tag="Pnap_0398" FT /product="response regulator receiver protein" FT /note="PFAM: response regulator receiver; KEGG: FT pol:Bpro_0882 response regulator receiver domain protein FT (CheY-like)" FT /db_xref="EnsemblGenomes-Gn:Pnap_0398" FT /db_xref="EnsemblGenomes-Tr:ABM35721" FT /db_xref="GOA:A1VJ93" FT /db_xref="InterPro:IPR001789" FT /db_xref="InterPro:IPR011006" FT /db_xref="UniProtKB/TrEMBL:A1VJ93" FT /protein_id="ABM35721.1" FT /translation="MALKVFLVEDSAAQRAYLAQALRAEAKVEIVGIAETEHQAIHWLD FT NNADQWDIALVDLFLGEGSGAGVIQHCHDRRPDQSVFVMTNHSQNEALLHHCKLLGADA FT VYHKATELENLLALLQESAHSNSRCVAQ" MALKVFLVED SAAQRAYLAQ ALRAEAKVEI VGIAETEHQA IHWLDNNADQ WDIALVDLFL 60 GEGSGAGVIQ HCHDRRPDQS VFVMTNHSQN EALLHHCKLL GADAVYHKAT ELENLLALLQ 120 ESAHSNSRCV AQ 132 ...
COVER This weeks issue features a Research Article that demonstrates that an FHA domain-containing bacterial protein (Rv1827) binds to and regulates target metabolic enzymes without the enzymes undergoing prior phosphorylation, a modification previously thought to be necessary for binding of the FHA domain. Dr. Stephen Smerdon, the lead author of this study, discusses this and other findings in this weeks Podcast. The image shows the structure of Rv1827 with a putative FHA accessory surface depicted in green and is based on PDB structure 2KFU. [Image: Stephen J. Smerdon, MRC National Institute for Medical Research, London, UK] ...
Each population is trying to expand, and selective pressure is constantly being applied on both sides," Deem said. "You can see how this plays out in the CRISPR over time. Theres a diverse assortment of genes in the first spacer, but the second spacer has been in there longer, so theres been more selective pressure applied to that spacer. Because bacteria that contain the dominant viral strain in their CRISPR are more likely to survive than those that dont, they tend to squeeze out their neighbors that are more vulnerable. At position N, the farthest way from position one, selection has been at work the longest, so the genes we find there were the most common and the ones that tended to afford the most overall protection to the organism ...
The complexity of quinoas genome brings the promise of improving and expanding crops in hostile environments previously unfit for agriculture.
Our bodies are hosts to some hundreds of thousands of bacteria that live in harmony with each other, helping the body be healthy, in return for the food
[ Linear Triatomic Molecules Coo 2b Oco 2b Cfeo Fecocnoncolandolt B6rnstein Numerical Da ] - 100 Pdf Mankiw Solutions Chapter 13 Uga Econ 2106 Class,100 Pdf Linear Functions Answer Key The Algebra Toolbox If,100 Pdf Essential Experiments For Chemistry Answer Key 10e
Study shows bacterial response to drugs varies in different environments, providing scientists with a new way to test antibiotics for better drugs.
Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate with each other.
... 는 고순도(> 95%) Protein G가 coating된 silica magnetic nanobead를 사용하고 있습니다. 이러한 bead는 특이적으로 항체를 인지하여 항체정제, immunoprecipitation, 항원-항체 상호작용 연구, 단백질 복합체 연구, cell separation 등에 응용할 수 있습니다.
Plasmid pAAV-EF1α-FRT-FLEX-GtACR2-EYFP from Dr. Mingshan Xues lab contains the insert GtACR2-EYFP and is published in Elife. 2018 Aug 9;7. pii: 38506. doi: 10.7554/eLife.38506. This plasmid is available through Addgene.
Plasmid pAAV-Ef1a-fDIO hChR2(H134R)-EYFP from Dr. Karl Deisseroths lab contains the insert hChR2(H134R)-EYFP and is published in Nat Methods. 2014 Jul;11(7):763-72. doi: 10.1038/nmeth.2996. Epub 2014 Jun 8. This plasmid is available through Addgene.