Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with very high affinity and specificity, and are generally selected by a process referred to as systematic evolution of ligands by exponential enrichment. Conventional antibody-based therapeutic and diagnostic approach currently employed against biotoxins pose major limitations such as the requirement of a live animal for the in vivo enrichment of the antibody species, decreased stability, high production cost, and side effects. Aptamer technology is a viable alternative that can be used to combat these problems. Fully sequestered in vitro, aptamers eliminate the need for a living host. Furthermore, one of the key advantages of using aptamers instead of antibodies is that they can be selected against very weakly immunogenic and cytotoxic substances. In this review, we focus on nucleic acid aptamers developed against various biotoxins of plant, microorganism, or animal origin and show how ...
TY - JOUR. T1 - BODIPY-labeled fluorescent aptamer sensors for turn-on sensing of interferon-gamma and adenine compounds on cells. AU - Tsuchiya, Akira. AU - Hashim, Siti N.. AU - Ise, Shoko. AU - Furuhata, Takafumi. AU - Kawai, Kiyohiko. AU - Wakabayashi, Rie. AU - Goto, Masahiro. AU - Kamiya, Noriho. AU - Sando, Shinsuke. PY - 2016/1/1. Y1 - 2016/1/1. N2 - An on-cell aptamer sensor has the potential to reveal cell-cell communications by signalling molecules. We attempted to design new fluorescent aptamer sensors for the sensing of IFN-? and adenine compounds on cells. BODIPY-labeled external quencher-free aptamer sensors have allowed a turn-on detection of the target molecule with improved off/on efficiency.. AB - An on-cell aptamer sensor has the potential to reveal cell-cell communications by signalling molecules. We attempted to design new fluorescent aptamer sensors for the sensing of IFN-? and adenine compounds on cells. BODIPY-labeled external quencher-free aptamer sensors have allowed a ...
Human Immunodeficiency Virus (HIV) reverse transcriptase (RT) is the most common molecular target of current HIV treatments. Oligonucleotide aptamers bind and inhibit the RNA- and DNA-dependent polymerization activities of HIV RT. Libraries consisting of aptamers including 32, 70 or 80 nucleotide variable regions were previously screened by Systematic Evolution of Ligands by Exponential Enrichment (SELEX) against RT. Roughly half of the resulting aptamers were represented by pseudoknots with well defined signature sequences (the Family I), but also additional pseudoknots with little sequence convergence (Family II), and non-pseudoknot aptamers (Family III). Nucleic acid aptamers bind RT in the primer/template binding site. Aptamers are generally non-toxic and non-immunogenic molecules making them enticing drug prospects. Many aptamers inhibit DNA dependent DNA polymerization by RT from several phenotypically different recombinant viruses, but inhibition depends on a single amino acid mutation at ...
RNA APTAMERS AGAINST BAFF-R AS CELL-TYPE SPECIFIC DELIVERY AGENTS AND METHODS FOR THEIR USE - In one embodiment, a B cell specific aptamer-siRNA chimera is provided. The B cell specific aptamer-siRNa chimera may include an RNA aptamer that binds BAFF-R and an siRNA molecule conjugated to the RNA aptamer via a nucleotide linker. In another embodiment, a B cell specific RNA aptamer is provided. The RNA aptamer may be a molecule that binds to BAFF-R that has the sequence SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In some embodiments, the RNA aptamer is conjugated, via a nucleotide linker, to an siRNA molecule that suppresses expression of one or more target oncogenes in one or more B cells. In one aspect, the one or more target oncogenes are selected from Bcl6, Bcl2, STAT3, Cyclin D1, Cyclin E2 and c-myc. In another embodiment, methods for treating a B cell malignancy in a cancer patient are provided. Such methods may include administering a therapeutically effective amount of a therapeutic ...
Aptamer Solutions Ltd is a York based Biotechnology Company specialising in the custom selection of high-affinity and highly specific nucleic acid aptamers for use in the life sciences sector. Our proprietary automated high-throughput aptamer selection processes allow us to offer a flexible and competitive pricing structure for the development of RNA and DNA aptamers. In addition, we are about to launch a new complementary technology in the area of biomarker discovery.. Our proprietary aptamer based biomarker discovery platform and proprietary combinatorial libraries contain up to and over 1018 different molecules, this diversity and bespoke library design is fundamental to the success of the screening process. This technology enables us to greatly speed up the identification of novel biomarkers as well as diagnostics and/or therapeutic candidate molecules. This technology builds on one of the most powerful uses of aptamer technology, which is the ability for aptamers to be isolated against ...
... is a sterile, aqueous solution containing pegaptanib sodium for intravitreous injection. Macugen is supplied in a single-dose, pre-filled syringe.
Anti-thrombin aptamers are G-quadruplex-bearing oligonucleotides, which recognizes the exosites of human thrombin. The first anti-thrombin aptamer, TBA, was generated through via SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology in 1992 by L.C. Bock, J.J. Toole and colleagues. A second thrombin-binding aptamer, HD22, recognizes thrombin exosite II and was discovered in 1997 by NeXstar (now Gilead Sciences). These two aptamers have high affinity and good specificity and have been widely studied and used for the development of aptamer-based therapeutics and diagnostics. The aptamer TBA (also known as G15D, HTQ, HD1 or ARC183) is a 15-mer single-stranded DNA with the sequence 5-GGTTGGTGTGGTTGG-3. It interacts with the exosite I of human alpha-thrombin, which is the binding site of fibrinogen, so this aptamer acts as an anti-coagulant agent inhibiting the activation of fibrinogen as well as platelet aggregation. In addition, TBA shows good affinity and specificity ...
The demand has increased for sophisticated molecular tools with improved detection limits. Such molecules should be simple in structure, yet stable enough for clinical applications. Nucleic acid aptamers (NAAs) represent a class of molecules able to meet this demand. In particular, aptamers, a class of small nucleic acid ligands that are composed of single-stranded modified/unmodified RNA/DNA molecules, can be evolved from a complex library using Systematic Evolution of Ligands by EXponential enrichment (SELEX) against almost any molecule. Since its introduction in 1990, in stages, SELEX technology has itself undergone several modifications, improving selection and broadening the repertoire of targets. This review summarizes these milestones that have pushed the field forward, allowing researchers to generate aptamers that can potentially be applied as therapeutic and diagnostic agents.
An L-ribonucleic acid aptamer (L-RNA aptamer, trade name Spiegelmer - from German Spiegel "mirror" - by Noxxon Pharma) is an RNA-like molecule built from L-ribose units. It is an artificial oligonucleotide named for being a mirror image of natural oligonucleotides. L-RNA aptamers are a form of aptamers. Due to their L-nucleotides, they are highly resistant to degradation by nucleases. Spiegelmers are considered potential drugs and are currently being tested in clinical trials. Spiegelmers, built using L-ribose, are the enantiomers of natural oligonucleotides, which are made with D-ribose. Nucleic acid aptamers, including L-RNA aptamers, contain adenosine monophosphate, guanosine monophosphate, cytidine monophosphate, uridine monophosphate, a phosphate group, a nucleobase and a ribose sugar. Like other aptamers, L-RNA aptamers are able to bind molecules such as peptides, proteins, and substances of low molecular weight. The affinity of L-RNA aptamers to their target molecules often lies in the ...
70846 Oilseed contains sterols and related compounds with economic potential. The extraction and analysis of these compounds would be aided by the availability of highly selective aptamers with high affinities for their particular sterol ligands. This project will develop aptamers for use in microarrays to analyze and extract sterol contents of oil and other biological extracts. Bacterial expression vectors will be prepared from which the aptamers can be expressed in large quantities. In Phase I, one or more DNA aptamers for sitosterol will be selected. The aptamers will be evaluated for their specificity and affinity for sitosterol and related compounds. A bacterial expression vector will be developed from which aptamers can be prepared. Commercial Applications and Other Benefits as described by the awardee: Commercial applications include (1) the use of aptamers in the analysis and extraction of sitosterol and related compounds, and (2) a general method for economically mass-producing DNA ...
Apple Stem Pitting Virus of PSAH PearIsolate, DNA Aptamer, Biotinylated DNA Aptamers AD-107-B Apple Stem Pitting Virus of PSAH PearIsolate, DNA Aptamer, Biotinylated DNA Aptamers AD-107-B
Apple Stem Pitting Virus of PSAH PearIsolate, DNA Aptamer, Biotinylated DNA Aptamers AD-107-B Apple Stem Pitting Virus of PSAH PearIsolate, DNA Aptamer, Biotinylated DNA Aptamers AD-107-B
Human Neutrophil Elastase (DNA I) , DNA Aptamer, Biotinylated DNA Aptamers AD-155-B Human Neutrophil Elastase (DNA I) , DNA Aptamer, Biotinylated DNA Aptamers AD-155-B
After three decades, the human immunodeficiency virus type 1 (HIV-1) remains a global pandemic. It has been difficult to develop therapeutic agents and vaccines against HIV due partly to the virus s ability to mutate rapidly. As a result, there is a constant need to develop new therapeutic agents that target HIV-1. This research seeks to develop an RNA aptamer that would bind tightly to the Pre-Hairpin Intermediate state of the HIV-1 envelope glycoprotein gp41 to inhibit viral fusion. The project targets the envelope glycoprotein of HIV-1, gp41, with nucleic acid aptamers. Aptamers are selected from random pools (libraries) by an in vitro selection called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The aptamers go through rounds of selection, where the weak binders will be washed off in each round. Once these aptamers are developed, they will be tested for their ability to prevent viral membrane fusion, and their potential use in HIV therapeutics. ...
4DII: High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity.
Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review
Aptamers are single-stranded oligonucleotides isolated via in vitro systematic evolution of ligands by exponential enrichment (SELEX),1,2 which can specifically bind to a wide range of targets including proteins, small molecules and metal ions.3 Aptamers offer several advantages as recognition elements for biosensor applications relative to antibodies. First, aptamers can be chemically synthesized with high reproducibility at relatively low cost.4,5 Second, the high chemical stability of DNA aptamers means that they can be used under harsher conditions and stored with a longer shelf life.6 Finally, it is possible to generate unstructured aptamers that form specific secondary structures such as three-way junctions7,8 or tertiary folds such as G-quadruplex structures9,10 upon target binding. Such target-induced conformational changes can be readily exploited for specific target detection in a variety of applications, including medical diagnostics, environmental monitoring and drug screening.11-13 ...
... ,Microarrays designed for DNA aptamer screening and binding optimization and built on the flexible and powerful Paraflo microfluidic on-chip synthesis platform. These microarrays are available as part of our comprehensive DNA/RNA Aptamer Microarray Service. Our Standar,biological,biology supply,biology supplies,biology product
ELRIG are busily preparing for the 8th Annual Drug Discovery conference which will be held at Manchester Convention Centre on 2nd & 3rd September 2014. The programme contain presentations from leading scientists across Europe and beyond, covering exciting advances in basic and translational aspects of drug discovery and brings together Academia, Biotech, Vendors and Pharma into a single community.. Aptamer Group are delighted to be invited back to the Innovation Zone (stand IZ12) for the second year running, where we will be exhibiting our new and exciting technologies. We have over 20 years combined expertise in the development of nucleic acid aptamers to peptides, proteins, cells, tissue samples, micro-organisms and small molecules.. Dr David Bunka, CTO, world leading high-throughput aptamer selection expert will be addressing the Target Validation audience on 3 September at 12.00 in Charter 1. Dr Bunka will be discussing how our technology enables us to greatly speed up the identification of ...
Background: RNA aptamers are small RNA molecules that bind antigens like antibodies and are currently being explored as alternatives to antibodies for diagnosis and therapy. A potential merit of aptamers is that they can be generated against native cellular antigens, such as those with unique post-translational modifications or receptor-ligand complexes, for which antibody generation can be difficult. Here, we report the use of a cell-based systematic enrichment approach (SELEX) to develop a novel Treg-binding RNA aptamer specific to IL2Rα-IL2 receptor-ligand complex.. Methods and Results:. A. Generation of Treg-binding aptamers:. We designed a cell-based SELEX strategy to generate RNA aptamers specific to human T regulatory (Treg) cells. The starting library consisted of random RNA aptamers with a structural diversity of ~1012. Aptamers against common T cell antigens were pre-cleared using CD4+CD25- Teff cells. Treg-binding aptamers were then positively selected using CD4+CD25+ Tregs from the ...
Multitasking by Multivalent Circular DNA Aptamers | Daniel A. Di Giusto; Sarah M. Knox; Yuching Lai; Gregory D. Tyrelle; May T. Aung; Garry C. King | download | BookSC. Download books for free. Find books
and / or polyclonal antibodies specific to a particular target for capture and / or quantitative detection. Most ELISAs employ a 96-well plate-based format. ELISAs are currently used in a wide range of industries, with wide-spread application for the detection of protein biomarkers in research, diagnostics and therapeutics. While antibody-based immunoassays have proven to be very sensitive and specific, there are some limitations which can be overcome with the ELASA, or Enzyme-Linked Aptamer Sorbent Assay. Unlike antibodies, aptamers can be selected for specific binding to poorly immunogenic and toxic compounds. Aptamers can also distinguish between highly conserved molecules. Chemical aptamer synthesis enables rapid, low-cost production of new batches with low lot-to-lot variability. As with traditional ELISAs, ELASAs can be direct, indirect, and sandwich assays. Several sandwich ELASA assays have been developed at Base Pair Biotechnologies. Biotinylated capture aptamers are typically bound to ...
Shigdar, Sarah, Lv, Li, Wang, Lifen and Duan, Wei 2016, Application of aptamers in histopathology. In Mayer, Gunter (ed), Nucleic acid aptamers : selection, characterization and application, Humana Press, New York, N.Y., pp.191-196, doi: 10.1007/978-1-4939-3197-2_16. ...
TY - JOUR. T1 - Oligonucleotide-based systems. T2 - DNA, microRNAs, DNA/RNA aptamers. AU - Jolly, Pawan. AU - Estrela, Pedro. AU - Ladomery, Michael. N1 - Special volume "Biosensor technologies for detection of biomolecules" (Ed: P. Estrela) PY - 2016/6/30. Y1 - 2016/6/30. N2 - There is an increasing number of applications that have been developed for oligonucleotide-based biosensing systems in genetics and biomedicine. Oligonucleotide-based biosensors are those where the probe to capture the analyte is a strand of DNA, RNA or a synthetic analogue to naturally occurring nucleic acids. This chapter will draw light upon various types of nucleic acids such as DNA, RNA (particularly microRNAs), their role and their application in biosensing. Also, it will cover DNA/RNA aptamers, which can be used as bioreceptors to a wide range of targets such as proteins, small molecules, bacteria and even cells. It will also highlight how the invention of synthetic oligonucleotides like PNA or LNA has pushed the ...
Aptamers are typically selected from libraries of random DNA (or RNA) sequences through systematic evolution of ligands by exponential enrichment (SELEX), which involves several rounds of alternating steps of partitioning of candidate oligonucleotides and their PCR amplification. Here we describe a protocol for non-SELEX selection of aptamers - a process that involves repetitive steps of partitioning with no amplification between them. Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), which is a highly efficient affinity method, is used for partitioning. NECEEM also facilitates monitoring of bulk affinity of enriched libraries at every step of partitioning and screening of individual clones for their affinity to the target. NECEEM allows all clones to be screened prior to sequencing, so that only clones with suitable binding parameters are sequenced. The entire protocol can be completed in 1 wk, whereas conventional SELEX protocols take several weeks even in a specialized
Infectious diseases are a subject of public health safety. In case of events such as bioterrorism or food samples tainted with a disease causing bacteria or virus the standard traditional methods of detection of viral or bacterial detection are too slow. We have developed molecular probes known as ?aptamers? to detect infection with high specificity and sensitivity. Aptamer, a word derived from Latin ?aptus? meaning ?to fit?; are molecular probes which are generated using nucleic acids which recognize and bind their target with a very high affinity and specificity. Aptamers are evolved in vitro in a test tube for its target. Aptamers are generated using a screening process known an SELEX, which stands for Systematic Evolution of Ligands by Exponential Enrichment. A library of 10 14 to 10 16 unique sequences is synthesized. These sequences are fractionated based on interactions with the target for which the aptamer is generated. The weaker binding sequences are weeded out after each successive ...
The adenosine aptamer was split into two halves and linked to a fluid liposome surface; addition of adenosine resulted in aptamer assembly, which did not occur if the split aptamer was attached to silica nanoparticles, demonstrating the feasibility of using aptamer probes to study diffusion within lipid membranes ...
Aptamers are an interesting class of molecules that have potential in many facets of human health. They are characterized by high affinity and specificity to their targets, are small in size, have similar properties to antibodies, but are made synthetically. All of these properties, among others, give aptamers the potential to diagnose, image and treat like no other molecules. By combining the unique properties of aptamers with the ever expanding field of nanotechnology and all it has to offer, we are entering a very promising new area of targeted nanodelivery treatments. These treatments have found success in the complex disease processes of cancer, eye and inflammatory diseases ...
LC Sciences provides unique aptamer microarray services using a novel µParaflo technology, a list of aptamer sequences, and sequence design software. The
We have recently described the isolation of 2-fluoropyrimidine-substituted RNA aptamers that bind selectively to disease-associated beta-sheet-rich forms of the prion protein, PrP, from a number of mammalian species. These aptamers inhibit the accumulation of protease-resistant forms of PrP in a prion-seeded, in vitro conversion assay. Here we identify the minimal portions of two of these aptamers that retain binding specificity. We determine their secondary structures by a combination of modeling and solution probing. Finally, we identify an internal site for biotinylation of a minimized, synthetic aptamer and use the resultant reagent in the detection of abnormal forms of PrP in vitro.
Aptamers, synthetic oligonucleotide‐based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets
RNA interference (RNAi) is an important biological process that ultimately leads to suppression of gene expression. Activators of RNAi are typically s..
antibody-antibodies.com is the marketplace for research antibodies. Find the right antibody for your research needs. Enzymatic conjugation of multiple proteins on a DNA aptamer in a tail-specific manner.
An Aptamer-siRNA Chimera Suppresses HIV-1 Viral Loads and Protects from Helper CD4+ T Cell Decline in Humanized Mice. C. Preston Neff, Jiehua Zhou, Leila Remling, Jes Kuruvilla, Jane Zhang, Haitang Li, David Smith, Piotr Swiderski, John Rossi and Ramesh Akkina. Science Translational Medicine Vol 3: 66ra6. Yes faithful readers of the MIPnews, for the first time in history we have an MIP laboratory who has garnered back-to-back MIPublication of the Month honors! Ramesh Akkina and his collaborators at the City of Hope have come out with a very exciting approach to harness the awesome power of in vitro-evolved RNA aptamers and RNA interference. In this paper in the Science spin off Science Translational Medicine journal, they report on a form of superdrug that not only effectively targets HIV in cells but appears to overcome one of the main hurdles for these RNA-based technologies - effective in vivo delivery.. Ramesh et al make their superdrug in a very straightforward fashion on a ribonucleic ...
This will be a randomized, double-masked, controlled, dose-ranging, multi-center comparative trial, in parallel groups. Patients will be stratified by clinical center and foveal thickness to be treated either Macugen or a sham injection. After 24 weeks, all patients will treated with Macugen until the end of the study at 54 weeks ...
RNA Tobramycin Molecular Beacon (BA 14-2), RNA Aptamer, unlabeled datasheet and description hight quality product and Backed by our Guarantee
Anti-acetylcholine Autoantibodies (SE RNA) , RNA Aptamer, unlabeled datasheet and description hight quality product and Backed by our Guarantee
This work demonstrates an aptasensor for ultrasensitive electrochemiluminescence (ECL) detection of thrombin based on an "off-on-off" approach. The system is composed of an Eu3+-doped CdS nanocrystals (CdS:Eu NCs) film on glassy carbon electrode (GCE) as ECL emitter. Then gold nanoparticles (AuNPs) labeled hairpin-DNA probe (ssDNA1) containing thrombin-binding aptamer (TBA) sequence was linked on the NCs film, which led to ECL quenching (off) as a result of Förster-resonance energy transfer (FRET) between the CdS:Eu NC film and the proximal AuNPs. Upon the occurrence of hybridization with its complementary DNA (ssDNA2), an ECL enhancement (on) occurred owing to the interactions of the excited CdS:Eu NCs with ECL-induced surface plasmon resonance (SPR) in AuNPs at large separation. Thrombin could induce ssDNA1 forming a G-quadruplex and cause the AuNPs to be close to CdS:Eu NCs film again, which resulted in an enhanced ECL quenching (off). This "off-on-off" system showed a maximum 7.4-fold ...
4DII: High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity.
DNA and RNA aptamers interact with their target proteins with high selectivity, specificity and affinity. The SELEX method consists of iterative cycles of in vitro screening of a combinatorial oligonucleotide library containing to 1016 different molecules and possible secondary and tertiary structures for target binding followed by PCR amplification of selected sequences. Aptamer ligands can be developed against almost any target protein. Due to the wide spectrum of applications, these novel molecules are used in numerous pharmacological, clinical and industrial processes. In the beginning, RNA and DNA aptamers were identified which bind to proteins that naturally interact with nucleic acids or small molecules such as ATP. In the following years, the use of the SELEX technique was extended in order to isolate oligonucleotide ligands for a wide range of proteins of importance for therapy and diagnostics, such as growth factors (3), cell surface antigens, entire cells and even whole organisms. ...
Patients undergoing pars plana vitrectomy for active PDR with TRD will receive a single intravitreal pre-operative 0.3mg Macugen™ prior to surgery versus sham injection.. Specific timing of the injection will be at no sooner than 7 days and no longer than 14 days prior to surgery.. Patients will receive a preinjection fundus photo and another post injection photo the day of surgery as dictated by the operative schedule.. Some photos may be limited secondary to vitreous hemorrhage. Follow up visits after surgery will be one day, one week, one month, and three months. ...
Aptamers are oligonucleotides that bind ligands-sometimes strongly and sometimes very specifically. They are, or will be, the basis of therapeutics, assays, and sensors. We consider how these molecules are designed and selected, and to what extent computational methods have helped or might help. ...
The Systematic Evolution of Ligands by EXponential enrichment (SELEX) process has allowed the discovery of aptamers with the ability to bind target molecules with high affinity and specificity. This opens up avenues to develop easy, selective and cost-effective methods to monitor aptamer-target interactions. Conventional optical assays involve the functionalization of the termini of an oligonucleotide with a fluorophore and a quencher for detecting analytes. In this work, i utilized nucleic acid staining reagents as chromophores to develop a signaling strategy that avoids synthetic modification of aptamers. Three different aptamers (thrombin-, theophylline-, and ATP-binding aptamers) that span a range of sizes, secondary structures and affinities were employed for this work. I monitored the formation of the fluorescent complex by nucleic acid and chromophore in the presence and absence of a cognate target. My study reveals that the chromophores SYBR Green I and thiazole orange (TO) can be used across
Close The Infona portal uses cookies, i.e. strings of text saved by a browser on the users device. The portal can access those files and use them to remember the users data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser. ...
... DUBLIN November 8 2013 /- ...Research and Markets ( a href http://www.researchandmarkets.com... (Logo: http://photos.prnewswire.com/prnh/2013...Aptamers Market - Technology Trend Analysis By Applications - Therapeu...,Global,Aptamers,Market,Technology,Trend,Analysis,Market,Report,2013-2018:,Therapeutics,,Diagnostics,,Biosensors,,Biomarker/Drug,Discovery,&,Applications,biological,advanced biology technology,biology laboratory technology,biology device technology,latest biology technology
(EMAILWIRE.COM, March 20, 2017 ) According to the report Middle-East and Africa Aptamers Market published by Market Data Forecast, the Middle-East and African market was worth $9.53 million in 2016 and is projected to reach $11.82 million with CAGR of 15.0% by 2021 For full report refer to http://www.marketdataforecast.com/market-reports/middle-east-and-africa-aptamers-market-1139/ Aptamers...
Aptamers are dedicated oligonucleotides that bind in the active center of the polymerase and prevent attachment to nucleic acid targets at temperatures below the optimal reaction temperature of the Tth enzyme. Therefore, no primer elongation occurs during setup of the reaction and the following heating phase prior to the RT step. At higher temperatures, the Aptamers are released from the enzyme, and RT or DNA polymerization can be initiated. In addition, the recommended incubation temperature for RT with Tth (+61°C) is helpful to overcome secondary structures of RNA. This results in highly specific and efficient cDNA synthesis, which leads to highly specific and sensitive PCR ...
This thesis includes the synthesis, conjugation and applications of nano and microparticles for the detection and diagnosis of clinically important units such as cell lysates or proteins. Chapter one presents details of the synthesis and characterization of aptamer-AuNP conjugates for the detection of proteins based on dynamic light scattering. Addition of proteins to aptamer-conjugated gold nanoparticles (AuNPs) induced the formation of dimers, trimers, oligomers or aggregates. The average hydrodynamic diameter of the aggregates as measured by DLS, increased with the corresponding increase in protein concentration. This correlation formed the analytical basis of the assay. A linear dynamic range of up to 300 nM (1800 nm) and Limit of detection of 2.67 was realized using thrombin as the model analyte. This thesis also discusses a novel surface-based method to detect cancer cell membrane using lateral flow technology. This is conceptualized based on familiar streptavidin-biotin and lectin-glycan
Biomarkers are clinical, molecular, or image-based measurable parameters that can characterize an individuals specific biological state, whether normal, pathological or in response to treatment. A biomarker is considered of clinically valuable if: (i) it can be measured repeatedly with accuracy and relatively rapid clinical turnaround, (ii) it provides unique, superior information on patient status, and (iii) it aids in clinical decision-making with high precision1. High-quality biomarkers can critically inform clinical diagnosis (e.g. high-sensitivity troponin for acute myocardial infarction), and guide therapy (e.g. CYP2C19 status for clopidogrel therapy). The ideal biomarkers can further reveal underlying biological processes, inform therapeutic deployment, and pave the way for true personalized precision medicine. In this issue of Circulation, Ngo et al. demonstrates the use of a developing proteomics technology to rapidly screen for protein biomarkers in patients with planned and ...
Close The Infona portal uses cookies, i.e. strings of text saved by a browser on the users device. The portal can access those files and use them to remember the users data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser. ...