The current epidemic of obesity has caused a surge of interest in the study of adipose tissue formation. While major progress has been made in defining the molecular networks that control adipocyte terminal differentiation, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Here we performed genome-wide analysis of gene expression during adipogenesis of mouse embryonic stem cells (ESCs). We then pursued comprehensive bioinformatic analyses, including de novo functional annotation and curation of the generated data within the context of biological pathways, to uncover novel biological functions associated with the early steps of adipocyte development. By combining in-depth gene regulation studies and in silico analysis of transcription factor binding site enrichment, we also provide insights into the transcriptional networks that might govern these early steps. This study supports several biological findings: firstly, adipocyte development in mouse
Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P|0.05) in high adipogenic cells, while transforming growth
Adipogenesis is a complex process, in which immature pre-adipocytes change morphology, micro-anatomy and physiology to become mature adipocytes. These store and accumulate fat and release diverse hormones. Massive changes in protein content and protein composition of the transforming cell take place within a short time-frame. In a previous study we analyzed changes in the abundance of free and polysomal, i.e. ribosome bound, RNAs in the first hours of adipogenesis in the murine cell line 3T3-L1. Here we analyze changes of mRNA levels and their potential contribution to the changing protein pool by determination of mRNA levels and ribosome binding to mRNAs in 3T3-L1 cells stimulated for adipogenesis. We grouped mRNA species into categories with respect to up- or down-regulated transcription and translation and analyzed the groups regarding specific functionalities based on Gene Ontology (GO). A shift towards up-regulation of gene expression in early adipogenesis was detected. Genes up-regulated at the
Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT
Human Platelets were purchased from HEMOCARE for the production of PRP. Human adipose-derived stem cells were isolated as per laboratory protocol. The ASCs were cultured under four conditions: 1. Regular DMEM medium, 2. Regular DMEM medium with PRP 3. Adipogenic medium 4. Adipogenic medium with PRP. The cell proliferation was assessed by CYQUANT and the adipogenesis were evaluated by AdipoRed stain and the qPCR of PPAR-gamma and FABP4 gene expression. The mRNA of stemness gene expression of ASCs was compared by qPCR of SOX-2, Nanog and Oct-4 .The angiogenesis of ASCs was evaluated by qPCR of VEGF gene expression and endothelium tube formation assay. The nude mice were implant with fat graft with PRP as experiment and fat graft only as control group. The survival rate was analyzed by volume retention, the histomophometry of mature adipocyte area and vessel density assay by CD31 immunohistochemical stain ...
We have previously identified a WD‐repeat propeller‐FYVE protein, ProF, as an interaction partner for the kinases PKCζ and Akt in 3T3‐L1 cells (Fritzius et al, 2006). Furthermore, we have shown that ProF forms a trimeric complex with PKCζ and its substrate VAMP2. In this complex, ProF was found to act as an adaptor‐like protein for facilitated substrate phosphorylation of VAMP2 by the active kinase PKCζ (Fritzius et al, 2007).. In this study, we identified a role for ProF during adipogenesis and showed complex formation of ProF with the kinase Akt and the kinase substrate Foxo1. The protein kinase Akt was found to affect adipogenesis after the expression of C/EBPβ and C/EBPδ, but before the expression of PPARγ and C/EBPα (Peng et al, 2003; Baudry et al, 2006), which resembled the effects of ProF on adipogenesis. Akt phosphorylation of Foxo1 at Ser253, in the Foxo1 DNA binding domain, has been demonstrated to decrease its transcriptional activity (Zhang et al, 2002). We have shown ...
TY - JOUR. T1 - CXCL3 positively regulates adipogenic differentiation. AU - Kusuyama, Joji. AU - Komorizono, Anna. AU - Bandow, Kenjiro. AU - Ohnishi, Tomokazu. AU - Matsuguchi, Tetsuya. PY - 2016/10. Y1 - 2016/10. N2 - Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2(CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown ...
University of Pittsburgh Introduction: Human adipose derived stem cells (ASC) may have broad applications to plastic and reconstructive surgery. For soft tissue reconstruction, the ability to induce adipogenesis and angiogenesis is vital for long term graft survival. However the gene expression and cellular fate of these cells is governed by molecular signaling. Wnt signaling is well evidenced in inhibiting adipogenesis and influence cell differentiation. We hypothesized that regulation of this signaling cascade in adipose stem cells could enhance adipogenesis.. Purpose: This study aims to antagonize Wnt signaling by lentiviral overexpression of secreted frizzled-related protein1 (sFRP1) in ASCs to assess adipogenesis and angiogenic growth factor secretion.. Methods: Wnt antagonistic studies were carried out in lentiviral sFRP1 transfected and flow cytometry selected GFP reporter positive ASCs. mRNA gene expression of signaling cascade were analyzed for adipogenic marker genes (PPARy, FABP4, ...
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPAR. and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional
In this study, we have continued to investigate the roles of the E2F and pocket proteins in the regulation of adipocyte differentiation. It was previously shown that hormone-induced adipogenesis is promoted by the loss of either E2F4 or p107 and p130 (25, 26). It seemed highly likely that the shared activity of E2F4 and p107/p130 simply reflects their participation in transcriptionally repressive complexes. However, our current analyses of compound mutant MEFs do not support this hypothesis. Instead, they suggest that the E2F and pocket proteins contribute to the regulation of adipocyte differentiation through three distinct mechanisms. Moreover, each one of these can be separated from effects on cell cycle control.. The first mechanism involves the E2F4 transcription factor. We have found that E2F4 loss predisposes MEFs to undergo adipogenesis. This phenotype includes increasing the proportion of cells that differentiate in response to the standard hormone treatment as well as enabling ...
To our knowledge, these are the first results that demonstrate the effects of maternal isocaloric pair-fed high-carbohydrate (LF-HCD) versus high-fat diet (HF-LCD) during gestation and lactation on gene expression and serum levels of formation and resorption markers in bone, as well as adipogenic and lipogenic markers in retroperitoneal fat mass of mice offspring at adolescence. The results of the present study showed that maternal LF-HCD during gestation and lactation lead to up-regulation of Runx2 and Ctnnb1, as well as Runx2, OPG, OPG/RANK-L ratio and Ctnnb1 mRNA expression in bone of female and male offspring, respectively. Also, serum levels of OPG/RNK-L ratio which is the marker of osteogenesis [22] were increased in the LF-HCD-fed group, compared with the HF-LCD. PPARγ2 mRNA expression, as well as other adipogenic genes measured in the current study and serum levels of proteins were increased in the offspring of HF-LCD-fed mothers. Our results showed that mRNA expression of OPG and ...
Rising obesity epidemic makes the better understanding of transcription factor networks regulating adipogenesis very challenging. Adipogenesis begins with the commitment of pluripotent mesenchymal stem cells to the adipocyte lineage, followed by terminal differentiation of preadipocytes to mature ad …
CUL4B participates in the regulation of a broad spectrum of biological processes. In the current study, we provided several lines of evidence that CUL4B functions as a negative regulator of adipogenesis. First, CUL4B expression was downregulated during adipocyte differentiation in obese mice and was inversely correlated with BMI. Second, knockdown of CUL4B in 3T1-L1 cells led to increased adipocyte differentiation, whereas the overexpression of CUL4B had the opposite effect. Third, most importantly, the deletion of CUL4B in adipose tissues greatly facilitated adipogenesis. When challenged with HFD, AKO mice exhibited increased body weight gain and fat mass. Mechanistically, we demonstrated that the negative regulation of adipogenesis by CUL4B is mediated by the polyubiquitination of PPARγ, a master regulator of adipogenesis and insulin sensitivity. In particular, the treatment with PPARγ inhibitor GW9662 in HFD-fed AKO mice could efficiently block the increased adipogenesis and decreased ...
Title:. A Novel pro-adipogenesis factor abundant in adipose tissues and over-expressed in obesity acts upstream of PPARg and C/EBPa. Authors:. Yuhui Ni, Chenbo Ji, Bin Wang, Jie Qiu, Jiwu Wang, Xirong Guo Abstract:. An important question about adipogenesis is how master adipogenesis factors (defined as being able to initiate adipogenesis when expressed alone) peroxisome proliferator-activated receptor (PPAR) initiate adipogenesis only in differentiating preadipocytes. The objective of our research was to find previously unidentified factors that are unique or highly enriched in cells of the adipocyte lineage during adipogenesis that may provide functional tissue specificity to preadipocytes. We reasoned that such factors may alter expression profile specifically in obese individuals. Omental adipose tissues were obtained from obese and non-obese male patients undergoing emergency abdominal surgery. mRNAs extracted from either group were used for suppression subtraction hybridization (SSH). Genes ...
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details ...
TY - JOUR. T1 - The combination of DHEA, histamine, and insulin increases adipogenic differentiation and enhances tissue transplantation outcome in mice. AU - Park, Yoorim. AU - Jung, Min Kyung. AU - Yoon, Sun Young. AU - Lee, Ha Reum. AU - Hur, Dae Young. AU - Kim, Daejin. AU - Yang, Yoolhee. AU - Kim, Tae Sung. AU - Kim, Seonghan. AU - Yoon, Suk Ran. AU - Park, Hyun Jeong. AU - Bang, Sa Ik. AU - Cho, Dae Ho. PY - 2013/5/1. Y1 - 2013/5/1. N2 - Adipose stem cells (ASCs) are pluripotent cells that can generate pure fat tissue for regeneration. Differentiated adipose cells have been generated by a common inducer cocktail composed of dexamethasone, insulin, and isobutylmethylxanthine (DIM). The major drawbacks of adipose cells are their tendency to float on the culture media and their cost. To overcome some of these disadvantages, a new inducer cocktail that includes insulin, dehydroepiandrosterone, and histamine (DHIH) was tested. As a result, lipid accumulation was elevated more than twofold with ...
Adipocytes arise from mesodermal stem cells, which have the capacity to differentiate into a variety of other cell types, including myocytes (1). Once committed to the adipocyte lineage, preadipocytes can remain quiescent, multiply, or undergo differentiation and become adipocytes. 3T3-L1 and 3T3-F442A cells are established mouse preadipocyte models. Both cell lines can be induced to differentiate in cell culture, but 3T3-F442A cells are thought to be arrested at a later point in development (2). Studies of these cellular models have revealed some of the molecular events that orchestrate adipogenesis, including the role of C/EBPs and PPARγ in mediating the expression of adipocyte-specific genes (3, 4).. Wnts are a family of paracrine and autocrine factors that regulate cell growth and cell fate (5). Signaling is initiated when Wnt ligands bind to transmembrane receptors of the Frizzled family. In the canonical Wnt signaling pathway, Frizzleds signal through Dishevelled to inhibit the kinase ...
The present results provide direct evidence for a regulatory role of mechanical stress in adipocyte differentiation, mediated through the activation of the ERK/MAPK system. Controversial observations concerning the role of ERK/MAPK in adipocyte differentiation have been reported by several laboratories - the activation of the ERK/MAPK pathway has been shown to be involved in both the inhibition (Font de Mora et al., 1997; Hu et al., 1996; Kim et al., 2001; Shimba et al., 2001) and the promotion (Bost et al., 2002; Klemm et al., 2001; Machinal-Quelin et al., 2002; Prusty et al., 2002; Zhang et al., 1996) of adipocyte differentiation. Along these lines, Prusty et al. recently suggested that stimulation of the ERK/MAPK pathway might have opposing effects in the process of adipogenesis, depending on the time of activation during the differentiation process (Prusty et al., 2002). In the present study, the activated state of ERK1/2 was more prolonged during the induction period in response to the ...
The fatty acid chaperone FABP4 is induced by PPARγ, the master regulator of adipogenesis, yet these two regulators exert opposite effects on various metabolic parameters such as insulin resistance and inflammation (14). Here we demonstrate a previously unrecognized negative feedback loop, whereby FABP4 specifically triggers proteasomal degradation of PPARγ and consequently inhibits PPARγ-related functions, thereby providing a possible mechanism that explains their opposite effects. Our observations are consistent with an earlier finding that PPARγ activity is elevated in FABP4-null macrophages (20). FABP4 was reported to physically interact with PPARγ (38); hence, it is likely that such a physical interaction triggers the ubiquitination and the subsequent proteasomal degradation of PPARγ. This interaction took place through a site distinct from the fatty acid binding pocket of FABP4 (38), and therefore the ability of the fatty acid binding inhibitor BMS309403 to block the effect of FABP4 ...
Cripps, R. L. and Ozanne, S. E. (2010) Early-Life Programming of Adipogenesis and Adiposity, in Adipose Tissue in Health and Disease (eds T. Leff and J. G. Granneman), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527629527.ch24 ...
LXR α 0h 4h 8h 18h 1D 2D 3D 4D 5D 6D 7D 8D h 2d d Induction MediumDifferentiation Medium NR Expression during Adipogenesis of 3T3-L1 Cells (2) Fu et al., Mol. Endo. 19: 2437 (2005) Nur77 PPAR γ NUR77 LXR  PPAR 
Fibroblast growth factor (FGF) has been shown to inhibit the differentiation of myogenic and adipogenic cell lines without inducing a proliferative response. We have previously shown that agents capable of activating protein kinase C (PKC), such as FGF and the phorbol ester tetradecanoyl phorbol-13-acetate (TPA), inhibit the differentiation of the adipogenic cell line TA1, as measured by the rapid loss of adipocyte-specific RNAs. We report here that the treatment of fully differentiated TA1 adipocytes with FGF at 10 ng/ml induces the reversal of adipocyte differentiation, even in cells where PKC activity has been down-regulated by TPA pretreatment. In contrast, TPA or lower concentrations of FGF (1 ng/ml), both effective inducers of c-fos RNA in adipocytes, fail to reverse adipocyte differentiation. The adipocytes, however, will extinguish differentiation-specific functions in response to TPA by the addition of a calcium ionophore. Therefore, we propose that there are two FGF-sensitive pathways ...
Adipose tissue progenitors (or precursors), often located in the vicinity of the vascular network, constitute a heterogeneous population. They can be discriminated through their capacity to differentiate into mature adipocytes and also by their level of commitment into the adipocyte differentiation program. The application of flow cytometry using various markers as well as single-cell RNA sequencing has enabled the identification of multiple cell populations. The CD9hi progenitors exhibited very limited adipogenic capacity with a high propensity for the production of extracellular matrix components. CD9hi progenitors include mesothelial cells, whose contribution in adipose tissue remodeling is currently unresolved. Further investigations are still needed to establish the relationship between these various populations of progenitors. In addition, a better understanding of the critical functional determinants and whether acquired phenotypes are reversible is needed ...
Dr. Rayalam has worked in the areas of obesity, body weight regulation, phytochemicals and adipocyte biochemistry for over 8 years. Her research interests include: 1) to study the adipocyte life cycle and to understand the interaction of adipocytes with other cell types as an approach to address several problems associated with obesity; 2) to develop novel treatment strategies for obesity by inducing transdifferentiation of white to beige adipocytes and to inhibit lipid accumulation in white adipocytes; and 3) to identify combinations of phytochemicals and vitamins that have synergistic anti-adipogenic effects with an ultimate goal of developing pharmaceuticals or nutraceuticals for prevention and treatment of obesity and associated disorders. Aging is accompanied by an accumulation of adipocytes in bone marrow and Dr. Rayalams other interest is to understand the fat-bone interaction and to identify molecular targets for the prevention of weight gain and bone loss associated with aging. Dr. ...
I think this is part of the puzzle as to why refined carbs in particular can be so fattening. It is well documented that the digestibility of carbohydrates determines the corresponding postprandial blood sugar spike ( glycemic index ). In addition, I suppose you could say that, being insulin resistant in muscle leads to exaggerated and prolonged elevated postprandial glucose levels, and these high glucose concentrations ( could potentially ) activate adipogenic pathways, in both muscle and fat tissue ...
Dr. Marlatt is interested in the role of dietary and exercise interventions to facilitate healthy aging and metabolic health as it relates to women, particularly in the transition through menopause. She currently is focusing her research efforts on the impact of a drug intervention in post-menopausal women; the impact of hormones and race on adipogenesis and adipocyte morphology; as well as intermittent hypoxia in individuals with diabetes ...
Pharmacological dosing of all-trans-retinoic acid (atRA) controls adiposity in rodents by inhibiting adipogenesis and inducing fatty acid oxidation. Retinol dehydrogenases (Rdh) catalyze the first reaction that activate retinol into atRA. This study examined post-natal contributions of Rdh10 to atRA biosynthesis and physiological functions of endogenous atRA. Embryonic fibroblasts from Rdh10 heterozygote hypomorphs or with a total Rdh10 knockout exhibit decreased atRA biosynthesis and escalated adipogenesis. atRA or a RAR pan-agonist reversed the phenotype. Eliminating one Rdh10 copy in vivo (Rdh10+/-) yielded a modest decrease (≤25%) in the atRA concentration of liver and adipose, but increased adiposity in male and female mice fed a high-fat diet, increased liver steatosis, glucose intolerance and insulin resistance in males fed a high-fat diet, and activated bone marrow adipocyte formation in females, regardless of dietary fat. Chronic dosing with low dose atRA corrected the metabolic ...
Facultatea de Chimie, Universitatea din Bucuresti - informatii despre admitere, licenta, master, doctorat, catedre, activitati de cercetare
carbon skeleton use as energy source or converted to glycogen or fat Formation of Urea urea Growth and repair O H synthesis NH3 (ammonia) HO C C NH2 R excess O H HO C C NH2 amino acid R carbon skeleton use as energy source or converted to glycogen or fat
By default, all articles on GreenMedInfo.com are sorted based on the content type which best reflects the data which most users are searching for. For instance, people viewing substances are generally most interested in viewing diseases that these substances have shown to have positive influences. This section is for allowing more advanced sorting methods. Currently, these advanced sorting methods are available for members only. If you are already a member, you can sign in by clicking here. If you do not currently have a user account, and would like to create one/become a member, click here to begin the singup process ...
Background Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation. May act as a transcriptional repressor....
PMID 22527884] Genetic variation in the carbonyl reductase 3 gene confers risk of type 2 diabetes and insulin resistance: a potential regulator of adipogenesis ...
The development of mature adipocytes from pre-adipocytes is a highly regulated process. CD24 is a glycophosphatidylinositol-linked cell surface receptor that has been identified as a critical cell surface marker for identifying pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Here, we examined the role and regulation of CD24 during adipogenesis in vitro. We found that CD24 mRNA and protein expression is upregulated early during adipogenesis in the 3T3-L1 pre-adipocytes and in murine primary pre-adipocytes isolated from subcutaneous and visceral WAT, followed by downregulation in mature adipocytes. CD24 mRNA expression was found to be dependent on increased transcription due to increased promoter activity in response to activation of a preexisting transcriptional regulator. Furthermore, either intracellular cAMP or dexamethasone were sufficient to increase expression in pre-adipocytes, while both additively increased CD24 expression. Preventing the increase in CD24 ...
Satellite cells are skeletal muscle progenitor/stem cells that reside between the basal lamina and plasma membranes of skeletal fibers in vivo. These cells can give rise to both myogenic and adipogenic cells. Given the possible role for differentiation of satellite cells into adipocytes in marbling and in some pathological disorders like sarcopenia, knowledge of the proteins involved in such process remains obscure. Using two-dimensional polyacrylamide gel electrophoresis coupled with mass spectrometry, we investigated the proteins that are differentially expressed during adipogenic differentiation of satellite cells from bovine longissimus muscle. Our proteome mapping strategy to identify the differentially expressed intracellular proteins during adipogenic differentiation revealed a total of 25 different proteins. The proteins up-regulated during adipogenic differentiation of satellite cells like Cathepsin H precursor, Retinal dehydrogenase 1, Enoyl-CoA hydratase, Ubiquinol-cytochrome-c ...
TY - JOUR. T1 - Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. AU - See Meng, Lim. AU - Goh, Yong Meng. AU - Kuan, Wen Bin. AU - Loh, Su Peng. PY - 2014/11/3. Y1 - 2014/11/3. N2 - Background: This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes. Methods: GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement. Results: GBR extract using hexane showed the highest ...
The retinoblastoma protein (RB) has previously been shown to facilitate adipocyte differentiation by inducing cell cycle arrest and enhancing the transactivation by the adipogenic CCAAT/enhancer binding proteins (C/EBP). We show here that the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor pivotal for adipogenesis, promotes adipocyte differentiation more efficiently in the absence of RB. PPARgamma and RB were shown to coimmunoprecipitate, and this PPARgamma-RB complex also contains the histone deacetylase HDAC3, thereby attenuating PPARgammas capacity to drive gene expression and adipocyte differentiation. Dissociation of the PPARgamma-RB-HDAC3 complex by RB phosphorylation or by inhibition of HDAC activity stimulates adipocyte differentiation. These observations underscore an important function of both RB and HDAC3 in fine-tuning PPARgamma activity and adipocyte differentiation.. Keywords: Thiazolidinediones. ...
TY - JOUR. T1 - Beta-mecaptoethanol suppresses inflammation and induces adipogenic differentiation in 3T3-F442A murine preadipocytes. AU - Guo, Wen. AU - Li, Yahui. AU - Liang, Wentao. AU - Wong, Siu. AU - Apovian, Caroline. AU - Kirkland, James L.. AU - Corkey, Barbara E.. PY - 2012/7/23. Y1 - 2012/7/23. N2 - Preadipocytes are present in adipose tissues throughout adult life that can proliferate and differentiate into mature adipocytes in response to environmental cues. Abnormal increase in adipocyte number or size leads to fat tissue expansion. However, it is now recognized that adipocyte hypertrophy is a greater risk factor for metabolic syndrome whereas fat tissue that continues to produce newer and smaller fat cells through preadipocyte differentiation is "metabolically healthy". Because adipocyte hypertrophy is often associated with increased oxidant stress and low grade inflammation, both are linked to disturbed cellular redox, we tested how preadipocyte differentiation may be regulated ...
White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V-ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential regulation on S-ADSCs and V-ADSCs remain unclear. S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90
In todays study we investigated the consequences of genistein on adipogenic differentiation of mouse bone tissue marrow-derived mesenchymal stem cell (BMSC) cultures and its own potential signaling pathway. differentiation. Genistein decreased the phosphorylation of ERK1/2 in mouse BMSC ethnicities dose-dependently. Genistein incubation for the whole tradition period in adition to that applied through the early stage of the tradition period considerably inhibited Rabbit Polyclonal to Cox1. Vorinostat the adipogenic Vorinostat differentiation of mouse BMSC ethnicities. While genistein was incubated in the past due stage (after day time 9) no inhibitory influence on adipogenic differentiation was noticed. BMSC ethnicities treated with genistein in the current presence of fibroblast growth element-2 (FGF-2) an activator from the ERK1/2 signaling pathway indicated normal degrees of ERK1/2 activity and by doing this can handle going through adipogenesis. Our outcomes claim Vorinostat that activation ...
Marian Blanca Ramírez from the CSIC in Spain has been studying the effects of LRRK2, a protein associated with Parkinsons disease, on cell motility. A Travelling Fellowship from Journal of Cell Science allowed her to spend time in Prof Maddy Parsons lab at Kings College London, learning new cell migration assays and analysing fibroblasts cultured from individuals with Parkinsons. Read more on her story here. Where could your research take you? The deadline to apply for the current round of Travelling Fellowships is 30 Nov 2017. Apply now!. ...
Yağ dokusu vasküler ataları gelen beyaz ve bej adiposit farklılaşma obezite metabolik iyileştirme için potansiyel taşımaktadır. CD34 +...
Adipocytes play an important role in energy storage and metabolism. Adipocyte differentiation is a developmental process that is critical for metabolic homeostasis and nutrient signaling. It is controlled by complex actions involving gene expression and signal transduction. Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. The proliferation and differentiation of these preadipocytes contribute to increases in adipose tissue mass. In vitro study indicates that different tissue-derived preadipocytes exhibit differently in lipid accumulation, adipogenic transcription factor expression, and TNF?-induced apoptosis. It has also been demonstrated that there is a close relationship between adipocyte differentiation and many physiological and pathological processes including fat metabolism, energy balance, obesity, diabetes, hyperlipidemia and breast cancer. HPA-s from Bioarray Research ...
The differentiation of bone mesenchymal stem cells (BMSCs) into adipogenesis (AD) rather than osteogenesis (OS) is an important pathological feature of osteoporosis. Illuminating the detailed mechanisms of the differentiation of BMSCs into OS and AD would contribute to the interpretation of osteoporosis pathology. To identify the regulated mechanism in lineage commitment of the BMSCs into OS and AD in the early stages, the gene expression profiles with temporal series were downloaded to reveal the distinct fates when BMSCs adopt a committed lineage. For both OS and AD lineages, the profiles of days 2-4 were compared with day 0 to screen the differentially expressed genes (DEGs), respectively. Next, the functional enrichment analysis was utilized to find out the biological function, and protein-protein interaction network to predict the central genes. Finally, experiments were performed to verify our finding. FoxO signaling pathway with central genes like FoxO3, IL6, and CAT is the crucial mechanism of
Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. According to the study by the Osaka University of Pharmaceutical Sciences, Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE(2) and PGF(2α) strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ(24). ...
Coordinating terminal differentiation and cell cycle arrest involves coupling the activity of the transcriptional regulators that activate lineage‐specific gene expression programs to the cell cycle machinery. The importance of such coordination is illustrated by the observation that ectopic expression of cell cycle promoting factors is able to interfere with differentiation of numerous cell types. Well‐characterized examples include the ability of the c‐Myc oncoprotein to block the differentiation of adipocytes by repressing the transcription of C/EBPα, a key inducer of adipogenesis (Freytag and Geddes, 1992), and the ability of Cyclin D1/Cdk4 to inhibit myogenesis through binding to MyoD (Zhang et al, 1999). However, in other cases, the molecular mechanisms are not clear. E2F‐1 can block granulopoiesis (Strom et al, 1998), adipogenesis (Porse et al, 2001) and myogenesis (Wang et al, 1995), but the relevant molecular targets are not defined. Cdk6 inhibits osteogenic differentiation by ...
Bone chips were obtained by minimally irrigated implant drilling technique from 10 human donors. Isolated cells were studied with respect to their colony-forming efficiency, surface marker expression by immunofluorescence staining, fluorescence-activated cell sorting analysis and self-renewal potency. To verify the differentiation activity, in vitro osteogenic and adipogenic gene expressions were evaluated by reverse transcription-polymerase chain reaction, and in vitro formation of mineralized nodule and adipocytes was also evaluated. In vivo bone-forming activity was assessed by ectopic transplantation in immunocompromised mice (n = 5 ...
The number of overweight and obese individuals continues to increase in both the U.S. and worldwide. This increase has led to a significant increase in obesity-related medical problems including diabetes mellitus, cardiovascular disease and cancer. In obesity, the differentiation of adipocytes is suppressed. Although adipocyte differentiation is associated with changes in glucose metabolism, little is known about the potential of enzymes involved in glucose metabolism to modulate this process. Pyruvate kinase (PK) mediates the rate-limiting step of glycolysis. The M2 isoform of PK (PKM2) is expressed in adipocytes but its role in adipogenesis is unknown. Here we demonstrate that PKM2 regulates the differentiation of both human and mouse adipocytes. Silencing of PKM2 in preadipocytes led to increased lipid accumulation, enhanced expression of markers (FABP4, PPARgamma, C/EBPBeta) of adipocyte differentiation and caused a shift in the pattern of enzymes involved in glucose metabolism favoring the ...
To elucidate the roles of adipose tissue and skeletal muscle in the early development of insulin resistance, we characterized gene expression profiles of isolated adipose cells and skeletal muscle of non-diabetic insulin-resistant first-degree relatives of type 2 diabetic patients using oligonucleot …
A research team has managed to decode the process of adipogenesis by identifying the precise proteins that play the leading roles in fat absorption. There are many actors involved in the process of adipogenesis, used by the body to store the fat that it absorbs from food. Up to now there had been some uncertainty as to how it was regulated. Yet, understanding this mechanism is of crucial importance to prevent the diseases related to fat accumulation in adipose tissue ...
Obesity is a growing epidemic around the world and dramatically increases the risk of developing a number of chronic diseases (Gambero and Ribeiro, 2015).