Phaseic acid is a terpenoid catabolite of abscisic acid. Like abscisic acid, it is a plant hormone associated with photosynthesis arrest and abscission. Abscisic acid (ABA) is a multifunctional plant hormone, playing roles in germination, seasonal growth patterns, and stress response. ABA levels are believed to be regulated in part by control of ABA catabolism, specifically by oxidation to form phaseic acid. Phaseic acid can therefore be thought of as a degradation product of ABA, although it may have other functions. The introduction of high phaseic acid concentrations have been found to impede stomatal closure and reduce photosynthesis in arabidopsis but this may be a result of product inhibition rather than recognition of phaseic acid by a receptor. Phaseic acid inhibits glutamate receptors in mouse brain. Phaseic acid is an isoprenoid, which means that it is derived from isoprene units. The activated terpene geranylgeranyl pyrophosphate is combined with itself to produce the common ...
Leung, J., M. Bouvier-Durand, P.C. Morris, D. Guerrier, F. Chefdor, and J. Giraudat. 1994. Arabidopsis ABA-response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448-1452.. Leung, J., S. Merlot, and J. Giraudat. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.. Meyer, K., M.P. Leube, and E. Grill. 1994. A Protein Phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452-1455.. Morris, E.C. 1999. Effect of localized placement of nutrients on root competition in self-thinning populations. Ann. Bot. 78: 353-364.. Niklas, K.J. 1994. Plant Allometry. Chicago: Chicago University Press, pp. 101-125.. Pei, Z.M., M. Ghassemian, C.M. Kwak, P.M. Court, and J.I. Schroeder. 1998. Role of farnesyktransferase in ABA regulation of guard cell anion channel and plant water loss. Science 282: 287-290.. Thomas, S.C. ...
TY - JOUR. T1 - Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis. T2 - Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. AU - Ishitani, Manabu. AU - Xiong, Liming. AU - Stevenson, Becky. AU - Zhu, Jian Kang. PY - 1997/11/1. Y1 - 1997/11/1. N2 - To dissect genetically the complex network of osmotic and cold stress signaling, we constructed lines of Arabidopsis plants displaying bioluminescence in response to low temperature, drought, salinity, and the phytohormone abscisic acid (ABA). This was achieved by introducing into Arabidopsis plants a chimeric gene construct consisting of the firefly luciferase coding sequence (LUC) under the control of the stress-responsive RD29A promoter. LUC activity in the transgenic plants, as assessed by using in vivo luminescence imaging, faithfully reports the expression of the endogenous RD29A gene. A large number of cos (for constitutive expression of osmotically responsive genes), los ...
Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), At5g59220, is a negative regulator of osmotic stress and ABA signaling and that this function was only apparent when double loss-of-function mutants with pp2ca-1/ahg3 were generated. At5g59220-green fluorescent protein and its close relative PP2CA-green fluorescent protein showed a predominant nuclear localization; however, hemagglutinin-tagged versions were also localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to ...
Biology Assignment Help, Roles of abscisic acid, Roles of Abscisic Acid Abscisic acid (ABA) is a particularly interesting hormone with regard to the regulation of its own levels. Its levels rise and fall dramatically in several kinds of tissues in response to environmental and developmental ch
EN] The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FYVE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), components of the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT-I (ESCRT-I) complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. In this study we show that Arabidopsis (Arabidopsis thaliana) ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. ...
The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. The Arabidopsis sad1 (supersensitive to ABA and drought) mutation increases plant sensitivity to drought stress and ABA in seed germination, root growth, and the expression of some stress-respons …
Abscisic acid is found in american cranberry. Abscisic acid is used to regulate ripening of fruit Abscisic acid (ABA) is an isoprenoid plant hormone, which is synthesized in the plastidal 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway; unlike the structurally related sesquiterpenes, which are formed from the mevalonic acid-derived precursor farnesyl diphosphate (FDP), the C15 backbone of ABA is formed after cleavage of C40 carotenoids in MEP. Zeaxanthin is the first committed ABA precursor; a series of enzyme-catalyzed epoxidations and isomerizations, and final cleavage of the C40 carotenoid by a dioxygenation reaction yields the proximal ABA precursor, xanthoxin, which is then further oxidized to ABA. Abamine has been patented by the Japanese researchers Shigeo Yoshida and Tadao Asami, which are very reluctant to make this substance available in general, neither commercially nor for research purposes. Abscisic acid (ABA), also known as abscisin II and dormin, is a plant hormone. It functions ...
Author: Lisso, J. et al.; Genre: Journal Article; Published in Print: 2011; Open Access; Keywords: activated protein-kinases|br/|drought stress tolerance|br/|cell signal-transduction|br/|gene-expression|br/|transcription factors|br/|h2o2 accumulation|br/|hydrogen-peroxide|br/|oxidative stress|br/|water-stress|br/|aba; Title: NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana
Abscisic acid ((S)​-​(+)​-​Abscisic acid) is a plant hormone which is as a growth inhibitor. Abscisic acid has been shown to regulate many aspects of plant growth and development including embryo maturation, seed dormancy, germination, cell division and elongation, floral induction, and responses to environmental stresses such as drought, salinity, cold, pathogen attack and UV radiation. - Mechanism of Action & Protocol.
Anti-ABA | abscisic acid (C1) (for immunolocalization) antibodies, antibodies to abscisic acid, abscisic acid antibody, ABA antibody, plant hormone antibodies, AS09 446Abscisic acid (ABA) is a plant hormone involved in different physiological responses a
Phytohormone abscisic acid (ABA) regulates key processes in plants relative to seed germination, plant development and responses to important environmental stresses, such as drought, salinity and extreme temperatures. ABA perception is tightly controlled by the ubiquitin proteasome system. CRL4-CDDD E3 ubiquitin ligases target ABA receptors of the PYR/PYL/RCAR (pyrabactin resistance/pyrabactin resistance-like/regulatory components of ABA) family, triggering their ubiquitination and proteasomal degradation. Therefore, CRL4-CDDD complexes function as repressors of ABA-mediated stress responses. On the contrary, ABA treatment attenuates receptor degradation although the precise molecular details of this mechanism have remained unknown. In this seminar, our most recent data on the regulatory process underlying ABA-mediated protection of PYR/PYL/RCAR receptors, by CRL4-CDDD E3 ubiquitin ligases inactivation, will be shown.. ...
Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a ...
The plant hormone abscisic acid (ABA) mediates various responses such as stomatal closure, the maintenance of seed dormancy, and the inhibition of plant growth. All three responses are affected in the ABA-insensitive mutant abi1 of Arabidopsis thaliana, suggesting that an early step in the signaling of ABA is controlled by the ABI1 locus. The ABI1 gene was cloned by chromosome walking, and a missense mutation was identified in the structural gene of the abi1 mutant. The ABI1 gene encodes a protein with high similarity to protein serine or threonine phosphatases of type 2C with the novel feature of a putative Ca2+ binding site. Thus, the control of the phosphorylation state of cell signaling components by the ABI1 product could mediate pleiotropic hormone responses. ...
Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in
Abscisic acid (ABA) regulates various aspects of plant growth and development, including seed maturation and dormancy, as well as adaptation to abiotic environmental stresses (Zeevaart and Creelman, 1988; Davies and Jones, 1991). Substantial progress has been made in the characterization of ABA signaling pathways (Busk and Pagès, 1997; Bonetta and McCourt, 1998; Leung and Giraudat, 1998; MacRobbie, 1998). In particular, mutational analyses in Arabidopsis have led to the identification of several genes that control ABA responsiveness. These genetic screens were based primarily on the inhibition of seed germination by applied ABA. The ABA-insensitive (abi) mutants abi1 to abi5 are able to germinate in the presence of ABA concentrations that are inhibitory to the wild type (Koornneef et al., 1984; Ooms et al., 1993; Finkelstein, 1994; Nambara et al., 1995). In contrast, germination of the era1 (enhanced response to ABA) to era3 mutant seed is prevented by low concentrations of ABA that ordinarily ...
As sessile organisms, plants have evolved sophisticated mechanisms to circumvent the adverse environment. The phytohormone abscisic acid (ABA) is a key inducer of plant responses to abiotic stress. Much effort has been made to decipher the mechanism underlying ABA signal transduction, in which posttranscriptional regulation has been shown to be one of the most important modes of regulation (Chinnusamy et al., 2008). Mutants of several components of the microRNA (miRNA) biogenesis machinery, such as hyponastic leaves1, serrate, dicer-like1, hua enhancer1 (hen1), and cap-binding protein (cbp20 and cbp80), are hypersensitive to ABA (Lu and Fedoroff, 2000; Hugouvieux et al., 2001; Kim et al., 2008; Zhang et al., 2008). These mutants, except hen1, were shown to have lower miRNA levels but higher primary miRNA precursor (pri-miRNA) levels compared with wild-type plants (Laubinger et al., 2008). In cbp20 and cbp80 mutants, ABA induction of miR159 was delayed and the miR159 target transcripts, which ...
Ca2+ is a ubiquitous second messenger in plant cell signalling. In this review we consider the role of Ca2+-based signal transduction in stomatal guard cells focusing on three important areas: (1) the regulation of guard cell turgor relations and the control of gene expression in guard cells, (2) the control of specificity in Ca2+ signalling, (3) emerging technologies and new approaches for studying intracellular signalling. Stomatal apertures alter in response to a wide array of environmental stimuli as a result of changes in guard cell turgor. For example, the plant hormone abscisic acid (ABA) stimulates a reduction in stomatal aperture through a decrease in guard cell turgor. Furthermore, guard cells have been shown to be competent to relay an ABA signal from its site of perception to the nucleus. An increase in the concentration of cytosolic free Ca2+ ([Ca2+]1) is central to the mechanisms underlying ABA-induced changes in guard cell turgor. We describe a possible model of Ca2+-based ABA ...
We have isolated a full-length PvNCED1 cDNA from water-stressed bean leaves. PvNCED1 encodes a protein that is targeted to chloroplasts, where it is associated with thylakoids (Fig. 4). Heterologous expression as a glutathione S-transferase fusion protein in E. coli and enzyme assays with the purified recombinant protein established that PvNCED1 catalyzes the cleavage of 9-cis-epoxycarotenoids (Fig. 5). In response to water stress, a close correlation was found between the abundance of PvNCED1 mRNA and protein, and increase in ABA levels in leaves and roots (Figs. 6 and 8). In leaves, there is an abundance of 9-cis-epoxycarotenoids (13), and the enzyme activities converting xanthoxin to ABA are constitutive (12, 29). Therefore, these results provide evidence in support of the long-standing hypothesis that drought-induced ABA biosynthesis is regulated by the 9-cis-epoxycarotenoid cleavage step at the transcriptional level, assuming that the abundance of PvNCED1 mRNA after dehydration is ...
Define abscisic acid: a plant hormone C15H20O4 that is a sesquiterpene widespread in nature and that typically promotes leaf abscission and dormancy …
The hormone abscisic acid (ABA) regulates a variety of developmental and physiological processes in higher plants. Liu et al. (see the Perspective by Grill and Christmann) have now identified a membrane-bound protein that functions as an ABA receptor. The protein, GCR2, has features of a G protein-coupled receptor, which has thousands of variants in animal cells but very few known variants in plant cells. X. Liu, Y. Yue, B. Li, Y. Nie, W. Li, W.-H. Wu, L. Ma, A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315, 1712-1716 (2007). [Abstract] [Full Text]. E. Grill, A. Christmann, A plant receptor with a big family. Science 315, 1676-1677 (2007). [Summary] [Full Text]. ...
Rabbit polyclonal antibody raised against Abscisic acid. Abscisic acid conjugated with carrier proteins. (PAB0080) - Products - Abnova
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded
In higher plants, abscisic acid and xanthoxin are two potent growth regulators. Although similar properties in both substances have been demonstrated in several biological tests including biochemical interconversion of the substances, evidence is available that in the plant as a whole, xanthoxin has regulatory functions other than those of abscisic acid. Several environmental factors, such as water supply, photoperiod and low temperature, which affect growth and development also greatly change the level of abscisic acid in the plant; however, only small variations in the xanthoxin level have been observed in response to changes in the environmental conditions. On the other hand, a strong enhancement of the xanthoxin level can be induced when dark-grown seedlings are briefly illuminated; this treatment, however, has no influence on the abscisic acid level. This observation supports the hypothesis that light-induced inhibition of growth may be mediated by an increased formation of the growth ...
Possibility of improving physiological traits and minituber yield of potato cultivars (cvs. Agria and Fontane) was investigated by application of plant growth regulators (BAP, ABA and BAP+ABA) at tuber initiation stage. Regardless of the cultivars, Net photosynthesis rate (Np), actual quantum yield (Φ), stomatal conductance (gs) and Transpiration rate (Tr) of BAP-treated leaves were superior to those of the control. For Agria, the greatest Chlorophyll content (Chl) was observed in BAP-treated plants, while the highest Chl for Fontane was observed in ABA-treated plants. Increasing Np and Chl content were associated with higher Soluble Carbohydrate content (SC). BAP+ABA application increased SC of leaflets in both cultivars compared with the control. Tuber Yield per Plant (Y/P), Mean Tuber Weight (MTW), and Tuber Number (TN) were stimulated by foliar treatment of plants with PGRs compared with the untreated ones, but there were significant interactions between cultivar and hormone type. Positive
Possibility of improving physiological traits and minituber yield of potato cultivars (cvs. Agria and Fontane) was investigated by application of plant growth regulators (BAP, ABA and BAP+ABA) at tuber initiation stage. Regardless of the cultivars, Net photosynthesis rate (Np), actual quantum yield (Φ), stomatal conductance (gs) and Transpiration rate (Tr) of BAP-treated leaves were superior to those of the control. For Agria, the greatest Chlorophyll content (Chl) was observed in BAP-treated plants, while the highest Chl for Fontane was observed in ABA-treated plants. Increasing Np and Chl content were associated with higher Soluble Carbohydrate content (SC). BAP+ABA application increased SC of leaflets in both cultivars compared with the control. Tuber Yield per Plant (Y/P), Mean Tuber Weight (MTW), and Tuber Number (TN) were stimulated by foliar treatment of plants with PGRs compared with the untreated ones, but there were significant interactions between cultivar and hormone type. Positive
Water stress has been shown to cause root hairs to become short and bulbous. Because abscisic acid (ABA) mediates a variety of water-stress responses, we investigated the response of Arabidopsis thaliana root hairs to ABA. When wild-type root hairs were treated with ABA, they exhibited the water-stress response. The Arabidopsis mutants abi1 and abi2, which are insensitive to ABA at the seedling stage, did not display the root hair response. These data suggest that ABA may mediate the response of root hairs to water stress. The drought response of root hairs resulting in an inhibition of tip growth will provide an easy screen to select mutations that are insensitive to ABA and/or involved in tip growth.
Membrane vesicle traffic to and from the plasma membrane is essential for cellular homeostasis in all eukaryotes. In plants, constitutive traffic to and from the plasma membrane has been implicated in maintaining the population of integral plasma-membrane proteins and its adjustment to a variety of hormonal and environmental stimuli. However, direct evidence for evoked and selective traffic has been lacking. Here, we report that the hormone abscisic acid (ABA), which controls ion transport and transpiration in plants under water stress, triggers the selective endocytosis of the KAT1 K+ channel protein in epidermal and guard cells. Endocytosis of the K+ channel from the plasma membrane initiates in concert with changes in K+ channel activities evoked by ABA and leads to sequestration of the K+ channel within an endosomal membrane pool that recycles back to the plasma membrane over a period of hours. Selective K+ channel endocytosis, sequestration, and recycling demonstrates a tight and dynamic ...
Molecular genetic studies on Arabidopsis sugar response mutants have revealed extensive evidence for cross-talk between sugar and phytohormone response pathways [11-13, 15-18, 51, 52]. For example, exogenous Glc has been proposed to slow the decrease in ABA concentrations that occurs during seed germination [53]. Glc has also been shown to help regulate expression of a number of genes involved in ABA metabolism in seedlings. Several ABA biosynthetic genes, including ABA1, AAO3 and ABA3 are upregulated by 110 mM and 330 mM Glc via a mechanism that requires that a certain endogenous ABA level is maintained [17]. Interestingly, these same genes are downregulated by 330 mM mannitol, via a mechanism that does not appear to require wild-type levels of endogenous ABA. These results suggest that regulation of these three genes by Glc is distinct from their regulation by osmotic stress. Similarly to ABA1, AAO3 and ABA3, the ABA biosynthetic gene ABA2 is also upregulated by 110 mM and 330 mM Glc via a ...
Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ...
The phytohormones GA and ABA are major, but not the only, regulators of seed germination, which is promoted by GA and inhibited by ABA. We employed ABA-repressed seed germination as the selection criterion to identify cDNA-overexpressing lines showing ABA insensitivity. Line A44 displayed clear estradiol-dependent ABA insensitivity, suggesting that regulated overexpression of the inserted ZFP3 cDNA is responsible for the observed phenotype (Fig. 1). The causal relationship between ZFP3 overexpression and the ABA-insensitive seed germination phenotype was verified using independent ZFP3-overexpressing lines, which led to the conclusion that the ZFP3 cDNA encoded C2H2 zinc finger protein and is a novel negative regulator of ABA responses. Enhanced expression of ZFP3 seems to phenocopy the effects of ABA-insensitive abi mutations during germination. The PP2C-type protein phosphatases ABI1 and ABI2 are part of the ABA receptor complex and negatively regulate ABA responses, while the transcription ...
Il 20/03/2017 ore 14.30 - 15.30. Sala Conferenze, Area della Ricerca NA1, Via P. Castellino, 111 80131 Napoli. Prof. Santina Bruzzone from the Department of Experimental Medicine, Università degli studi di Genova, will give a seminar on the role of abscisic acid (ABA), mainly known as a plant hormone, in the regulation of glycemia. She demonstrated that ABA is also a human hormone, regulating glycemia in humans through several mechanisms: i) by increasing insulin-independent muscle and adipose tissue glucose uptake; ii) by stimulating insulin release; iii) by stimulating the release of the incretin Glucagon Like Peptide-1. We identified the ABA receptor (LANCL2), and we generated a LANCL2-KO mouse strain. Notably, ABA plasma levels increase in healthy, but not in diabetic, subjects undergoing an oral glucose tolerance test and oral ABA improves glycemic control in rodents and in healthy humans. More recently, her group has demonstrated that ABA induces the browning of murine adipocytes in vitro ...
The involvement of ABA in primed callose production at the site of pathogen penetration is one of the few examples of a positive function of this hormone in defense and may be the basis for the described β-aminobutyric acid-induced resistance (Ton and Mauch-Mani, 2004; Mauch-Mani and Mauch, 2005; Ton et al., 2005). However, callose deposition at the site of P. cucumerina infection was similar in irx1-6 mutant and wild-type plants, which excludes priming for callose production as a mediator of irx-reduced susceptibility (data not shown). We now provide strong evidence for a direct involvement of ABA signaling in the control of Arabidopsis resistance to R. solanacearum. This ABA function was supported by different observations: (1) the ABA-insensitive mutants abi1-1 and abi2-1, and the ABA-deficient mutant aba1-6, were more susceptible to the bacterium than were wild-type plants (Figure 6); (2) the constitutive expression in the irx mutants of some ABA signaling regulators, including ABI1-1 and ...
Buy ABA antigen, Abscisic acid Antigen-ALF96116.1 (MBS7041665) product datasheet at MyBioSource, Antigens. Application: ELISA (EIA), Immune colloidal gold, Immunochromatography
Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances hav …
The carotenoid/viviparous maize (Zea mays L.) mutant vp12 is a single locus mutation that results in lemon-coloured endosperms, viviparous embryos and albino seedlings. This work presents the first molecular and biochemical analysis of vp12. Levels of ABA were measured during embryo development and also in isolated organs under water deficit stress. ABA levels were lower in developing embryos of mutants than in non-mutant siblings at all stages analysed. In addition, under water deficit, mutant organs accumulated less ABA than corresponding non-mutant sibling organs. Furthermore, immature mutant embryos accumulated transcripts for several ABA or water deficit-responsive genes, Em, glb1, glb2, rab17, and vp1. These results indicated that vp12 is deficient in ABA accumulation, but not in the ABA signal transduction pathway. Analysis of carotenoid extracts showed that mutant endosperms accumulated lower amounts of coloured precursors than non-mutant endosperms. The expression of key enzymes in the ...
Read Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways, Plant Molecular Biology on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.
may imply that the ABA biosynthetic pathway in response to PPT appears to be the same as that established under stress conditions (Zeevaart and Creelman, 1988; Seo and Koshiba, 2002). In addition, the defect of ABA accumulation in TN1 seedlings may account for the PPT intolerance of the cultivar.. In previous work, we observed that PPT at a concentration of 50 M increased ABA content in detached rice leaves of TN1 (Tsai et al., 2002). In the present investigation, no accumulation of ABA was observed in leaves of TN1 seedlings treated with 10 M PPT (Figure 6). When detached rice leaves of TN1 were treated with 10 M PPT, no ABA accumulation was observed (data not shown). It appears that PPT concentration in leaves of TN1 seedlings treated with 10 M PPT is high enough to cause toxicity, but not to cause ABA accumulation. It has been shown that roots possess the ability to synthesize ABA (Davies and Zhang, 1991). Thus, the possibility that PPT is unable to trigger the ABA biosynthetic pathway in TN1 ...
There is now a substantial body of evidence that shoot growth and physiology of plants rooted in drying soil may be regulated by chemical signals moving from the root to the shoot in the xylem stream. Although some evidence suggests that soil drying can reduce the supply of promoters of leaf growth and stomatal opening, there is now compelling evidence for an enhanced flux of inhibitors in the xylem stream of droughted plants. Some of this inhibitory activity is still to be identified but at least in some plants the bulk of activity can be explained by the enhanced concentration of the plant hormone abscisic acid (ABA). A series of field experiments has now shown that ABA, moving as a signal from the roots to the leaves in the transpiration stream, can provide a measure of the access that the plant has to water in the soil in the rooting zone. We show here how this signal may be a variation in the concentration of ABA arriving at the sites of action in the leaf. The response to such a signal ...
Lanthionine synthetase C-like 2 represents the first step in a pathway leading to activation of peroxisome proliferator-activated receptor-gamma in immune cells by abscisic acid, said Raquel Hontecillas, assistant professor of immunology at the Virginia Bioinformatics Institute and one of the lead investigators of the study. We have also shown that abscisic acid affects the expression of several genes involved in inflammation, metabolism and cell signaling, which provides further clues for possible intervention points in the treatment of inflammatory and immune-mediated diseases. The researchers hope to more closely pinpoint some of the new drug targets in the molecular network of the immune response as they continue to dissect the way that the naturally occurring drug abscisic acid reduces damage due to inflammation. In addition, the novel understanding on how abscisic acid works will be used to develop new classes of drugs that target the same alternative pathway of peroxisome ...
Root growth occurs with cell division at the root tip and cell expansion a short distance from the tip. Whereas leaf expansion of water stressed seedlings appears to be reduced, primary root growth increases under these conditions. The plant hormone abscisic acid (ABA) increases in the tip. This is associated with an increase in osmotic pressure, and thus more water, into the newly formed root cells. Also increasing ABA is linked to an increase in the amino acid proline, perhaps delaying the finishing of cell walls. As a consequence, the cells near the root tip become longer than in roots not facing water deficient conditions. ABA also appears to interfere with production of ethylene in the cells, a compound associated with inhibiting cell growth ...
Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated ...
Environmental conditions, including light, temperature, water status, and soil salinity, all modify the redox state of plant cells (Allen et al., 1995). A number of studies have shown that oxidative stress is a common factor that affects plant growth and development under extreme environmental conditions (for review, see Mittler, 2002). Most recently, oxidative stress agent H2O2 has been shown to serve as a critical messenger molecule in many signal transduction pathways, including plant responses to pathogen, plant hormone abscisic acid, and abiotic stress factors (Wojtaszek, 1997; Pei et al., 2000; Bolwell et al., 2001; Mittler, 2002). At least one of the mechanisms underlying H2O2 function is the activation of calcium channels (Pei et al., 2000; Chico et al., 2002). Here, we report that plant Tyr phosphatases such as AtPTP1 (Xu et al., 1998) serve as targets for H2O2 and this may be associated with the regulation of mitogen-activated protein (MAP) kinase activity in plants. Although Ser/Thr and Tyr
In‐gel protein kinase assays using myelin basic protein (MBP) as substrate have been used to demonstrate that abscisic acid (ABA) activates an MBP kinase (AMBP kinase) in epidermal peels prepared from leaves of the Argenteum mutant of pea, Pisum sativum L. AMBP kinase has the characteristics of a mitogen‐activated protein kinase (MAPK): it utilizes MBP preferentially as an artificial substrate, it is rapidly and transiently activated, it is of the appropriate size (molecular weight c. 45 kDa), requires tyrosine phosphorylation for activity and is tyrosine phosphorylated upon activation. Reverse transcription‐PCR was used to generate a previously‐cloned MAPK from guard cells, epidermis and mesophyll and immunoblotting using an antibody raised against a mammalian MAPK detected MAPK‐related proteins, including one of 45 kDa, in epidermal peels, mesophyll and guard cells. Inhibition of AMBP kinase activation by PD98059, a specific inhibitor of MAPK kinase, and thus MAPK activation, ...
The development of LRP can be induced or repressed in response to environmental conditions and thus provides a mechanism for the plant to cope with changing edaphic conditions (Malamy, 2005). A great number of environmental variables have been shown to influence LRP development. For example, osmotic stress (drought) inhibits the developmental progression of early stage LRP (Deak and Malamy, 2005), and activation of the meristem in emerged LRP is blocked by exogenous abscisic acid, a plant hormone involved in stress responses (De Smet et al., 2003). LRP development is also sensitive to the availability of nutrients, including growth-limiting nutrients such as nitrogen and phosphorous (reviewed by Jones and Ljung, 2012; Lavenus et al., 2013; Péret et al., 2011). Although some environmental stimuli have a clear involvement in late stage LRP development, nitrogen and phosphorous can also act earlier in LRP development (Lima et al., 2010). It is unclear whether environmental stimuli can only ...
The plant guard cell S (Slow)-type anion channel, SLAC1 (based on activation kinetics of anion channel currents in response to voltage changes); functions in stomatal signalling, controls turgor pressure, and regulates the exchange of water and CO2 (Chen et al. 2010). Also called carbon dioxide insensitive (CDI3) and ozone sensitive (OZS1) (Kollist et al., 2011). Heterotrimeric G proteins regulate guard cell ion channels (Zhang, 2011). Evolutionary studies have been reported (Dreyer et al. 2012). The transmembrane region of guard cell SLAC1 channels detect CO2 signals via an abscisic acid (ABA)-independent pathway (Yamamoto et al. 2016). SLAC1 is activated by the protein kinase OST1 (OPEN STOMATA 1), the Ca2+-dependent protein kinases (CPKs), the GHR1 (GUARD CELL HYDROGEN PEROXIDE-RESISTANT 1) transmembrane receptor-like protein (TC# 1.A.87.2.8), or the PYL5 abscisic acid (ABA) receptor (Q9FLB1) (Wang et al. 2017 ...
TY - JOUR. T1 - Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in arabidopsis. AU - Uraji, Misugi. AU - Katagiri, Takeshi. AU - Okuma, Eiji. AU - Ye, Wenxiu. AU - Hossain, Mohammad Anowar. AU - Masuda, Choji. AU - Miura, Aya. AU - Nakamura, Yoshimasa. AU - Mori, Izumi. AU - Shinozaki, Kazuo. AU - Murata, Yoshiyuki. PY - 2012/5. Y1 - 2012/5. N2 - Phospholipase D (PLD) is involved in responses to abiotic stress and abscisic acid (ABA) signaling. To investigate the roles of two Arabidopsis (Arabidopsis thaliana) PLDs, PLDα1 and PLDδ, in ABA signaling in guard cells, we analyzed ABA responses in guard cells using Arabidopsis wild type, pldα1 and pldδ single mutants, and a pldα1 pldδ double mutant. ABA-induced stomatal closure was suppressed in the pldα1 pldδ double mutant but not in the pld single mutants. The pldα1 and pldδ mutations reduced ABAinduced phosphatidic acid production in epidermal tissues. Expression of either PLDα1 or PLDδ complemented ...
TY - JOUR. T1 - Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in arabidopsis guard cells. AU - Islam, Mohammad Mahbub. AU - Tani, Chiharu. AU - Watanabe-Sugimoto, Megumi. AU - Uraji, Misugi. AU - Jahan, Md Sarwar. AU - Masuda, Choji. AU - Nakamura, Yoshimasa. AU - Mori, Izumi C.. AU - Murata, Yoshiyuki. PY - 2009/6/1. Y1 - 2009/6/1. N2 - Thioglucoside glucohydrolase (myrosinase), TGG1, is a strikingly abundant protein in Arabidopsis guard cells. We investigated responses of tgg1-3, tgg2-1 and tgg1-3 tgg2-1 mutants to abscisic acid (ABA) and methyl jasmonate (MeJA) to clarify whether two myrosinases, TGG1 and TGG2, function during stomatal closure. ABA, MeJA and H2O2 induced stomatal closure in wild type, tgg1-3 and tgg2-1, but failed to induce stomatal closure in tgg1-3 tgg2-1. All mutants and wild type showed Ca2-induced stomatal closure and ABA-induced reactive oxygen species (ROS)production. A model is discussed in which two myrosinases redundantly function ...
The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment.
Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana - Anthocyanin;Abscisic acid;Ethephon;Low temperature;Phenylalanine ammonia lyase(PAL);Arabidopsis thaliana;
Read Effects of abscisic acid treatment on the expression of cysteine proteinase gene and enzyme inhibitor during wheat cold adaptation, Russian Journal of Plant Physiology on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.
Auxin, gibberellins & abscisic acid MCQs quiz, learn auxin, gibberellins & abscisic acid multiple choice questions answers, online biology quiz MCQs, shortage of water is controlled through with answer.
Aldehyde oxidase (AO; EC 1.2.3.1) catalyzes the final step of abscisic acid (ABA) biosynthesis, which is the oxidation of abscisic aldehyde (ABAld) to ABA. Gene expression analyses indicate that the stress-induced Pisum sativum PsAOγ isoform, which effectively uses ABAld as a substrate, is encoded by the PsAO3 gene. PsAO3 was heterologously expressed in Pichia pastoris and the recombinant PsAO3 protein revealed substrate preferences highly similar to the native PsAOγ protein present in the pea leaves and roots. Both proteins prefer indole-3-aldehyde and naphthaldehyde as substrates, although high activities against abscisic aldehyde and citral were also observed. The Km values of PsAO3 for naphthaldehyde and abscisic aldehyde (4.6 and 5.1 μM, respectively) were the lowest among the substrates tested. PsAO3 activity was almost completely inhibited by potassium cyanide, diphenyleneiodonium, and methanol. Rapidly imposed drought stress did not increase the level of PsAO3 mRNA or activity of any ...
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H1-translocating ATPase (V-ATPase) and Na1/H1 antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na1 sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H1 transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na1/H1 antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase,
Wheat (Triticum aestivum L.) zygotic embryogenesis occurs in a dynamically regulated ovular environment, and in ovulohormones regulate embryogenic processes. Levels of ABA, IAA, and the cytokinins Z, ZR, DHZ, DHZR, iP, and iPA were studied in developing wheat kernels from anthesis to maturity . High cytokinin and low IAA and ABA levels were associated with the early stage of embryo formation and active tissue histodifferentiation. Following histodifferentiation, cytokinin levels declined while IAA accumulated throughout the stage of active grain growth and then declined with grain maturity. ABA levels increased at the soft-dough developmental stage and through to grain maturity. Endogenous +ABA levels in developing wheat grains treated with fluridone, which indirectly blocks ABA synthesis, declined at the soft-dough stage. As a result, mature desiccated fluridone-treated kernels exhibited little dormancy. However, fluridone-treated kernels were not viviparous, suggesting a strong caryopsis-embryo
Root and leaf abscisic acid concentration impact on gas exchange in tomato (Lycopersicon esculentum Mill) plants subjected to partial root-zone drying
OsSLI1, a Homeodomain Containing Transcription Activator, Involves Abscisic Acid Related Stress Response in Rice Oryza sativa L.. . Biblioteca virtual para leer y descargar libros, documentos, trabajos y tesis universitarias en PDF. Material universiario, documentación y tareas realizadas por universitarios en nuestra biblioteca. Para descargar gratis y para leer online.
The isolation of ga1 and sly1 mutants as suppressors of ABI1-1 does not contradict the notion that the effects of ABA on germination are completed with embryo maturation and are therefore temporally separated from the effects of GA at germination. The transient exposure of wild-type embryos to endogenous ABA during seed maturation results in a state of dormancy that persists after ABA levels decline. In contrast, the apparent dormancy caused by exposure of mature wild-type embryos to exogenous ABA does not persist because seeds germinate soon after they are shifted from ABA plates to minimal plates. In fact, this germination occurs rapidly, suggesting that exogenous ABA does not fully inhibit the dormancy-breaking process, and that some ABA-independent component of dormancy is missing in these reconstruction experiments (C. Steber and P. McCourt, unpublished results). Perhaps not surprisingly, exogenous ABA is an artificial condition that detects alterations in ABA and GA sensitivity after the ...
Objective 1: Identify genetic and physiological mechanisms controlling growth under drought in maize, wheat, and related species. • Sub-objective 1.1: Characterize the genetic regulation of maize root growth responses to soil water-deficit stress. • Sub-objective 1.2: Determine the roles of plant hormones abscisic acid (ABA) and gibberellins (GA) in the regulation of wheat root responses to water deficit. • Sub-objective 1.3: Characterize the genetic networks that link transcription factor expression and metabolism central to cellular protection during dehydration in a C4 resurrection grass. Objective 2: Characterize corn for natural rootworm resistance, rootworm larvae for Bt tolerance, and artificial diets for improved understanding of rootworm biology and management. • Sub-objective 2.1: Systematically screen exotic and Germplasm Enhancement of Maize (GEM) germplasm, identify potential sources of western corn rootworm (WCR) resistance, verify resistance, and move into adapted ...
An international team of researchers using the U.S. Department of Energys Advanced Photon Source (APS) at Argonne National Laboratory have determined precisely how the plant hormone abscisic acid (ABA) works at the molecular level to help plants respond to environmental stresses such as drought and cold.
OBJECTIVE 1: Wheat mutants, hypersensitive to abscisic acid (ABA) were characterized using ABA dose-response germination experiments, stomatal closure assays, and carbon isotope discrimination. One mutant showed a reproducible stomatal closure in response to ABA application resulting in measured increase in transpiration efficiency, indicating that it may be more drought tolerant. Drought tolerance experiments were established in the field in 2008. The role of the plant hormone, Giberellin in seed germination and plant height was investigated. The DELLA protein, RGA was shown to be controlled by protein-protein interaction with GA receptor GID1 in Arabidopsis. GID1 can deactivate germination-specific DELLA protein RGL2. The effect of GID1 on seed dormancy is similar to the effect of after-ripening suggesting the processes may share underlying mechanisms. OBJECTIVE 2: 105,797 molecular marker datapoints have been provided to wheat and barley researchers as follows: 6,659 (CA), 32,546 (ID), 9,642 ...
Induction of nine-cis-epoxycarotenoid dioxygenase 6 (NCED6), an abscisic acid (ABA) biosynthesis gene, alone is sufficient to suspend germination in testa-ruptured seeds, which are at the final step of germination. Molecular consequences of NCED6 induction in imbibed seeds were investigated by RNA sequencing. The analysis identified many unknown and uncharacterized genes that were up-regulated by NCED6 induction, in addition to the major regulators of ABA signalling. Interestingly, other NCEDs were up-regulated by NCED6 induction, suggesting that the major rate-limiting enzymes in the ABA biosynthesis pathway are subject to positive-feedback regulation. ZEAXANTHIN EPOXIDASE and ABSCISIC ALDEHYDE OXIDASE3, which function upstream and downstream of NCED, were also up-regulated in seeds by NCED6 induction, which suggests that the distinct layers of positive feedback loops are coordinately operating in the NCED6-induced seeds. SOMNUS (SOM), which was also up-regulated by NCED6 induction, was the ...
The Arabidopsis ABI1 locus is essential for a wide spectrum of abscisic acid (ABA) responses throughout plant development. Here, ABI1 was shown to regulate stomatal aperture in leaves and mitotic activity in root meristems. The ABI1 gene was cloned and predicted to encode a signaling protein. Although its carboxyl-terminal domain is related to serine-threonine phosphatase 2C, the ABI1 protein has a unique amino-terminal extension containing an EF hand calcium-binding site. These results suggest that the ABI1 protein is a Ca(2+)-modulated phosphatase and functions to integrate ABA and Ca2+ signals with phosphorylation-dependent response pathways. ...
FvACS2 was also grouped, at a greater distance, with the same tomato ACS. It is desirable that significant … They ship better that way. These data indicate that SlNCED1and SlCYP707A2are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. N-glycan processing enzymes are reported to play important roles during fruit ripening associated softening. This way we can enjoy apples year-round. In this issue of Plant Physiology, Shan et al. This slows the process down drastically. In this issue of Plant Physiology, Shan et al. This is adaptive because it prevents the seed from sprouting inside the warm, moist fruit. Key words: Abscisic acid (ABA), SlNCED1, SlCYP707A2, tomato fruit ripening, tobacco rattle virus, virus-induced gene silencing (VIGS). Enzymes: Changes in the pattern and activities of several enzymes are reported during fruit ripening. Plant Physiology Website. This ethylene signal causes ...
Jodo, S., 1973: Stomatal movement and water relations in crops. 2. Stomatal behaviour of tobacco leaves of different ages and the influence of soil water shortage
Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product. Using ...
CAS Number: 14375-45-2; Formula: C15H20O4; Formula Weight: 264.32. . Store at -20° to -5°C. Plant tissue culture tested.. Find this and many more products.
The wheat bZip transcription factor TaABF1 mediates both abscisic acid (ABA)-induced and ABA-suppressed gene expression. As levels of TaABF1 protein do not change in response to ABA, and TaABF1 is in a phosphorylated state in vivo, we investigated whether TaABF1 could be regulated at the post-translational level. In bombarded aleurone cells, a TaABF1 protein carrying phosphomimetic mutations (serine to aspartate) at four sites (S36D, S37D, S113D, S115D) was three to five times more potent than wild-type TaABF1 in activating HVA1, an ABA-responsive gene. The phosphomimetic mutations also increased the ability of TaABF1 to downregulate the ABA-suppressed gene Amy32b. These findings strongly suggest that phosphorylation at these sites increases the transcriptional regulatory activity of TaABF1. In contrast to the activation observed by the quadruple serine to aspartate mutation, a single S113D mutation completely eliminated the ability of TaABF1 to upregulate HVA1 or downregulate Amy32b. Thus ...
The invention is a method for developing tissue culture induced coniferous somatic proembryos into well developed cotyledonary embryos. The method comprises a multistage culturing process in which early stage proembryos are cultured on a late stage proembryo medium comprising a significantly higher osmotic potential along with abscisic acid and an absorbent material to gradually reduce the level of available abscisic acid over time. Culturing from this point continues in an embryo development medium having a high osmotic potential in which the osmotic potential is preferably raised during embryo development to a final level of about 450 mM/kg. Through this process the vigor and morphology of the embryos is improved and the tendency to germinate prematurely is significantly reduced. After a period of several weeks in culture somatic embryos having the appearance of zygotic embryos will have formed. These may be germinated before or after storage and transplanted to the soil for further growth.
The results, which are published in the Journal of Biological Chemistry, reveal important new drug targets for the development of treatments for inflammatory and immune-mediated diseases.. The scientists recently reported some of the key molecular events in the immune system of mice that contribute to inflammation-related disease, including the involvement of a specific molecule found on the surface of immune cells involved in the bodys fight against infection. They have now gone one step further and revealed the mechanism by which the natural drug abscisic acid interacts with this protein, known as peroxisome proliferator-activated receptor-gamma, to block inflammation and the subsequent onset of disease.. In previous work, our research group demonstrated that abscisic acid has beneficial effects on several conditions and diseases including obesity-related inflammation, diabetes, atherosclerosis, and inflammatory bowel disease, said Josep Bassaganya-Riera, associate professor of immunology ...
Summary: Abscisic acid is used as a chemically induced dimeriser (CID) to bring together Mph1 kinase and Spc7 and initiate spindle checkpoint signalling in vivo. Simply washing out the abscisic acid enables checkpoint silencing to be studied. ...
Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic flu
Probably acts as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. May be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). May regulate negatively the transition to flowering time and confers flowering time delay.
Abiotic stress, as a natural part of every ecosystem, affects organisms in a variety of ways. It is the negative impact of non-living factors on the living organisms in a specific environment. It has been claimed by one study that abiotic stress causes the most crop loss of any other factor and that most major crops are reduced in their yield by more than 50% from their potential yield [15]. The non-living variables adversely affect the population performance or individual physiology of the organism. The major abiotic stresses that affect plant growth and productivity are drought, heat, cold and salinity. Abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity [11]. Abscisic acid (ABA) is an important phytohormone and plays a critical role in response to various stress signals. The application of ABA to plant mimics the effect of a stress condition. As many abiotic stresses ...
In the third chapter the formation, decay, monitoring, and the functional role of ROS - mainly H2O2, Ю2, Oy are described and the fourth chapter especially focuses on the messenger role of ROS. The ambivalent picture of oxidative degradation and signal transduction during exposure of oxygen-evolving, photosynthetic organisms to oxidative stress isteluci- dated. Both degradation and activation are important mechanisms of ROS signaling. Reaction schemes are presented for the formation and monitoring of ROS and their participation in stress signal transduction pathways both within prokaryotic cyanobacteria as well as from chloroplasts to the nuclear genome in plants. It is suggested that redoxregulated systems, mitogen-activated protein kinase cascades and transcription factor networks play a key role in the ROS-dependent signaling systems in plant cells and for their spatiotemporal morphology and lifespan.. Chapter five focuses on evolution. It is emphasized that mainly the local environment of ...
热激蛋白90(heat shock protein 90,HSP90)广泛介导了胁迫信号的传递,在控制人体细胞正常生长和促进肿瘤细胞发育中起着重要作用;目前,HSP90已成为细胞免疫、信号转导以及抗肿瘤研究的前沿课题。植物HSP90的生理功能研究起步较晚,最近的研究发现HSP90在植物发育、胁迫环境的应答以及抗病性中起着重要作用。本文从分子生物学角度,系统综述了植物HSP90分子作用机理研究的最新进展,以及在改良植物抗性上的应用,以期为通过基因工程方法改良作物抗性提供参考。;Heat shock protein 90 (HSP90) widely mediated stress signal transduction, and plays an important role in the control of normal growth of human cells and in the promoting tumor cell development. At present, HSP90 has become forefront projects of cellular immunity, signal transduction and anti-cancer investigation. The physiological function of HSP90 start later in plant than in animal and fungi
X Factor sensation Abi Alton has won her boyfriend back thanks to her emotional self-penned audition song. The 18-year-old wannabe wowed the judges - Nicole Scherzinger, Gary Barlow, Louis Walsh and Sharon Osbourne - with a performance of her own…
Plants have evolved a sophisticated mechanism to sense the extracellular sulfur (S) status so that sulfate transport and S assimilation/metabolism can be coordinated. Genetic, biochemical, and molecular studies in Arabidopsis over the past 10 years have started to shed some light on the regulatory mechanism of the S response. Key advances in transcriptional regulation (SLIM1, MYB, and miR395), involvement of hormones (auxin, cytokinin, and abscisic acid) and identification of putative sensors (OASTL and SULTR1;2) are highlighted here. Although our current view of S nutrient sensing and signaling remains fragmented, it is anticipated that through further studies a sensing and signaling network will be revealed in the near future.