An ectodysplasin receptor subtype that is specific for ECTODYSPLASIN A2. Unlike the EDAR RECEPTOR the Xedar receptor signals through direct association with TNF RECEPTOR-ASSOCIATED FACTORS. The protein name derives from the fact that gene that encodes it resides on the X CHROMOSOME.
Transmembrane proteins belonging to the tumor necrosis factor superfamily that play an essential role in the normal development of several ectodermally derived organs. Several isoforms of the ectodysplasins exist due to multiple ALTERNATIVE SPLICING of the MRNA for the protein. The isoforms ectodysplasin A1 and ectodysplasin A2 are considered biologically active and each bind distinct ECTODYSPLASIN RECEPTORS. Genetic mutations that result in loss of function of ectodysplasin result in ECTODERMAL DYSPLASIA 1, ANHIDROTIC.
Members of the TNF receptor family that are specific for ECTODYSPLASIN. At least two subtypes of the ectodysplasin receptor exist, each being specific for a ectodysplasin isoform. Signaling through ectodysplasin receptors plays an essential role in the normal ectodermal development. Genetic defects that result in loss of ectodysplasin receptor function results ECTODERMAL DYSPLASIA.

Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. (1/11)

X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.  (+info)

CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. (2/11)

Familial cylindromatosis is an autosomal dominant predisposition to tumours of skin appendages called cylindromas. Familial cylindromatosis is caused by mutations in a gene encoding the CYLD protein of previously unknown function. Here we show that CYLD is a deubiquitinating enzyme that negatively regulates activation of the transcription factor NF-kappaB by specific tumour-necrosis factor receptors (TNFRs). Loss of the deubiquitinating activity of CYLD correlates with tumorigenesis. CYLD inhibits activation of NF-kappaB by the TNFR family members CD40, XEDAR and EDAR in a manner that depends on the deubiquitinating activity of CYLD. Downregulation of CYLD by RNA-mediated interference augments both basal and CD40-mediated activation of NF-kappaB. The inhibition of NF-kappaB activation by CYLD is mediated, at least in part, by the deubiquitination and inactivation of TNFR-associated factor 2 (TRAF2) and, to a lesser extent, TRAF6. These results indicate that CYLD is a negative regulator of the cytokine-mediated activation of NF-kappaB that is required for appropriate cellular homeostasis of skin appendages.  (+info)

Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency. (3/11)

EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.  (+info)

Induction of apoptosis by X-linked ectodermal dysplasia receptor via a caspase 8-dependent mechanism. (4/11)

X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that is highly expressed during embryonic development and binds to ectodysplasin-A2 (EDA-A2). In this report, we demonstrate that although XEDAR lacks a death domain, it nevertheless induces apoptosis in an EDA-A2-dependent fashion. The apoptosis-inducing ability of XEDAR is dependent on the activation of caspase 8 and can be blocked by its genetic and pharmacological inhibitors. Although XEDAR-induced apoptosis can be blocked by dominant-negative Fas-associated death domain (FADD) protein and FADD small interfering RNA, XEDAR does not directly bind to FADD, tumor necrosis factor receptor-associated death domain (TRADD) protein, or RIP1. Instead, XEDAR signaling leads to the formation of a secondary complex containing FADD, caspase 8, and caspase 10, which results in caspase activation. Thus, XEDAR belongs to a novel class of death receptors that lack a discernible death domain but are capable of activating apoptosis in a caspase 8- and FADD-dependent fashion. XEDAR may represent an early stage in the evolution of death receptors prior to the emergence of the death domain and may play a role in the induction of apoptosis during embryonic development and adult life.  (+info)

Edar signaling in the control of hair follicle development. (5/11)

Ectodysplasin receptor Edar and its ligand Eda A1, as well as their related receptor Xedar and ligand Eda A2, are recently discovered members of the tumor necrosis factor superfamily that signal predominantly through the nuclear factor-kappaB and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in Edar signaling pathway cause hypohidrotic ectodermal displasias in humans and mice and characterized by severe defects in development of ectodermal appendages including hairs, teeth, and exocrine glands. Here, we summarize the current knowledge of molecular mechanisms underlying the involvement of Edar signaling pathway in controlling hair follicle (HF) development and cycling. Genetic and experimental studies suggest that Edar signaling is involved in the control of cell fate decision in embryonic epidermis, as well as in the regulation of cell differentiation programs in the HF. Loss or gain of Edar signaling affects the initiation of several HF types (guard and zig-zag HF), hair shaft formation, as well as sebaceous gland morphology. We also review data on the cross-talk between Edar and Wnt, transforming growth factor-beta/bone morphogenic protein/activin, and Shh signaling pathways in the control of HF development and cycling.  (+info)

EDA2R is associated with androgenetic alopecia. (6/11)

 (+info)

X-linked ectodermal dysplasia receptor is downregulated in breast cancer via promoter methylation. (7/11)

 (+info)

p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. (8/11)

 (+info)

I'm sorry for any confusion, but "Xedar Receptor" is not a recognized term in physiology or pharmacology. It seems like there might be a spelling error or typo in the receptor name you are looking for. Xedar is not a known drug or receptor.

If you meant "Xadagno/Dopamine Receptor," I can provide information on that. Xadago (generic name: safinamide) is a medication used to treat Parkinson's disease, and it acts as a dopamine reuptake inhibitor and a non-selective MAO-B inhibitor. The drug's primary mechanism of action involves increasing the concentration of dopamine in the brain by preventing its reuptake into presynaptic neurons and blocking monoamine oxidase B, which is responsible for breaking down dopamine.

If you had a different term or concept in mind, please provide clarification, and I will be happy to help further.

Ectodysplasins are a group of signaling proteins that play crucial roles in the development and differentiation of ectodermal tissues, including the skin, hair, nails, teeth, and sweat glands. They are involved in various signaling pathways and help regulate cell growth, migration, and pattern formation during embryogenesis. Mutations in genes encoding ectodysplasins can lead to genetic disorders characterized by abnormalities in these tissues, such as ectodermal dysplasia syndromes.

Ectodysplasin receptors are a group of proteins that belong to the tumor necrosis factor (TNF) receptor superfamily. They play crucial roles in the development and function of ectodermal tissues, which include the skin, hair, nails, teeth, and sweat glands.

There are two main types of Ectodysplasin receptors: EDAR (Ectodysplasin A Receptor) and XEDAR (X-linked Ectodysplasin A Receptor). These receptors bind to their respective ligands, Ectodysplasin A (EDA) and Ectodysplasin A2 (EDA2), which are also members of the TNF family.

When EDA or EDA2 binds to EDAR or XEDAR, it activates a signaling pathway that involves several downstream molecules, including TRAF6 (TNF Receptor-Associated Factor 6) and NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells). This signaling cascade ultimately leads to the regulation of gene expression and cellular responses that are essential for ectodermal development.

Mutations in the genes encoding EDA, EDAR, or XEDAR have been associated with various genetic disorders, such as ectodermal dysplasias, which are characterized by abnormalities in the development of ectodermal tissues.

No FAQ available that match "xedar receptor"

No images available that match "xedar receptor"