The withholding of water in a structured experimental situation.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The condition that results from excessive loss of water from a living organism.
The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma.
A drive stemming from a physiological need for WATER.
The consumption of liquids.
The withholding of food in a structured experimental situation.
The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM.
The state of being deprived of sleep under experimental conditions, due to life events, or from a wide variety of pathophysiologic causes such as medication effect, chronic illness, psychiatric illness, or sleep disorder.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
Behaviors associated with the ingesting of water and other liquids; includes rhythmic patterns of drinking (time intervals - onset and duration), frequency and satiety.
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
An increase in the excretion of URINE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Fluids composed mainly of water found within the body.
A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR.
Means or process of supplying water (as for a community) usually including reservoirs, tunnels, and pipelines and often the watershed from which the water is ultimately drawn. (Webster, 3d ed)
An anticonvulsant effective in absence seizures, but generally reserved for refractory cases because of its toxicity. (From AMA Drug Evaluations Annual, 1994, p378)
Urination of a large volume of urine with an increase in urinary frequency, commonly seen in diabetes (DIABETES MELLITUS; DIABETES INSIPIDUS).
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
A disease that is characterized by frequent urination, excretion of large amounts of dilute URINE, and excessive THIRST. Etiologies of diabetes insipidus include deficiency of antidiuretic hormone (also known as ADH or VASOPRESSIN) secreted by the NEUROHYPOPHYSIS, impaired KIDNEY response to ADH, and impaired hypothalamic regulation of thirst.
Measurement of the OSMOLARITY of solutions or BODY FLUIDS.
A complication of kidney diseases characterized by cell death involving KIDNEY PAPILLA in the KIDNEY MEDULLA. Damages to this area may hinder the kidney to concentrate urine resulting in POLYURIA. Sloughed off necrotic tissue may block KIDNEY PELVIS or URETER. Necrosis of multiple renal papillae can lead to KIDNEY FAILURE.
Aquaporin 2 is a water-specific channel protein that is expressed in KIDNEY COLLECTING DUCTS. The translocation of aquaporin 2 to the apical PLASMA MEMBRANE is regulated by VASOPRESSIN, and MUTATIONS in AQP2 have been implicated in a variety of kidney disorders including DIABETES INSIPIDUS.
Hypertonic sodium chloride solution. A solution having an osmotic pressure greater than that of physiologic salt solution (0.9 g NaCl in 100 ml purified water).
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
A subfamily in the family MURIDAE, comprising the Old World MICE and RATS.
The absence or restriction of the usual external sensory stimuli to which the individual responds.
A mutant strain of Rattus norvegicus used in research on renal function and hypertension and as a disease model for diabetes insipidus.
Aquaporin 3 is an aquaglyceroporin that is expressed in the KIDNEY COLLECTING DUCTS and is constitutively localized at the basolateral MEMBRANE.
A class of porins that allow the passage of WATER and other small molecules across CELL MEMBRANES.
Hypothalamic nucleus overlying the beginning of the OPTIC TRACT.
Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland.
The absence of appropriate stimuli in the physical or social environment which are necessary for the emotional, social, and intellectual development of the individual.
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
Agents that reduce the excretion of URINE, most notably the octapeptide VASOPRESSINS.
A butyl-diphenyl-pyrazolidinedione that has anti-inflammatory, antipyretic, and analgesic activities. It has been used in ANKYLOSING SPONDYLITIS; RHEUMATOID ARTHRITIS; and REACTIVE ARTHRITIS.
Water containing no significant amounts of salts, such as water from RIVERS and LAKES.
A genetic or acquired polyuric disorder caused by a deficiency of VASOPRESSINS secreted by the NEUROHYPOPHYSIS. Clinical signs include the excretion of large volumes of dilute URINE; HYPERNATREMIA; THIRST; and polydipsia. Etiologies include HEAD TRAUMA; surgeries and diseases involving the HYPOTHALAMUS and the PITUITARY GLAND. This disorder may also be caused by mutations of genes such as ARVP encoding vasopressin and its corresponding neurophysin (NEUROPHYSINS).
Carrier proteins for OXYTOCIN and VASOPRESSIN. They are polypeptides of about 10-kDa, synthesized in the HYPOTHALAMUS. Neurophysin I is associated with oxytocin and neurophysin II is associated with vasopressin in their respective precursors and during transportation down the axons to the neurohypophysis (PITUITARY GLAND, POSTERIOR).
Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A genetic or acquired polyuric disorder characterized by persistent hypotonic urine and HYPOKALEMIA. This condition is due to renal tubular insensitivity to VASOPRESSIN and failure to reduce urine volume. It may be the result of mutations of genes encoding VASOPRESSIN RECEPTORS or AQUAPORIN-2; KIDNEY DISEASES; adverse drug effects; or complications from PREGNANCY.
Aquaporin 6 is an aquaglyceroporin that is found primarily in KIDNEY COLLECTING DUCTS. AQP6 protein functions as an anion-selective channel.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Liquid components of living organisms.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed)
Contamination of bodies of water (such as LAKES; RIVERS; SEAS; and GROUNDWATER.)
Any of several processes in which undesirable impurities in water are removed or neutralized; for example, chlorination, filtration, primary treatment, ion exchange, and distillation. It includes treatment of WASTE WATER to provide potable and hygienic water in a controlled or closed environment as well as provision of public drinking water supplies.
Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors.
Elements of limited time intervals, contributing to particular results or situations.
The absence of certain expected and acceptable cultural phenomena in the environment which results in the failure of the individual to communicate and respond in the most appropriate manner within the context of society. Language acquisition and language use are commonly used in assessing this concept.
Nucleus in the anterior part of the HYPOTHALAMUS.

Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. (1/308)

The subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and median preoptic nucleus (MnPO) were ablated either individually or in various combinations, and the effects on drinking induced by either intravenous infusion of hypertonic 4 M NaCl (1.3 ml/min for 30 min) or water deprivation for 48 h were studied. Ablation of either the OVLT or SFO alone did not affect drinking in response to intravenous 4 M NaCl, although combined ablation of these two circumventricular organs substantially reduced but did not abolish such drinking. Ablation of the MnPO or MnPO and SFO together also substantially reduced, but did not abolish, drinking in response to intravenous hypertonic NaCl. Only near-total destruction of the lamina terminalis (OVLT, MnPO, and part or all of the SFO) abolished acute osmotically induced drinking. The large lesions also reduced drinking after water deprivation, whereas none of the other lesions significantly affected such drinking. None of these lesions altered feeding. The results show that all parts of the lamina terminalis play a role in the drinking induced by acute increases in plasma tonicity. The lamina terminalis appears to play a less crucial role in the drinking response after water deprivation than for the drinking response to acute intravenous infusion of hypertonic saline.  (+info)

A rapid feedback signal is not always necessary for termination of a drinking bout. (2/308)

When a pig is deprived of drinking water, a deficit of body water develops that is corrected when the pig drinks to satiation. If food is available during the deprivation, the stimulus to drinking is plasma hyperosmolality. Because of the delay in correction of plasma hyperosmolality as ingested water is slowly absorbed, it has been thought that a rapid inhibitory signal from the digestive tract is necessary to prevent overdrinking. This concept was tested by measuring changes in plasma osmolality before and during drinking after such deprivation and also after infusion of hypertonic saline. As drinking began, there was a rapid fall of plasma osmolality to levels insufficient to drive drinking by the time drinking ended. This fall of plasma hyperosmolality to subthreshold levels while the pig is drinking seems to make a rapid inhibitory control signal from the digestive tract unnecessary to terminate the drinking bout under these conditions.  (+info)

Thermal dehydration-induced thirst in spontaneously hypertensive rats. (3/308)

Spontaneously hypertensive (SH) rats and normotensive Wistar-Kyoto (WKY) rats were exposed to either 25 or 37.5 degrees C for 3.5 h, and their thermal and water balance responses were compared. After exposure, either a blood sample was obtained or the rats were allowed to rehydrate for 4 h. SH rats had both higher core temperatures and evaporative water losses during heat exposure. Measurements of hematocrit, hemoglobin concentration, plasma protein and sodium concentrations, and plasma osmolality indirectly showed that the SH rats were dehydrated relative to the WKY rats after exposure to either 25 or 37.5 degrees C. SH rats drank significantly more water but also had significantly higher urine volumes than the WKY rats and thus rehydrated only slightly better than the WKY rats. SH and WKY rats had similar levels of water intake and urine output after 24 h of water deprivation. The elevated thermal response of SH rats to heat exposure does not appear to lead to uncompensatable changes in body water status.  (+info)

Osmolality: a physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. (4/308)

Acute infusion of hypertonic fluid increases mean arterial pressure (MAP) in part by elevating nonrenal sympathetic activity. However, it is not known whether chronic, physiological increases in osmolality also increase sympathetic activity. To test this hypothesis, MAP, heart rate (HR), and lumbar sympathetic nerve activity (LSNA) were measured in conscious, 48-h water-deprived rats (WD) during a progressive reduction in osmolality produced by a 2-h systemic infusion (0.12 ml/min) of 5% dextrose in water (5DW). Water deprivation significantly increased osmolality (308 +/- 2 vs. 290 +/- 2 mosmol/kgH2O, P < 0.001), HR (453 +/- 7 vs. 421 +/- 10 beats/min, P < 0.05), and LSNA (63.5 +/- 1.8 vs. 51.9 +/- 3.8% baroreflex maximum, P < 0.01). Two hours of 5DW infusion reduced osmolality (-15 +/- 5 mosmol/kgH2O), LSNA (-23 +/- 3% baseline), and MAP (-10 +/- 1 mmHg). To evaluate the role of vasopressin in these changes, rats were pretreated with a V1-vasopressin receptor antagonist. The antagonist lowered MAP (-5 +/- 1 mmHg) and elevated HR (32 +/- 7 beats/min) and LSNA (11 +/- 3% baseline) in WD (P < 0. 05), but not in water-replete, rats. 5DW infusion had a similar cumulative effect on all variables in V1-blocked WD rats, but had no effect in water-replete rats. Infusion of the same volume of normal saline in WD rats did not change osmolality, LSNA or MAP. Together these data indicate that, in dehydrated rats, vasopressin supports MAP and suppresses LSNA and HR and that physiological changes in osmolality directly influence sympathetic activity and blood pressure independently of changes in vasopressin and blood volume.  (+info)

Effect of dorsomedial hypothalamic nuclei knife cuts on ingestive behavior. (5/308)

Previous findings show that rats with electrolytic or excitotoxic lesions in the dorsomedial hypothalamic nucleus (DMN) are hypophagic and hypodipsic and have reduced ponderal and linear growth but normal body composition. DMN-lesioned (DMNL) rats also show altered ingestive responses to naloxone. The present study investigated the intrahypothalamic nerve pathways involved in these DMNL effects and the response of the pathways to deprivation challenges by placing knife cuts posterior (Post), lateral (Lat), ventral (Vent), dorsal, or anterior to the DMN or by administering sham operations. One major finding was that rats with Post or Vent were hypophagic (P < 0. 05) and had reduced body weight but responded normally to deprivation challenges. Post and Lat groups were hypodipsic (P < 0. 05), but plasma Na+, K+, and osmolality and 24-h post-water-deprivation drinking responses were similar in all groups. Naloxone did not suppress the intake of Post rats. It appears that the hypophagia and the reduced body weight after DMNL involve fibers entering or leaving the DMN from ventral and posterior directions, and they may be part of an opioid feeding system.  (+info)

An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. (6/308)

Under water restriction, arginine vasopressin (AVP) is released and promotes water reabsorption in the distal nephron, mainly through AVP V2-receptors. It has been proposed that renal kinins counteract the hydro-osmotic effect of AVP. We hypothesized that kinins acting through B2 receptors antagonize the urinary concentrating effect of AVP. To test this, bradykinin B2 receptor knockout mice (B2-KO) and 129/SvEv mice (controls) were placed in metabolic cages and urine collected for 24 hours (water ad libitum). After that, urine was again collected from the same mice during 24 hours of water restriction. Urinary volume (UV), urinary osmolarity (UOsm), and urinary Na+ (UNaV) and K+ (UKV) excretion were determined. On water restriction, UV in controls decreased by approximately 25%, whereas in B2-KO mice there was almost a 60% drop in urinary output (P=0.001 versus controls). In the controls, water restriction increased UOsm by 347 mOsm/kg H2O, approximately 14% above baseline (NS), whereas in knockout mice the increase was 3 times that seen in the controls: >1000 mOsm/kg H2O (P=0.001 versus controls). Compared with normohydration, UNaV and UKV in the water-restricted state increased more in controls than in B2-KO mice. This difference in electrolyte excretion could be explained by greater dehydration in the controls (dehydration natriuresis). In a second protocol, we tried to mimic the effect of endogenous AVP by exogenous administration of an AVP V2-receptor agonist, desmopressin (DDAVP). To suppress endogenous AVP levels before DDAVP administration, mice were volume-overloaded with dextrose and alcohol. UOsm was 685+/-125 and 561+/-58 mOsm/kg H2O in water-loaded controls and B2-KO mice, respectively. After DDAVP was injected subcutaneously at a dose of 1 microgram/kg, UOsm increased to 1175+/-86 mOsm/kg H2O (Delta+490 mOsm) in the controls and 2347+/-518 mOsm/kg H2O (Delta+1786 mOsm) in B2-KO mice (P<0.05 versus controls). We concluded that water restriction or exogenous administration of an AVP V2-receptor agonist has a greater urinary concentrating effect in B2-KO mice than in controls, suggesting that endogenous kinins acting through B2 receptors oppose the antidiuretic effect of AVP in vivo.  (+info)

Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. (7/308)

Clinical studies have shown that aquaporin-2 (AQP2), the vasopressin-regulated water channel, is excreted in the urine, and that the excretion increases in response to vasopressin. However, the cellular mechanisms involved in AQP2 excretion are unknown, and it is unknown whether the excretion correlates with AQP2 levels in kidney or levels in the apical plasma membrane. The present study was undertaken to clarify these issues. Immunoblotting of rat urine samples revealed significant excretion of AQP2, whereas AQP3, being a basolateral aquaporin in the same cells, was undetectable. Thus, there was a nonproportional excretion of AQP2 and AQP3 (compared with kidney levels), indicating that AQP2 is excreted predominantly via a selective apical pathway and not by whole cell shedding. Urinary AQP2 was associated with small vesicles, membrane fragments, and multivesicular bodies as determined by immunoelectron microscopy and negative staining techniques. In rats with normal water supply, daily urinary excretion of AQP2 was 3.9+/-0.9% (n = 6) of total kidney expression. Treatment with desmopressin acetate subcutaneously caused a fourfold increase in urinary excretion of AQP2 during 8 h. Forty-eight hours of thirsting, known to increase endogenous vasopressin secretion, resulted in a three-fold increase in kidney AQP2 levels but urinary excretion increased ninefold to 15+/-3% (n = 6) of AQP2 in kidney of thirsted rats. Moreover, rats that were thirsted for 48 h and subsequently allowed free access to water for 24 h produced a decrease in urinary AQP2 excretion to 38+/-15% (n = 6) of that during thirsting. In Brattleboro rats or lithium-treated normal rats completely lacking vasopressin action, and hence having extremely low levels of AQP2 in the apical plasma membrane, AQP2 was undetectable in urine. Thus, conditions with known altered vasopressin levels and altered levels of AQP2 in the apical plasma membrane were associated with corresponding major changes in AQP2 urine excretion. In contrast, in such conditions, kidney AQP2 levels and urinary AQP2 excretion did not show a proportional relationship.  (+info)

Effects of water deprivation on atrial natriuretic peptide secretion and density of binding sites in adrenal glands and kidneys of maternal and fetal rats in late gestation. (8/308)

The effects of water deprivation for 3 days were studied in pregnant rats and their fetuses on day 21 of gestation. Maternal water deprivation induced a significant decrease of the body weight in both maternal and fetal rats. This weight loss was accompanied by significant increases in plasma osmolality and haematocrit in both maternal and fetal rats. Similarly, dehydration significantly decreased plasma atrial natriuretic peptide (ANP) concentrations and increased plasma aldosterone concentrations in maternal and fetal rats. Water-deprived maternal rats presented a significant increase in total ANP receptor density in isolated renal glomeruli and adrenal zona glomerulosa membranes. This increase was due to a significant increase in ANPc receptor density in both renal glomeruli and adrenal zona glomerulosa. The densities of total ANP, ANPb and ANPc receptors in fetal kidneys and adrenal glands were not affected by maternal dehydration. These results suggest that the dehydrated maternal rat is able to up-regulate the number of its ANP receptors in its kidneys and adrenal glands, in response to a decrease in plasma ANP concentrations. In contrast, the fetal rat does not seem to be able to regulate its own ANP receptors in response to maternal dehydration, in spite of a decrease in plasma ANP concentrations.  (+info)

Water deprivation is a condition that occurs when an individual is deliberately or unintentionally not given access to adequate water for a prolonged period. This can lead to dehydration, which is the excessive loss of body water and electrolytes. In severe cases, water deprivation can result in serious health complications, including seizures, kidney damage, brain damage, coma, and even death. It's important to note that water is essential for many bodily functions, including maintaining blood pressure, regulating body temperature, and removing waste products from the body. Therefore, it's crucial to stay hydrated by drinking an adequate amount of water each day.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Dehydration is a condition that occurs when your body loses more fluids than it takes in. It's normal to lose water throughout the day through activities like breathing, sweating, and urinating; however, if you don't replenish this lost fluid, your body can become dehydrated.

Mild to moderate dehydration can cause symptoms such as:
- Dry mouth
- Fatigue or weakness
- Dizziness or lightheadedness
- Headache
- Dark colored urine
- Muscle cramps

Severe dehydration can lead to more serious health problems, including heat injury, urinary and kidney problems, seizures, and even hypovolemic shock, a life-threatening condition that occurs when your blood volume is too low.

Dehydration can be caused by various factors such as illness (e.g., diarrhea, vomiting), excessive sweating, high fever, burns, alcohol consumption, and certain medications. It's essential to stay hydrated by drinking plenty of fluids, especially during hot weather, exercise, or when you're ill.

Kidney concentrating ability refers to the capacity of the kidneys to increase the concentration of solutes, such as urea and minerals, and remove waste products while reabsorbing water to maintain fluid balance in the body. This is primarily regulated by the hormone vasopressin (ADH), which signals the collecting ducts in the nephrons of the kidneys to absorb more water, resulting in the production of concentrated urine. A decreased kidney concentrating ability may indicate a variety of renal disorders or diseases, such as diabetes insipidus or chronic kidney disease.

Thirst, also known as dry mouth or polydipsia, is a physiological need or desire to drink fluids to maintain fluid balance and hydration in the body. It is primarily regulated by the hypothalamus in response to changes in osmolality and volume of bodily fluids, particularly blood. Thirst can be triggered by various factors such as dehydration, excessive sweating, diarrhea, vomiting, fever, burns, certain medications, and medical conditions affecting the kidneys, adrenal glands, or other organs. It is a vital homeostatic mechanism to ensure adequate hydration and proper functioning of various bodily systems.

The term "drinking" is commonly used to refer to the consumption of beverages, but in a medical context, it usually refers to the consumption of alcoholic drinks. According to the Merriam-Webster Medical Dictionary, "drinking" is defined as:

1. The act or habit of swallowing liquid (such as water, juice, or alcohol)
2. The ingestion of alcoholic beverages

It's important to note that while moderate drinking may not pose significant health risks for some individuals, excessive or binge drinking can lead to a range of negative health consequences, including addiction, liver disease, heart disease, and increased risk of injury or violence.

Food deprivation is not a medical term per se, but it is used in the field of nutrition and psychology. It generally refers to the deliberate withholding of food for a prolonged period, leading to a state of undernutrition or malnutrition. This can occur due to various reasons such as famine, starvation, anorexia nervosa, or as a result of certain medical treatments or conditions. Prolonged food deprivation can have serious consequences on physical health, including weight loss, muscle wasting, organ damage, and decreased immune function, as well as psychological effects such as depression, anxiety, and cognitive impairment.

Water-electrolyte balance refers to the regulation of water and electrolytes (sodium, potassium, chloride, bicarbonate) in the body to maintain homeostasis. This is crucial for various bodily functions such as nerve impulse transmission, muscle contraction, fluid balance, and pH regulation. The body maintains this balance through mechanisms that control water intake, excretion, and electrolyte concentration in various body fluids like blood and extracellular fluid. Disruptions in water-electrolyte balance can lead to dehydration or overhydration, and imbalances in electrolytes can cause conditions such as hyponatremia (low sodium levels) or hyperkalemia (high potassium levels).

Sleep deprivation is a condition that occurs when an individual fails to get sufficient quality sleep or the recommended amount of sleep, typically 7-9 hours for adults. This can lead to various physical and mental health issues. It can be acute, lasting for one night or a few days, or chronic, persisting over a longer period.

The consequences of sleep deprivation include:

1. Fatigue and lack of energy
2. Difficulty concentrating or remembering things
3. Mood changes, such as irritability or depression
4. Weakened immune system
5. Increased appetite and potential weight gain
6. Higher risk of accidents due to decreased reaction time
7. Health problems like high blood pressure, diabetes, and heart disease over time

Sleep deprivation can be caused by various factors, including stress, shift work, sleep disorders like insomnia or sleep apnea, poor sleep hygiene, and certain medications. It's essential to address the underlying causes of sleep deprivation to ensure proper rest and overall well-being.

Osmolar concentration is a measure of the total number of solute particles (such as ions or molecules) dissolved in a solution per liter of solvent (usually water), which affects the osmotic pressure. It is expressed in units of osmoles per liter (osmol/L). Osmolarity and osmolality are related concepts, with osmolarity referring to the number of osmoles per unit volume of solution, typically measured in liters, while osmolality refers to the number of osmoles per kilogram of solvent. In clinical contexts, osmolar concentration is often used to describe the solute concentration of bodily fluids such as blood or urine.

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

Drinking behavior refers to the patterns and habits related to alcohol consumption. This can include the frequency, quantity, and context in which an individual chooses to drink alcohol. Drinking behaviors can vary widely among individuals and can be influenced by a variety of factors, including cultural norms, personal beliefs, mental health status, and genetic predisposition.

Problematic drinking behaviors can include heavy drinking, binge drinking, and alcohol use disorder (AUD), which is characterized by a pattern of alcohol use that involves problems controlling intake, being preoccupied with alcohol, continuing to use alcohol even when it causes problems, having to drink more to get the same effect, or having withdrawal symptoms when rapidly decreasing or stopping alcohol.

It's important to note that drinking behaviors can have significant impacts on an individual's health and well-being, as well as their relationships, work, and other aspects of their life. If you are concerned about your own drinking behavior or that of someone else, it is recommended to seek professional help from a healthcare provider or addiction specialist.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Diuresis is a medical term that refers to an increased production of urine by the kidneys. It can occur as a result of various factors, including certain medications, medical conditions, or as a response to a physiological need, such as in the case of dehydration. Diuretics are a class of drugs that promote diuresis and are often used to treat conditions such as high blood pressure, heart failure, and edema.

Diuresis can be classified into several types based on its underlying cause or mechanism, including:

1. Osmotic diuresis: This occurs when the kidneys excrete large amounts of urine in response to a high concentration of solutes (such as glucose) in the tubular fluid. The high osmolarity of the tubular fluid causes water to be drawn out of the bloodstream and into the urine, leading to an increase in urine output.
2. Forced diuresis: This is a medical procedure in which large amounts of intravenous fluids are administered to promote diuresis. It is used in certain clinical situations, such as to enhance the excretion of toxic substances or to prevent kidney damage.
3. Natriuretic diuresis: This occurs when the kidneys excrete large amounts of sodium and water in response to the release of natriuretic peptides, which are hormones that regulate sodium balance and blood pressure.
4. Aquaresis: This is a type of diuresis that occurs in response to the ingestion of large amounts of water, leading to dilute urine production.
5. Pathological diuresis: This refers to increased urine production due to underlying medical conditions such as diabetes insipidus or pyelonephritis.

It is important to note that excessive diuresis can lead to dehydration and electrolyte imbalances, so it should be monitored carefully in clinical settings.

Body water refers to the total amount of water present in the human body. It is an essential component of life and makes up about 60-70% of an adult's body weight. Body water is distributed throughout various fluid compartments within the body, including intracellular fluid (water inside cells), extracellular fluid (water outside cells), and transcellular fluid (water found in specific bodily spaces such as the digestive tract, eyes, and joints). Maintaining proper hydration and balance of body water is crucial for various physiological processes, including temperature regulation, nutrient transportation, waste elimination, and overall health.

Desmopressin, also known as 1-deamino-8-D-arginine vasopressin (dDAVP), is a synthetic analogue of the natural hormone arginine vasopressin. It is commonly used in medical practice for the treatment of diabetes insipidus, a condition characterized by excessive thirst and urination due to lack of antidiuretic hormone (ADH).

Desmopressin works by binding to V2 receptors in the kidney, which leads to increased water reabsorption and reduced urine production. It also has some effect on V1 receptors, leading to vasoconstriction and increased blood pressure. However, its primary use is for its antidiuretic effects.

In addition to its use in diabetes insipidus, desmopressin may also be used to treat bleeding disorders such as hemophilia and von Willebrand disease, as it can help to promote platelet aggregation and reduce bleeding times. It is available in various forms, including nasal sprays, injectable solutions, and oral tablets or dissolvable films.

I'm sorry for any confusion, but "water supply" is not a medical term per se. It is a general term used to describe the system or arrangement providing water for consumption or use, such as a public water supply system or a private well. However, in a medical context, it could refer to the source of water used in a healthcare facility for drinking, cooking, cleaning, and patient care, which must meet certain quality standards to prevent infection and ensure safety.

Trimethadione is a medication that belongs to a class of anticonvulsants called succinimides. It is primarily used for the treatment of seizure disorders, particularly absence seizures (petit mal seizures) that do not respond to other medications.

The medical definition of Trimethadione is:

A succinimide anticonvulsant with a narrow therapeutic index and significant adverse effects, including nystagmus, ataxia, sedation, and teratogenicity. It is used primarily in the management of absence seizures that are refractory to other treatments. Trimethadione has largely been replaced by ethosuximide due to its superior safety profile and efficacy.

Polyuria is a medical term that describes the production of large volumes of urine, typically defined as exceeding 2.5-3 liters per day in adults. This condition can lead to frequent urination, sometimes as often as every one to two hours, and often worsens during the night (nocturia). Polyuria is often a symptom of an underlying medical disorder such as diabetes mellitus or diabetes insipidus, rather than a disease itself. Other potential causes include kidney diseases, heart failure, liver cirrhosis, and certain medications. Proper diagnosis and treatment of the underlying condition are essential to manage polyuria effectively.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

Diabetes Insipidus is a medical condition characterized by the excretion of large amounts of dilute urine (polyuria) and increased thirst (polydipsia). It is caused by a deficiency in the hormone vasopressin (also known as antidiuretic hormone or ADH), which regulates the body's water balance.

In normal physiology, vasopressin is released from the posterior pituitary gland in response to an increase in osmolality of the blood or a decrease in blood volume. This causes the kidneys to retain water and concentrate the urine. In Diabetes Insipidus, there is either a lack of vasopressin production (central diabetes insipidus) or a decreased response to vasopressin by the kidneys (nephrogenic diabetes insipidus).

Central Diabetes Insipidus can be caused by damage to the hypothalamus or pituitary gland, such as from tumors, trauma, or surgery. Nephrogenic Diabetes Insipidus can be caused by genetic factors, kidney disease, or certain medications that interfere with the action of vasopressin on the kidneys.

Treatment for Diabetes Insipidus depends on the underlying cause. In central diabetes insipidus, desmopressin, a synthetic analogue of vasopressin, can be administered to replace the missing hormone. In nephrogenic diabetes insipidus, treatment may involve addressing the underlying kidney disease or adjusting medications that interfere with vasopressin action. It is important for individuals with Diabetes Insipidus to maintain adequate hydration and monitor their fluid intake and urine output.

Osmometry is a laboratory technique used to measure the osmolarity or tonicity of a solution. Osmolarity refers to the number of osmoles (a unit of measurement for solute concentration) present in a given volume of solution, typically expressed as osmoles per liter (osm/L). Tonicity, on the other hand, is a measure of the effective osmotic pressure exerted by a solution, taking into account the presence of impermeable solutes.

In an osmometry experiment, a sample solution is placed in a chamber separated from a reference solution by a semi-permeable membrane that allows the passage of solvent (usually water) but not solute molecules. The membrane separates the two solutions, creating two distinct compartments.

As the solvent moves across the membrane to balance out the osmotic pressure difference between the two solutions, a change in volume occurs in one or both of the compartments. By measuring this volume change and knowing the initial volumes of the sample and reference solutions, the osmolarity or tonicity of the sample solution can be calculated using established formulas.

Osmometry is an essential tool in various fields, including biology, chemistry, pharmacology, and clinical medicine, as it allows researchers and healthcare professionals to study and understand the behavior of solutes and solvents under different conditions, evaluate the effects of osmotic pressure on cells and tissues, and develop and test medical treatments and therapies.

Kidney papillary necrosis is a medical condition characterized by the death (necrosis) of the renal papillae, which are the small conical projections at the ends of the renal tubules in the kidneys. This condition typically occurs due to reduced blood flow to the kidneys or as a result of toxic injury from certain medications, chronic infections, diabetes, sickle cell disease, and systemic vasculitides.

The necrosis of the papillae can lead to the formation of small stones or debris that can obstruct the flow of urine, causing further damage to the kidneys. Symptoms of kidney papillary necrosis may include fever, flank pain, nausea, vomiting, and bloody or foul-smelling urine. The diagnosis is typically made through imaging studies such as CT scans or MRI, and treatment may involve addressing the underlying cause, administering antibiotics to prevent infection, and providing supportive care to maintain kidney function.

Aquaporin 2 (AQP2) is a type of aquaporin, which is a water channel protein found in the membranes of cells. Specifically, AQP2 is located in the principal cells of the collecting ducts in the kidneys. It plays a crucial role in regulating water reabsorption and urine concentration by facilitating the movement of water across the cell membrane in response to the hormone vasopressin (also known as antidiuretic hormone). When vasopressin binds to receptors on the cell surface, it triggers a cascade of intracellular signals that lead to the translocation of AQP2 water channels from intracellular vesicles to the apical membrane. This increases the permeability of the apical membrane to water, allowing for efficient reabsorption of water and concentration of urine. Dysfunction in AQP2 has been implicated in various kidney disorders, such as nephrogenic diabetes insipidus.

A hypertonic saline solution is a type of medical fluid that contains a higher concentration of salt (sodium chloride) than is found in the average person's blood. This solution is used to treat various medical conditions, such as dehydration, brain swelling, and increased intracranial pressure.

The osmolarity of a hypertonic saline solution typically ranges from 1500 to 23,400 mOsm/L, with the most commonly used solutions having an osmolarity of around 3000 mOsm/L. The high sodium concentration in these solutions creates an osmotic gradient that draws water out of cells and into the bloodstream, helping to reduce swelling and increase fluid volume in the body.

It is important to note that hypertonic saline solutions should be administered with caution, as they can cause serious side effects such as electrolyte imbalances, heart rhythm abnormalities, and kidney damage if not used properly. Healthcare professionals must carefully monitor patients receiving these solutions to ensure safe and effective treatment.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

'Murinae' is not a medical term. It is a taxonomic classification used in biology, specifically for a subfamily of rodents that includes mice, rats, and several related species. The term 'Murinae' comes from the family Muridae, which is the largest family of mammals, containing over 700 species.

The misconception might arise because medical professionals sometimes use common names for various animals or organisms in their diagnoses, treatments, or research. However, it is essential to clarify that 'Murinae' is a scientific classification and not a medical term.

Sensory deprivation, also known as perceptual isolation or sensory restriction, refers to the deliberate reduction or removal of stimuli from one or more of the senses. This can include limiting input from sight, sound, touch, taste, and smell. The goal is to limit a person's sensory experiences in order to study the effects on cognition, perception, and behavior.

In a clinical context, sensory deprivation can occur as a result of certain medical conditions or treatments, such as blindness, deafness, or pharmacological interventions that affect sensory processing. Prolonged sensory deprivation can lead to significant psychological and physiological effects, including hallucinations, delusions, and decreased cognitive function.

It's important to note that sensory deprivation should not be confused with meditation or relaxation techniques that involve reducing external stimuli in a controlled manner to promote relaxation and focus.

I'm sorry for any confusion, but "Rats, Brattleboro" is not a recognized medical term or condition. It seems like it could be a nonsensical phrase or a reference to something specific, such as a place (Brattleboro, a town in Vermont) and an exclamation of frustration or surprise ("rats"). If you're referring to a specific medical condition or concept, please provide more context so I can give you a more accurate and helpful response.

Aquaporin 3 (AQP3) is a type of aquaglyceroporin, which is a subclass of aquaporins - water channel proteins that facilitate the transport of water and small solutes across biological membranes. AQP3 is primarily expressed in the epithelial cells of various tissues, including the skin, kidneys, and gastrointestinal tract.

In the skin, AQP3 plays a crucial role in maintaining skin hydration by facilitating water transport across the cell membrane. It also transports small neutral solutes like glycerol and urea, which contribute to skin moisturization and elasticity. In addition, AQP3 has been implicated in several physiological processes, such as wound healing, epidermal proliferation, and cutaneous sensory perception.

In the kidneys, AQP3 is involved in water reabsorption in the collecting ducts, helping to regulate body fluid homeostasis. In the gastrointestinal tract, it facilitates water absorption and secretion, contributing to maintaining proper hydration and electrolyte balance. Dysregulation of AQP3 has been associated with various pathological conditions, such as skin disorders, kidney diseases, and cancer.

Aquaporins are a type of membrane protein that function as water channels, allowing the selective and efficient transport of water molecules across biological membranes. They play crucial roles in maintaining fluid homeostasis, regulating cell volume, and supporting various physiological processes in the body. In humans, there are 13 different aquaporin subtypes (AQP0 to AQP12) that have been identified, each with distinct tissue expression patterns and functions. Some aquaporins also facilitate the transport of small solutes such as glycerol and urea. Dysfunction or misregulation of aquaporins has been implicated in several pathological conditions, including neurological disorders, cancer, and water balance-related diseases.

The supraoptic nucleus (SON) is a collection of neurons located in the hypothalamus, near the optic chiasm, in the brain. It plays a crucial role in regulating osmoregulation and fluid balance within the body through the production and release of vasopressin, also known as antidiuretic hormone (ADH).

Vasopressin is released into the bloodstream and acts on the kidneys to promote water reabsorption, thereby helping to maintain normal blood pressure and osmolarity. The supraoptic nucleus receives input from osmoreceptors in the circumventricular organs of the brain, which detect changes in the concentration of solutes in the extracellular fluid. When the osmolarity increases, such as during dehydration, the supraoptic nucleus is activated to release vasopressin and help restore normal fluid balance.

Additionally, the supraoptic nucleus also contains oxytocin-producing neurons, which play a role in social bonding, maternal behavior, and childbirth. Oxytocin is released into the bloodstream and acts on various tissues, including the uterus and mammary glands, to promote contraction and milk ejection.

The posterior pituitary gland, also known as the neurohypophysis, is the posterior portion of the pituitary gland. It is primarily composed of nerve fibers that originate from the hypothalamus, a region of the brain. These nerve fibers release two important hormones: oxytocin and vasopressin (also known as antidiuretic hormone or ADH).

Oxytocin plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, it stimulates uterine contractions to help facilitate delivery, and after birth, it helps to trigger the release of milk from the mother's breasts during breastfeeding.

Vasopressin, on the other hand, helps regulate water balance in the body by controlling the amount of water that is excreted by the kidneys. It does this by increasing the reabsorption of water in the collecting ducts of the kidney, which leads to a more concentrated urine and helps prevent dehydration.

Overall, the posterior pituitary gland plays a critical role in maintaining fluid balance, social bonding, and reproduction.

Psychosocial deprivation is not strictly defined within the field of medicine, but it is a term used in the social sciences and healthcare to refer to the lack or absence of experiences, relationships, resources, and environmental conditions that are essential for psychological and social growth, development, and well-being. It can result from various factors such as poverty, neglect, abuse, separation from caregivers, social isolation, or living in a dysfunctional environment.

Prolonged psychosocial deprivation can lead to significant impairments in cognitive, emotional, behavioral, and social functioning, which may manifest as developmental delays, learning disabilities, mental health disorders, attachment issues, and poor quality of life. Healthcare professionals, particularly those working in mental health, often consider psychosocial factors when assessing and treating individuals to ensure comprehensive care that addresses both medical and environmental needs.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

Antidiuretic agents are medications or substances that reduce the amount of urine produced by the body. They do this by increasing the reabsorption of water in the kidneys, which leads to a decrease in the excretion of water and solutes in the urine. This can help to prevent dehydration and maintain fluid balance in the body.

The most commonly used antidiuretic agent is desmopressin, which works by mimicking the action of a natural hormone called vasopressin (also known as antidiuretic hormone or ADH). Vasopressin is produced by the pituitary gland and helps to regulate water balance in the body. When the body's fluid levels are low, vasopressin is released into the bloodstream, where it causes the kidneys to reabsorb more water and produce less urine.

Antidiuretic agents may be used to treat a variety of medical conditions, including diabetes insipidus (a rare disorder that causes excessive thirst and urination), bedwetting in children, and certain types of headaches. They may also be used to manage fluid balance in patients with kidney disease or heart failure.

It is important to use antidiuretic agents only under the supervision of a healthcare provider, as they can have side effects and may interact with other medications. Overuse or misuse of these drugs can lead to water retention, hyponatremia (low sodium levels in the blood), and other serious complications.

Phenylbutazone is a non-steroidal anti-inflammatory drug (NSAID) that was commonly used in the past to treat pain and inflammation associated with conditions such as rheumatoid arthritis, osteoarthritis, and gout. It works by inhibiting the activity of cyclooxygenase (COX) enzymes, which are involved in the production of prostaglandins, chemicals that mediate inflammation and pain.

However, due to its potential for serious side effects, including bone marrow suppression, liver toxicity, and increased risk of heart attack and stroke, phenylbutazone is no longer commonly used in human medicine in many countries, including the United States. It may still be used in veterinary medicine under strict supervision.

I'm sorry for any confusion, but "Fresh Water" is not a medical term. It is a term used to describe water that contains low concentrations of dissolved salts and other dissolved minerals. It is distinguished from saline water, which includes saltwater found in the ocean and brackish water found in estuaries. Fresh water is essential for many biological processes and is the primary source of water for human consumption, agriculture, and industrial use.

Neurogenic diabetes insipidus is a condition characterized by the production of large amounts of dilute urine (polyuria) and increased thirst (polydipsia) due to deficiency of antidiuretic hormone (ADH), also known as vasopressin, which is produced by the hypothalamus and stored in the posterior pituitary gland.

Neurogenic diabetes insipidus can occur when there is damage to the hypothalamus or pituitary gland, leading to a decrease in ADH production or release. Causes of neurogenic diabetes insipidus include brain tumors, head trauma, surgery, meningitis, encephalitis, and autoimmune disorders.

In this condition, the kidneys are unable to reabsorb water from the urine due to the lack of ADH, resulting in the production of large volumes of dilute urine. This can lead to dehydration, electrolyte imbalances, and other complications if not properly managed. Treatment typically involves replacing the missing ADH with a synthetic hormone called desmopressin, which can be administered as a nasal spray, oral tablet, or injection.

Neurophysins are small protein molecules that are derived from the larger precursor protein, pro-neurophysin. They are synthesized in the hypothalamus of the brain and are stored in and released from neurosecretory granules, along with neurohypophysial hormones such as oxytocin and vasopressin.

Neurophysins serve as carrier proteins for these hormones, helping to stabilize them and facilitate their transport and release into the bloodstream. There are two main types of neurophysins, neurophysin I and neurophysin II, which are associated with oxytocin and vasopressin, respectively.

Neurophysins have been studied for their potential role in various physiological processes, including water balance, social behavior, and reproductive functions. However, their precise mechanisms of action and functional significance are still not fully understood.

Collecting kidney tubules, also known as collecting ducts, are the final portion of the renal tubule in the nephron of the kidney. They collect filtrate from the distal convoluted tubules and glomeruli and are responsible for the reabsorption of water and electrolytes back into the bloodstream under the influence of antidiuretic hormone (ADH) and aldosterone. The collecting ducts then deliver the remaining filtrate to the ureter, which transports it to the bladder for storage until urination.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Nephrogenic diabetes insipidus is a type of diabetes insipidus that occurs due to the inability of the kidneys to respond to the antidiuretic hormone (ADH), also known as vasopressin. This results in excessive thirst and the production of large amounts of dilute urine.

In nephrogenic diabetes insipidus, the problem lies in the kidney tubules, which fail to absorb water from the urine due to a defect in the receptors or channels that respond to ADH. This can be caused by genetic factors, certain medications, kidney diseases, and electrolyte imbalances.

Treatment for nephrogenic diabetes insipidus typically involves addressing the underlying cause, if possible, as well as managing symptoms through a low-salt diet, increased fluid intake, and medications that increase water reabsorption in the kidneys.

Aquaporin 6 (AQP6) is a protein that functions as a water channel in the membranes of certain cells. It is a member of the aquaporin family, which are proteins that allow the selective transport of water and small solutes across biological membranes. Aquaporin 6 is primarily expressed in the kidney, where it is localized to the intracellular vesicles of intercalated cells in the collecting ducts. It is thought to play a role in acid-base balance and urine concentration by regulating the movement of water and hydrogen ions (protons) across cell membranes. Aquaporin 6 has also been found to be permeable to anions, making it unique among aquaporins. Additionally, AQP6 has been identified in other tissues such as the brain, lung, and testis, but its function in these tissues is not well understood.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Electrolytes are substances that, when dissolved in water, break down into ions that can conduct electricity. In the body, electrolytes are responsible for regulating various important physiological functions, including nerve and muscle function, maintaining proper hydration and acid-base balance, and helping to repair tissue damage.

The major electrolytes found in the human body include sodium, potassium, chloride, bicarbonate, calcium, magnesium, and phosphate. These electrolytes are tightly regulated by various mechanisms, including the kidneys, which help to maintain their proper balance in the body.

When there is an imbalance of electrolytes in the body, it can lead to a range of symptoms and health problems. For example, low levels of sodium (hyponatremia) can cause confusion, seizures, and even coma, while high levels of potassium (hyperkalemia) can lead to heart arrhythmias and muscle weakness.

Electrolytes are also lost through sweat during exercise or illness, so it's important to replace them through a healthy diet or by drinking fluids that contain electrolytes, such as sports drinks or coconut water. In some cases, electrolyte imbalances may require medical treatment, such as intravenous (IV) fluids or medication.

Water pollution is defined medically as the contamination of water sources by harmful or sufficient amounts of foreign substances (pathogens, chemicals, toxic compounds, etc.) which tend to interfere with its normal functioning and can have negative effects on human health. Such pollutants can find their way into water bodies through various means including industrial waste disposal, agricultural runoff, oil spills, sewage and wastewater discharges, and accidental chemical releases, among others.

Exposure to polluted water can lead to a range of health issues, from minor problems like skin irritation or stomach upset, to severe conditions such as neurological disorders, reproductive issues, cancer, and even death in extreme cases. It also poses significant risks to aquatic life, disrupting ecosystems and leading to the decline or extinction of various species. Therefore, maintaining clean and safe water supplies is critical for both human health and environmental preservation.

Water purification is the process of removing or reducing contaminants in water to make it safe and suitable for specific uses, such as drinking, cooking, irrigation, or medical purposes. This is typically achieved through physical, chemical, or biological methods, or a combination thereof. The goal is to eliminate or reduce harmful substances like bacteria, viruses, parasites, heavy metals, pesticides, and other pollutants that can cause illness or negatively impact human health, aquatic life, or the environment.

The specific purification methods used may vary depending on the nature of the contaminants and the desired level of purity for the intended use. Common techniques include filtration (using various types of filters like activated carbon, ceramic, or reverse osmosis), disinfection (using chemicals like chlorine or UV light to kill microorganisms), sedimentation (allowing particles to settle and be removed), and distillation (heating water to create steam, which is then condensed back into pure water).

Vasopressin receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone vasopressin (also known as antidiuretic hormone or ADH). There are two main types of vasopressin receptors, V1 and V2.

V1 receptors are found in various tissues throughout the body, including vascular smooth muscle, heart, liver, and kidney. Activation of V1 receptors leads to vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and release of glycogen from the liver.

V2 receptors are primarily found in the kidney's collecting ducts. When activated, they increase water permeability in the collecting ducts, allowing for the reabsorption of water into the bloodstream and reducing urine production. This helps to regulate fluid balance and maintain normal blood pressure.

Abnormalities in vasopressin receptor function can contribute to various medical conditions, including hypertension, heart failure, and kidney disease.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Cultural deprivation" is a term that was previously used in sociology and social work to describe the idea that some individuals or groups may be at a disadvantage due to their lack of exposure to dominant cultural values, customs, and behaviors. This concept has been criticized for its deficit-based perspective and oversimplification of complex social issues.

In medical contexts, the term "cultural competence" is more commonly used to describe the ability of healthcare providers to understand, respect, and respond to the cultural differences of their patients. Cultural competence involves recognizing and addressing power imbalances, communication barriers, and other factors that may affect healthcare access and outcomes for individuals from diverse backgrounds.

It's important to note that cultural competence is not just about acquiring knowledge about different cultures, but also about developing skills and attitudes that promote respectful and effective communication and care. This includes self-awareness of one's own biases and assumptions, flexibility in adapting to different cultural contexts, and a commitment to ongoing learning and improvement.

The Paraventricular Hypothalamic Nucleus (PVN) is a nucleus in the hypothalamus, which is a part of the brain that regulates various autonomic functions and homeostatic processes. The PVN plays a crucial role in the regulation of neuroendocrine and autonomic responses to stress, as well as the control of fluid and electrolyte balance, cardiovascular function, and energy balance.

The PVN is composed of several subdivisions, including the magnocellular and parvocellular divisions. The magnocellular neurons produce and release two neuropeptides, oxytocin and vasopressin (also known as antidiuretic hormone), into the circulation via the posterior pituitary gland. These neuropeptides play important roles in social behavior, reproduction, and fluid balance.

The parvocellular neurons, on the other hand, project to various brain regions and the pituitary gland, where they release neurotransmitters and neuropeptides that regulate the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the stress response. The PVN also contains neurons that produce corticotropin-releasing hormone (CRH), a key neurotransmitter involved in the regulation of the HPA axis and the stress response.

Overall, the Paraventricular Hypothalamic Nucleus is an essential component of the brain's regulatory systems that help maintain homeostasis and respond to stressors. Dysfunction of the PVN has been implicated in various pathological conditions, including hypertension, obesity, and mood disorders.

Water Deprivation Test. Its a test which is used to check if dehydration occurs when fluids are withheld and if you feel ...
Access to potable water is one of the basic deliverables expected of a government, but the people of Enugu, in both metropolis ... Water Manifesto (II): Enugu residents suffer deprivation as Ivo dam lies in ruins. ... Access to potable water is one of the basic deliverables expected of a government, but the people of Enugu - in both the ... The promise of good water, through the Ivo dam, has been dangled before them for many years, but they have waited in ...
... suggesting erosion of the mucus layer during fiber deprivation is due to diminished mucus production rather than overgrowth of ... The water content of mucus is 98% [18], thus less secreted mucus might partially explain the decreased water content. There was ... An important function of fiber is to retain water in the colon to increase stool bulk [7], which explains the decreased water ... Water content, as expected, decreased from proximal to distal compartments regardless of diet (ANOVA, R2 = 0.48, p , 0.001), ...
Low Waters (356); Burnbank North (490); Whitehill (554); Woodhead and Meikle Earnock (779); and Eddlewood (987). ... The Scottish Index of Multiple Deprivation (SIMD) provides an in-depth study of various factors which contribute to deprivation ... A study into deprivation across Scotland has revealed the huge gap between different parts of South Lanarkshire. ... Scottish Index of Multiple Deprivation reveals poverty divide in South Lanarkshire. Certain parts of Hamilton are in the top 20 ...
1-2. ISBN 978-0-8247-5949-0. Rechtschaffen A, Bergmann B (1995). "Sleep deprivation in the rat by the disk-over-water method". ... Sleep deprivation can be used to disorientate abuse victims to help set them up for abusive control. Sleep deprivation can be ... Sleep deprivation is used to create a different time schedule pattern that is beyond a typical 24 hour day. Sleep deprivation ... Sleep deprivation, whether total or not, can induce significant anxiety and longer sleep deprivations tend to result in ...
Try to steady yourself in the water until it settles, Mike told me, then you wont be able to feel the water. There was little ... Within minutes I could no longer feel the sponge in my ears or smell the musty scent of water. There was no light, no smell, no ... Within minutes of entering the tank, I coaxed my muscles to relax and allowed myself to sink into the warm cocoon of water that ... In fact, an analysis in 1997 of well over 1,000 descriptions of sensory deprivation indicated that more than 90% of subjects ...
... and light deprivation screened vents for ample ventilation. Whether you live in the country or in the city, this greenhouse is ... Collect rain / snowmelt water with the built in gutter system for an organic, sustainable irrigation ... Light Deprivation 8 ft. x 20 ft. Greenhouse. 8 ft. x 20 ft. Black Premium Greenhouse. Riga 9 ft. 8 in. x 17 ft. 2 in. German ... and light deprivation screened vents for ample ventilation. Whether you live in the country or in the city, this greenhouse is ...
Whats the highest temperature water can freeze, and the lowest it can boil on Earth? ... "If this sleep deprivation persisted, then we would predict they would be at a greater risk for developing metabolic diseases ... However, other experts noted the sleep deprivation used in the study was not similar to whats typically seen in real life. ... "Just as when youre sleep-deprived, youre groggy - it turns out that sleep deprivation also makes your fat cells metabolically ...
Fluorescent light was transmitted through a UV water-immersible objective (40× numerical aperture; Olympus, Melville, NY). ... Oxygen-glucose deprivation induced an immediate rise in [Cl-]i, which recovered within 20 min. A second and more prolonged rise ... We used an in vitro model of cerebral ischemia (oxygen-glucose deprivation) to examine changes in [Cl-]i and GABAA receptor- ... However, oxygen-glucose deprivation caused a progressive downregulation of the K+-Cl- cotransporter (KCC2), which may have ...
Drinking lots of water Water not only quenches thirst but helps to keep active, as this saves you from sudden sleep attacks ... Sleep Deprivation in Women Sleep Deprivation Power Nap Sleep Disorder Test Snoring Treatment Other health topics in TargetWoman ... Top of the Page: Sleep Deprivation in Women. Tags:#Sleep Deprivation in Women ... When sleep deprivation is at its worst, even a few minutes of sleep can give succor to your weary eyes. Even snatching little ...
The latest articles written by Sleep Deprivation you will find only on Entrepreneur - Page 3 ... More water and less sugar could just be whats between you and your next career jump. ... 6 Ways How Sleep Deprivation Is Killing You Slowly and Steadily Did you know lack of sleep has some serious effects on your ...
... couches after the water froze, too. But for a small city, Richmond has an amazing number of people the world wouldnt miss, and ... Urban Exploration of urban deprivation. June 6, 2010 6:59 AM Subscribe. Abandoned Detroit Public Schools People tend to have a ... Manchester is not the same city it was 12 years ago, thanks to a council effort to reverse huge social deprivation and crime ( ...
This includes improving road networks, access to clean water, electricity, and healthcare facilities. Investments in rural and ... It permeates the lives of individuals and communities, leaving many trapped in a cycle of deprivation. Poverty casts its dark ... Beyond the World Banks international poverty line of $1.90 per day, it covers a multidimensional range of deprivations, ... including limited access to education, healthcare, clean water, adequate housing, and decent employment opportunities. ...
The treatment is simple: sip water all day, especially in hot or humid conditions. Eating foods with high water content, such ... Sleep deprivation lowers your bodys natural ability to fight infections and viruses. ... When clean water and soap arent available, you can use alcohol-based hand sanitizers that contain at least 60% alcohol. . ... Every tissue and organ within the body depends on water. It helps carry nutrients and minerals to cells and keeps your mouth, ...
The aim should be to drink enough water to keep our urine pale yellow, and there should be no sense of thirst prior to starting ... Tips for curbing alcohol consumption without sacrifice or deprivation. By Dr John Briffa on 15 December 2010 in Healthy Eating ... 1. Match each alcoholic drink with one of water. One tactic that generally works wonders to quell alcohol intake is to match ... In short, matching alcohol with water is a simple but effective way of curbing alcohol intake and reducing the ill-effects ...
The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing ... The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing ... The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing ... The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing ...
food deprivation; • methods of killing these fish and mass killing for disease eradication purposes; • water quality parameters ... 7. Water flow and water exchange should ensure, according to the farming system used, appropriate water quality for fish, once ... The most preferable way is to handle fish without taking them out of the water (e. g. size grading by machines carrying water ... when they are subjected to low oxygen tension in the water or the presence of certain noxious substances in the water or ...
Effect of water deprivation on aquaporin 4 (AQP4) mRNA expression in chickens (Gallus domesticus). In: Molecular Brain Research ... Effect of water deprivation on aquaporin 4 (AQP4) mRNA expression in chickens (Gallus domesticus). / Saito, Noboru; Ikegami, ... Saito N, Ikegami H, Shimada K. Effect of water deprivation on aquaporin 4 (AQP4) mRNA expression in chickens (Gallus domesticus ... We studied the effect of water deprivation on AQP4 gene expression in chickens. The nucleotide sequence of a chicken aquaporin ...
8 cycles of water deprivation). Semen and sexual behavior parameters were recorded every 1st, 2nd and 3rd day of water ... the limit of the tolerance capacity of breed to water deprivation (one, two and three days) on male reproductive performances. ... C rams had free access to water while D rams were deprived for 3 days followed by one day of hydration during 4 weeks of mating ... deprivation during the trial. This study showed an effect of duration of treatment on sperm volume (P ...
Former Sewerage and Water Board Official Sentenced for Theft. November 15, 2023 ... Former Detention Officer Sentenced to Serve One Year of Probation for Deprivation of Rights. October 30, 2023 ... Fort Peck Tribal Corrections Officer Admits Deprivation of Rights in Assault of Inmate. November 14, 2023 ... 2.2 Million Kickback in Los Angeles Department of Water and Power Corrupt Litigation Scheme. November 7, 2023 ...
Note 2: Running the bottle under hot water (figure 140 degrees at the water heater, 130 degrees at the tap) should melt 90% of ... How do I know that…? Because I ran out of bottled water a few nights ago and had to grab a bottle out of my wifes car that had ... Sleep Deprivation and Vending Machine Trouble. March 10, 2010. By Jeff 93 Comments ... I take a large styrofoam cup of ice and water to bed each night and the ice is totally melted after 8 hours. ...
... or plastic bottles filled with water; punching; kicking; food and drink deprivation; and exposure to extreme cold. There have ...
While sparkling water does not cause calcium loss, it may contribute to tooth decay or flare-ups of IBS symptoms. However, it ... Sleep deprivation may cause dehydration. New research finds that people who sleep 6 hours a night instead of 8 have a higher ... Sparkling water contains dissolved carbon dioxide (CO2) gas, which makes the water fizzy. The carbonation of sparkling water ... To artificially carbonate water, pressurized CO2 is injected into the water, forming bubbles. Artificially carbonated water may ...
Food deprivation is also a difficult thing to test ethically, though voluntary hunger strikes give us clues. Mahatma Gandhis ... But the actual time a human can go without water varies wildly, mainly because our bodies must maintain water balance, and our ... And what about water? How long can we go without the vital fluid that comprise two-thirds of our bodies?. ... But we all live precarious lives: ones not far from death if we lose access to simple things like water, food, or even sleep. ...
"In fact, were trying to match the temperature of the water to the temperature of your skin, which is a few degrees cooler than ... John Dickerson reflects on sensory deprivation. Sensory deprivation is about as far as a person can get from the chirpy world ... How sensory deprivation and floating impacts the brain 06:24 Our series Pay Attention looks at how to retrain our focus and ... Pay Attention: How sensory deprivation and floating impact the mind. April 25, 2018 / 1:26 PM EDT. / CBS News ...
... including a proper supply of water and fertilization. Various diseases also attack the leaves of the shrub. ... Water Deprivation Hydrangeas are flowering shrubs that require moist, well-drained soil in order to thrive. When hydrangea ... Hydrangeas need for sufficient water is hinted at in the Greek origin of its name; hydra translates to water and angeon ... Their delicate, large leaves suffer water loss rapidly and they thrive best when supplied with at least 1 inch of water weekly ...
Roger Waters Rants About Being Banned From Attending Palestine Writes Festival on Campus - [image: Roger Waters Rants About ... roger waters (23) Rohingyas (1) Rolling Stone Magazine (1) Romania (2) Rome Statute (1) Ron Eshman (1) Ron Huldai (1) Ronald ... water treatment (4) Wattan.net (3) We are Family (3) weapons (5) Weather Channel (1) Wekalat Al-Balah Market (1) West Bank (10) ... Roger Waters Rants About Being Banned From Attending Palestine Writes Festival on Campus 4 hours ago ...
... deprivation of food and water, refusal of medical care, and forced labor. Observers noted that an atmosphere of impunity and ... deprivation of water, food, sleep or sanitation facilities; and threats of violence against family members. ... a. Arbitrary Deprivation of Life and Other Unlawful or Politically Motivated Killings. According to the human rights group ... a. Arbitrary Deprivation of Life and Other Unlawful or Politically Motivated Killings. There were reports that the government ...
To address this confound, sleep deprivation effects on Morris water maze training were studied in intact rats and in rats in ... To address this confound, sleep deprivation effects on Morris water maze training were studied in intact rats and in rats in ... To address this confound, sleep deprivation effects on Morris water maze training were studied in intact rats and in rats in ... To address this confound, sleep deprivation effects on Morris water maze training were studied in intact rats and in rats in ...

No FAQ available that match "water deprivation"

No images available that match "water deprivation"