Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of CAROTENOIDS found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products.
Organic substances that are required in small amounts for maintenance and growth, but which cannot be manufactured by the human body.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.
A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12.
A nutritional condition produced by a deficiency of VITAMIN A in the diet, characterized by NIGHT BLINDNESS and other ocular manifestations such as dryness of the conjunctiva and later of the cornea (XEROPHTHALMIA). Vitamin A deficiency is a very common problem worldwide, particularly in developing countries as a consequence of famine or shortages of vitamin A-rich foods. In the United States it is found among the urban poor, the elderly, alcoholics, and patients with malabsorption. (From Cecil Textbook of Medicine, 19th ed, p1179)
A nutritional condition produced by a deficiency of VITAMIN D in the diet, insufficient production of vitamin D in the skin, inadequate absorption of vitamin D from the diet, or abnormal conversion of vitamin D to its bioactive metabolites. It is manifested clinically as RICKETS in children and OSTEOMALACIA in adults. (From Cecil Textbook of Medicine, 19th ed, p1406)
A family of phylloquinones that contains a ring of 2-methyl-1,4-naphthoquinone and an isoprenoid side chain. Members of this group of vitamin K 1 have only one double bond on the proximal isoprene unit. Rich sources of vitamin K 1 include green plants, algae, and photosynthetic bacteria. Vitamin K1 has antihemorrhagic and prothrombogenic activity.
VITAMIN B 6 refers to several PICOLINES (especially PYRIDOXINE; PYRIDOXAL; & PYRIDOXAMINE) that are efficiently converted by the body to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, and aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into PYRIDOXAMINE phosphate. Although pyridoxine and Vitamin B 6 are still frequently used as synonyms, especially by medical researchers, this practice is erroneous and sometimes misleading (EE Snell; Ann NY Acad Sci, vol 585 pg 1, 1990). Most of vitamin B6 is eventually degraded to PYRIDOXIC ACID and excreted in the urine.
A nutritional condition produced by a deficiency of VITAMIN E in the diet, characterized by posterior column and spinocerebellar tract abnormalities, areflexia, ophthalmoplegia, and disturbances of gait, proprioception, and vibration. In premature infants vitamin E deficiency is associated with hemolytic anemia, thrombocytosis, edema, intraventricular hemorrhage, and increasing risk of retrolental fibroplasia and bronchopulmonary dysplasia. An apparent inborn error of vitamin E metabolism, named familial isolated vitamin E deficiency, has recently been identified. (Cecil Textbook of Medicine, 19th ed, p1181)
A nutritional condition produced by a deficiency of VITAMIN B 12 in the diet, characterized by megaloblastic anemia. Since vitamin B 12 is not present in plants, humans have obtained their supply from animal products, from multivitamin supplements in the form of pills, and as additives to food preparations. A wide variety of neuropsychiatric abnormalities is also seen in vitamin B 12 deficiency and appears to be due to an undefined defect involving myelin synthesis. (From Cecil Textbook of Medicine, 19th ed, p848)
A nutritional condition produced by a deficiency of VITAMIN K in the diet, characterized by an increased tendency to hemorrhage (HEMORRHAGIC DISORDERS). Such bleeding episodes may be particularly severe in newborn infants. (From Cecil Textbook of Medicine, 19th ed, p1182)
A nutritional condition produced by a deficiency of VITAMIN B 6 in the diet, characterized by dermatitis, glossitis, cheilosis, and stomatitis. Marked deficiency causes irritability, weakness, depression, dizziness, peripheral neuropathy, and seizures. In infants and children typical manifestations are diarrhea, anemia, and seizures. Deficiency can be caused by certain medications, such as isoniazid.
Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24.
A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant.
Products in capsule, tablet or liquid form that provide dietary ingredients, and that are intended to be taken by mouth to increase the intake of nutrients. Dietary supplements can include macronutrients, such as proteins, carbohydrates, and fats; and/or MICRONUTRIENTS, such as VITAMINS; MINERALS; and PHYTOCHEMICALS.
Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors.
An alpha-globulin found in the plasma of man and other vertebrates. It is apparently synthesized in the liver and carries vitamin D and its metabolites through the circulation and mediates the response of tissue. It is also known as group-specific component (Gc). Gc subtypes are used to determine specific phenotypes and gene frequencies. These data are employed in the classification of population groups, paternity investigations, and in forensic medicine.
The 4-methanol form of VITAMIN B 6 which is converted to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. Although pyridoxine and Vitamin B 6 are still frequently used as synonyms, especially by medical researchers, this practice is erroneous and sometimes misleading (EE Snell; Ann NY Acad Sci, vol 585 pg 1, 1990).
A group of substances similar to VITAMIN K 1 which contains a ring of 2-methyl-1,4-naphthoquinione and an isoprenoid side chain of varying number of isoprene units. In vitamin K 2, each isoprene unit contains a double bond. They are produced by bacteria including the normal intestinal flora.
The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
A condition due to deficiency in any member of the VITAMIN B COMPLEX. These B vitamins are water-soluble and must be obtained from the diet because they are easily lost in the urine. Unlike the lipid-soluble vitamins, they cannot be stored in the body fat.
Derivatives of ERGOSTEROL formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. They differ from CHOLECALCIFEROL in having a double bond between C22 and C23 and a methyl group at C24.
A synthetic naphthoquinone without the isoprenoid side chain and biological activity, but can be converted to active vitamin K2, menaquinone, after alkylation in vivo.
Naturally occurring or synthetic substances that inhibit or retard the oxidation of a substance to which it is added. They counteract the harmful and damaging effects of oxidation in animal tissues.
Regular course of eating and drinking adopted by a person or animal.
Hemorrhage caused by vitamin K deficiency.
A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia.
A condition due to a deficiency of one or more essential vitamins. (Dorland, 27th ed)
Disorders caused by interruption of BONE MINERALIZATION manifesting as OSTEOMALACIA in adults and characteristic deformities in infancy and childhood due to disturbances in normal BONE FORMATION. The mineralization process may be interrupted by disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis, resulting from dietary deficiencies, or acquired, or inherited metabolic, or hormonal disturbances.
Irradiation directly from the sun.
State of the body in relation to the consumption and utilization of nutrients.
A natural tocopherol and one of the most potent antioxidant tocopherols. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. It has four methyl groups on the 6-chromanol nucleus. The natural d form of alpha-tocopherol is more active than its synthetic dl-alpha-tocopherol racemic mixture.
A carotenoid that is a precursor of VITAMIN A. It is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). (From Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Engewood, CO, 1995.)
Membrane transport proteins that actively co-transport ASCORBIC ACID and sodium ions across the CELL MEMBRANE. Dietary absorption of VITAMIN C is highly dependent upon this class of transporters and a subset of SODIUM GLUCOSE TRANSPORTERS which transport the oxidized form of vitamin C, DEHYDROASCORBIC ACID.
A mitochondrial cytochrome P450 enzyme that catalyzes the 1-alpha-hydroxylation of 25-hydroxyvitamin D3 (also known as 25-hydroxycholecalciferol) in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP27B1 gene, converts 25-hydroxyvitamin D3 to 1-alpha,25-dihydroxyvitamin D3 which is the active form of VITAMIN D in regulating bone growth and calcium metabolism. This enzyme is also active on plant 25-hydroxyvitamin D2 (ergocalciferol).
OXIDOREDUCTASES which mediate vitamin K metabolism by converting inactive vitamin K 2,3-epoxide to active vitamin K.
Hydroxy analogs of vitamin D 3; (CHOLECALCIFEROL); including CALCIFEDIOL; CALCITRIOL; and 24,25-DIHYDROXYVITAMIN D 3.
A thiol-containing amino acid formed by a demethylation of METHIONINE.
A group of carrier proteins which bind with VITAMIN B12 in the BLOOD and aid in its transport. Transcobalamin I migrates electrophoretically as a beta-globulin, while transcobalamins II and III migrate as alpha-globulins.
A collective name for a group of closely related lipids that contain substitutions on the 2H-1-benzopyran-6-ol nucleus and a long hydrocarbon chain of isoprenoid units. They are antioxidants by virtue of the phenolic hydrogen. Tocopherols react with the most reactive form of oxygen and protect unsaturated fatty acids from oxidation.
The amounts of various substances in food needed by an organism to sustain healthy life.
Any food that has been supplemented with essential nutrients either in quantities that are greater than those present normally, or which are not present in the food normally. Fortified food includes also food to which various nutrients have been added to compensate for those removed by refinement or processing. (From Segen, Dictionary of Modern Medicine, 1992)
9,10-Secoergosta-5,7,10(19),22-tetraene-3,25-diol. Biologically active metabolite of vitamin D2 which is more active in curing rickets than its parent. The compound is believed to attach to the same receptor as vitamin D2 and 25-hydroxyvitamin D3.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA.
A DNA sequence that is found in the promoter region of vitamin D regulated genes. Vitamin D receptor (RECEPTOR, CALCITRIOL) binds to and regulates the activity of genes containing this element.
Enzymes that catalyze the joining of two molecules by the formation of a carbon-carbon bond. These are the carboxylating enzymes and are mostly biotinyl-proteins. EC 6.4.
Cholecalciferols substituted with two hydroxy groups in any position.
The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons consisting of a polyisoprene backbone.
Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.
Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE.
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
Dryness of the eye surfaces caused by deficiency of tears or conjunctival secretions. It may be associated with vitamin A deficiency, trauma, or any condition in which the eyelids do not close completely.
A symptom complex resulting from ingesting excessive amounts of VITAMIN A.
A physiologically active metabolite of VITAMIN D. The compound is involved in the regulation of calcium metabolism, alkaline phosphatase activity, and enhances the calcemic effect of CALCITRIOL.
The catabolic product of most of VITAMIN B 6; (PYRIDOXINE; PYRIDOXAL; and PYRIDOXAMINE) which is excreted in the urine.
3-((4-Amino-2-methyl-5-pyrimidinyl)methyl)-5-(2- hydroxyethyl)-4-methylthiazolium chloride.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A nutritional condition produced by a deficiency of FOLIC ACID in the diet. Many plant and animal tissues contain folic acid, abundant in green leafy vegetables, yeast, liver, and mushrooms but destroyed by long-term cooking. Alcohol interferes with its intermediate metabolism and absorption. Folic acid deficiency may develop in long-term anticonvulsant therapy or with use of oral contraceptives. This deficiency causes anemia, macrocytic anemia, and megaloblastic anemia. It is indistinguishable from vitamin B 12 deficiency in peripheral blood and bone marrow findings, but the neurologic lesions seen in B 12 deficiency do not occur. (Merck Manual, 16th ed)
A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment.
Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Stable cobalt atoms that have the same atomic number as the element cobalt, but differ in atomic weight. Co-59 is a stable cobalt isotope.
Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW=80-90 kDa) circulates in plasma in the form of a protein-protein complex with prealbumin. The retinol-binding protein found in tissue has a molecular weight of 14 kDa and carries retinol as a non-covalently-bound ligand.
Essential dietary elements or organic compounds that are required in only small quantities for normal physiologic processes to occur.
An element with the atomic symbol Se, atomic number 34, and atomic weight 78.96. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Guidelines and objectives pertaining to food supply and nutrition including recommendations for healthy diet.
An NAPH-dependent cytochrome P450 enzyme that catalyzes the oxidation of the side chain of sterol intermediates such as the 27-hydroxylation of 5-beta-cholestane-3-alpha,7-alpha,12-alpha-triol.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
The 4-carboxyaldehyde form of VITAMIN B 6 which is converted to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Uptake of substances through the lining of the INTESTINES.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Disorder caused by an interruption of the mineralization of organic bone matrix leading to bone softening, bone pain, and weakness. It is the adult form of rickets resulting from disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The giving of drugs, chemicals, or other substances by mouth.
A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites.
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
Agents that inhibit BONE RESORPTION and/or favor BONE MINERALIZATION and BONE REGENERATION. They are used to heal BONE FRACTURES and to treat METABOLIC BONE DISEASES such as OSTEOPOROSIS.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Natural analogs of TOCOPHEROLS exhibiting antioxidant activity. These tocol derivatives and isomers contain a benzopyran ring and an unsaturated isoprenoid side chain.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE).
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE.
Retinol binding proteins that circulate in the PLASMA. They are members of the lipocalin family of proteins and play a role in the transport of RETINOL from the LIVER to the peripheral tissues. The proteins are usually found in association with TRANSTHYRETIN.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
Condition in which the plasma levels of homocysteine and related metabolites are elevated (>13.9 µmol/l). Hyperhomocysteinemia can be familial or acquired. Development of the acquired hyperhomocysteinemia is mostly associated with vitamins B and/or folate deficiency (e.g., PERNICIOUS ANEMIA, vitamin malabsorption). Familial hyperhomocysteinemia often results in a more severe elevation of total homocysteine and excretion into the urine, resulting in HOMOCYSTINURIA. Hyperhomocysteinemia is a risk factor for cardiovascular and neurodegenerative diseases, osteoporotic fractures and complications during pregnancy.
'Human Milk' is the secretion from human mammary glands, primarily composed of water, carbohydrates, fats, proteins, and various bioactive components, which serves as the complete source of nutrition for newborn infants, supporting their growth, development, and immune system.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A megaloblastic anemia occurring in children but more commonly in later life, characterized by histamine-fast achlorhydria, in which the laboratory and clinical manifestations are based on malabsorption of vitamin B 12 due to a failure of the gastric mucosa to secrete adequate and potent intrinsic factor. (Dorland, 27th ed)
The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action.
The reversibly oxidized form of ascorbic acid. It is the lactone of 2,3-DIKETOGULONIC ACID and has antiscorbutic activity in man on oral ingestion.
An enzyme involved in the metabolism of ASCORBIC ACID and aldarate. It catalyzes the oxidation of L-gulono-1,4-lactone to L-xylo-hex-3-ulonolactone.
General term for a group of MALNUTRITION syndromes caused by failure of normal INTESTINAL ABSORPTION of nutrients.
Elements of limited time intervals, contributing to particular results or situations.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
A systematic collection of factual data pertaining to the nutritional status of a human population within a given geographic area. Data from these surveys are used in preparing NUTRITION ASSESSMENTS.
An acquired blood vessel disorder caused by severe deficiency of vitamin C (ASCORBIC ACID) in the diet leading to defective collagen formation in small blood vessels. Scurvy is characterized by bleeding in any tissue, weakness, ANEMIA, spongy gums, and a brawny induration of the muscles of the calves and legs.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A glycoprotein secreted by the cells of the GASTRIC GLANDS that is required for the absorption of VITAMIN B 12 (cyanocobalamin). Deficiency of intrinsic factor leads to VITAMIN B 12 DEFICIENCY and ANEMIA, PERNICIOUS.
Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.
The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN.
Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY.
Cystathionine is an intermediate sulfur-containing amino acid in the transsulfuration pathway, formed from homocysteine and serine by the enzyme cystathionine beta-synthase, which is involved in the biosynthesis of cysteine and glutathione.
The processes and properties of living organisms by which they take in and balance the use of nutritive materials for energy, heat production, or building material for the growth, maintenance, or repair of tissues and the nutritive properties of FOOD.
A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization.
An anticoagulant that acts by inhibiting the synthesis of vitamin K-dependent coagulation factors. Warfarin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, pulmonary embolism, and atrial fibrillation with embolization. It is also used as an adjunct in the prophylaxis of systemic embolism after myocardial infarction. Warfarin is also used as a rodenticide.
An infant during the first month after birth.
Any dummy medication or treatment. Although placebos originally were medicinal preparations having no specific pharmacological activity against a targeted condition, the concept has been extended to include treatments or procedures, especially those administered to control groups in clinical trials in order to provide baseline measurements for the experimental protocol.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects.
An enzyme that catalyzes reversibly the phosphorylation of pyridoxal in the presence of ATP with the formation of pyridoxal 5-phosphate and ADP. Pyridoxine, pyridoxamine and various derivatives can also act as acceptors. EC 2.7.1.35.
Abnormally high level of calcium in the blood.
Injectable form of VITAMIN B 12 that has been used therapeutically to treat VITAMIN B 12 DEFICIENCY.
Low-molecular-weight end products, probably malondialdehyde, that are formed during the decomposition of lipid peroxidation products. These compounds react with thiobarbituric acid to form a fluorescent red adduct.
The white liquid secreted by the mammary glands. It contains proteins, sugar, lipids, vitamins, and minerals.
The dialdehyde of malonic acid.
Proteins in the nucleus or cytoplasm that specifically bind RETINOIC ACID or RETINOL and trigger changes in the behavior of cells. Retinoic acid receptors, like steroid receptors, are ligand-activated transcription regulators. Several types have been recognized.
Dietary practice of completely avoiding meat products in the DIET, consuming VEGETABLES, CEREALS, and NUTS. Some vegetarian diets called lacto-ovo also include milk and egg products.
An indication of the contribution of a food to the nutrient content of the diet. This value depends on the quantity of a food which is digested and absorbed and the amounts of the essential nutrients (protein, fat, carbohydrate, minerals, vitamins) which it contains. This value can be affected by soil and growing conditions, handling and storage, and processing.
A group of chemical elements that are needed in minute quantities for the proper growth, development, and physiology of an organism. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The 4-aminomethyl form of VITAMIN B 6. During transamination of amino acids, PYRIDOXAL PHOSPHATE is transiently converted into pyridoxamine phosphate.
Nutrition of a mother which affects the health of the FETUS and INFANT as well as herself.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
Systematic collections of factual data pertaining to the diet of a human population within a given geographic area.
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Measurement and evaluation of the components of substances to be taken as FOOD.
The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Coloration of the skin.
Anemia characterized by larger than normal erythrocytes, increased mean corpuscular volume (MCV) and increased mean corpuscular hemoglobin (MCH).
A food group comprised of EDIBLE PLANTS or their parts.
A subtype of RETINOIC ACID RECEPTORS that are specific for 9-cis-retinoic acid which function as nuclear TRANSCRIPTION FACTORS that regulate multiple signaling pathways.
A monooxygenase that catalyzes the conversion of BETA-CAROTENE into two molecules of RETINAL. It was formerly characterized as EC 1.13.11.21 and EC 1.18.3.1.
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension.
Foodstuff used especially for domestic and laboratory animals, or livestock.
A disorder characterized by the presence of ANEMIA, abnormally large red blood cells (megalocytes or macrocytes), and MEGALOBLASTS.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A republic stretching from the Indian Ocean east to New Guinea, comprising six main islands: Java, Sumatra, Bali, Kalimantan (the Indonesian portion of the island of Borneo), Sulawesi (formerly known as the Celebes) and Irian Jaya (the western part of New Guinea). Its capital is Djakarta. The ethnic groups living there are largely Chinese, Arab, Eurasian, Indian, and Pakistani; 85% of the peoples are of the Islamic faith.
Substances found in many plants, containing the 4-hydroxycoumarin radical. They interfere with vitamin K and the blood clotting mechanism, are tightly protein-bound, inhibit mitochondrial and microsomal enzymes, and are used as oral anticoagulants.
An enzyme catalyzing the oxidation of 2 moles of glutathione in the presence of hydrogen peroxide to yield oxidized glutathione and water. EC 1.11.1.9.
Nutritional physiology of children from birth to 2 years of age.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Compounds used in food or in food preparation to replace dietary fats. They may be carbohydrate-, protein-, or fat-based. Fat substitutes are usually lower in calories but provide the same texture as fats.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Total number of calories taken in daily whether ingested or by parenteral routes.
Records of nutrient intake over a specific period of time, usually kept by the patient.
A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D.
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
Conditions or pathological processes associated with pregnancy. They can occur during or after pregnancy, and range from minor discomforts to serious diseases that require medical interventions. They include diseases in pregnant females, and pregnancies in females with diseases.
Failure or imperfection of vision at night or in dim light, with good vision only on bright days. (Dorland, 27th ed)
Found in various tissues, particularly in four blood-clotting proteins including prothrombin, in kidney protein, in bone protein, and in the protein present in various ectopic calcifications.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Inorganic salts of phosphoric acid.
A subclass of retinol-binding proteins that take part in the intracellular storage and transport of RETINOL. They are both functionally and structurally distinct from PLASMA RETINOL-BINDING PROTEINS.
The edible portions of any animal used for food including domestic mammals (the major ones being cattle, swine, and sheep) along with poultry, fish, shellfish, and game.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Predetermined sets of questions used to collect data - clinical data, social status, occupational group, etc. The term is often applied to a self-completed survey instrument.
The nursing of an infant at the breast.
Isoprostanes derived from the free radical oxidation of ARACHIDONIC ACID. Although similar in structure to enzymatically synthesized prostaglandin F2alpha (DINOPROST), they occur through non-enzymatic oxidation of cell membrane lipids.
Clotting time of PLASMA recalcified in the presence of excess TISSUE THROMBOPLASTIN. Factors measured are FIBRINOGEN; PROTHROMBIN; FACTOR V; FACTOR VII; and FACTOR X. It is used for monitoring anticoagulant therapy with COUMARINS.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
Breaks in bones.
I'm sorry for any confusion, but "Nepal" is not a medical term that has a definition in the field of medicine. It is actually the name of a country located in South Asia, known officially as the Federal Democratic Republic of Nepal. If you have any questions related to medicine or health, I would be happy to try and help answer those for you!
A condition produced by dietary or metabolic deficiency. The term includes all diseases caused by an insufficient supply of essential nutrients, i.e., protein (or amino acids), vitamins, and minerals. It also includes an inadequacy of calories. (From Dorland, 27th ed; Stedman, 25th ed)
A sulfur-containing essential L-amino acid that is important in many body functions.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
A VITAMIN D that can be regarded as a reduction product of vitamin D2.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties.
Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it.
Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A dietary deficiency of riboflavin causing a syndrome chiefly marked by cheilitis, angular stomatitis, glossitis associated with a purplish red or magenta-colored tongue that may show fissures, corneal vascularization, dyssebacia, and anemia. (Dorland, 27th ed)
Cobamides are a class of compounds that function as cofactors in various enzymatic reactions, containing a corrin ring similar to vitamin B12, but with different substituents on the benzimidazole moiety, and can be found in certain bacteria and archaea.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Benzopyrans saturated in the 2 and 3 positions.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
Nutritional physiology of animals.
The term "United States" in a medical context often refers to the country where a patient or study participant resides, and is not a medical term per se, but relevant for epidemiological studies, healthcare policies, and understanding differences in disease prevalence, treatment patterns, and health outcomes across various geographic locations.
The technique that deals with the measurement of the size, weight, and proportions of the human or other primate body.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.

The food matrix of spinach is a limiting factor in determining the bioavailability of beta-carotene and to a lesser extent of lutein in humans. (1/3171)

Carotenoid bioavailability depends, amongst other factors, on the food matrix and on the type and extent of processing. To examine the effect of variously processed spinach products and of dietary fiber on serum carotenoid concentrations, subjects received, over a 3-wk period, a control diet (n = 10) or a control diet supplemented with carotenoids or one of four spinach products (n = 12 per group): whole leaf spinach with an almost intact food matrix, minced spinach with the matrix partially disrupted, enzymatically liquefied spinach in which the matrix was further disrupted and the liquefied spinach to which dietary fiber (10 g/kg wet weight) was added. Consumption of spinach significantly increased serum concentrations of all-trans-beta-carotene, cis-beta-carotene, (and consequently total beta-carotene), lutein, alpha-carotene and retinol and decreased the serum concentration of lycopene. Serum total beta-carotene responses (changes in serum concentrations from the start to the end of the intervention period) differed significantly between the whole leaf and liquefied spinach groups and between the minced and liquefied spinach groups. The lutein response did not differ among spinach groups. Addition of dietary fiber to the liquefied spinach had no effect on serum carotenoid responses. The relative bioavailability as compared to bioavailability of the carotenoid supplement for whole leaf, minced, liquefied and liquefied spinach plus added dietary fiber for beta-carotene was 5.1, 6.4, 9.5 and 9.3%, respectively, and for lutein 45, 52, 55 and 54%, respectively. We conclude that the bioavailability of lutein from spinach was higher than that of beta-carotene and that enzymatic disruption of the matrix (cell wall structure) enhanced the bioavailability of beta-carotene from whole leaf and minced spinach, but had no effect on lutein bioavailability.  (+info)

Maternal vitamin A or beta-carotene supplementation in lactating bangladeshi women benefits mothers and infants but does not prevent subclinical deficiency. (2/3171)

The effects of maternal postpartum vitamin A or beta-carotene supplementation on maternal and infant serum retinol concentrations, modified relative dose-response (MRDR) ratios and breast milk vitamin A concentrations were assessed during a community-based trial in Matlab, Bangladesh. At 1-3 wk postpartum, women were randomly assigned to receive either (1) a single dose of 200,000 international units [60,000 retinol equivalents (RE)] vitamin A followed by daily placebos (n = 74), (2) daily doses of beta-carotene [7.8 mg (1300 RE)] (n = 73) or (3) daily placebos (n = 73) until 9 mo postpartum. Compared to placebos, vitamin A supplementation resulted in lower maternal MRDR ratios (i.e., increased liver stores) and higher milk vitamin A concentrations at 3 mo, but these improvements were not sustained. The beta-carotene supplementation acted more slowly, resulting in milk vitamin A concentrations higher than the placebo group only at 9 mo. Irrespective of treatment group, over 50% of women produced milk with low vitamin A concentrations (/=0. 06. We conclude that while both interventions were beneficial, neither was sufficient to correct the underlying subclinical vitamin A deficiency in these women nor to bring their infants into adequate vitamin A status.  (+info)

Thiamine deficiency is prevalent in a selected group of urban Indonesian elderly people. (3/3171)

This cross-sectional study involved 204 elderly individuals (93 males and 111 females). Subjects were randomly recruited using a list on which all 60-75 y-old-people living in seven sub-villages in Jakarta were included. The usual food intake was estimated using semiquantitative food frequency questionnaires. Hemoglobin, plasma retinol, vitamin B-12, red blood cell folate and the percentage stimulation of erythrocyte transketolase (ETK), as an indicator of thiamine status, were analyzed. Median energy intake was below the assessed requirement. More than 75% of the subjects had iron and thiamine intakes of approximately 2/3 of the recommended daily intake, and 20.2% of the study population had folate intake of approximately 2/3 of the recommended daily intake. Intakes of vitamins A and B-12 were adequate. Biochemical assessments demonstrated that 36.6% of the subjects had low thiamine levels (ETK stimulation > 25%). The elderly men tended to have lower thiamine levels than the elderly women. The overall prevalence of anemia was 28.9%, and the elderly women were affected more than the elderly men. Low biochemical status of vitamins A, B-12 and RBC folate was found in 5.4%, 8.8 % and 2.9% of the subjects, respectively. Dietary intakes of thiamine and folate were associated with ETK stimulation and plasma vitamin B-12 concentration (r = 0.176, P = 0.012 and r = 0.77, P = 0.001), respectively. Results of this study suggest that anemia, thiamine and possibly vitamin B-12 deficiency are prevalent in the elderly living in Indonesia. Clearly, micronutrient supplementation may be beneficial for the Indonesian elderly population living in underprivileged areas.  (+info)

Effect of vitamin A and beta carotene supplementation on women's health.(4/3171)

 (+info)

Double blind, cluster randomised trial of low dose supplementation with vitamin A or beta carotene on mortality related to pregnancy in Nepal. The NNIPS-2 Study Group. (5/3171)

OBJECTIVE: To assess the impact on mortality related to pregnancy of supplementing women of reproductive age each week with a recommended dietary allowance of vitamin A, either preformed or as beta carotene. DESIGN: Double blind, cluster randomised, placebo controlled field trial. SETTING: Rural southeast central plains of Nepal (Sarlahi district). SUBJECTS: 44 646 married women, of whom 20 119 became pregnant 22 189 times. INTERVENTION: 270 wards randomised to 3 groups of 90 each for women to receive weekly a single oral supplement of placebo, vitamin A (7000 micrograms retinol equivalents) or beta carotene (42 mg, or 7000 micrograms retinol equivalents) for over 31/2 years. MAIN OUTCOME MEASURES: All cause mortality in women during pregnancy up to 12 weeks post partum (pregnancy related mortality) and mortality during pregnancy to 6 weeks postpartum, excluding deaths apparently related to injury (maternal mortality). RESULTS: Mortality related to pregnancy in the placebo, vitamin A, and beta carotene groups was 704, 426, and 361 deaths per 100 000 pregnancies, yielding relative risks (95% confidence intervals) of 0. 60 (0.37 to 0.97) and 0.51 (0.30 to 0.86). This represented reductions of 40% (P<0.04) and 49% (P<0.01) among those who received vitamin A and beta carotene. Combined, vitamin A or beta carotene lowered mortality by 44% (0.56 (0.37 to 0.84), P<0.005) and reduced the maternal mortality ratio from 645 to 385 deaths per 100 000 live births, or by 40% (P<0.02). Differences in cause of death could not be reliably distinguished between supplemented and placebo groups. CONCLUSION: Supplementation of women with either vitamin A or beta carotene at recommended dietary amounts during childbearing years can lower mortality related to pregnancy in rural, undernourished populations of south Asia.  (+info)

Vitamin A is linked to the expression of the AI-CIII-AIV gene cluster in familial combined hyperlipidemia. (6/3171)

There is growing evidence of the capacity of vitamin A to regulate the expression of the genetic region that encodes apolipoproteins (apo) A-I, C-III, and A-IV. This region in turn has been proposed to modulate the expression of hyperlipidemia in the commonest genetic form of dyslipidemia, familial combined hyperlipidemia (FCHL). The hypothesis tested here was whether vitamin A (retinol), by controlling the expression of the AI-CIII-AIV gene cluster, plays a role in modulating the hyperlipidemic phenotype in FCHL. We approached the subject by studying three genetic variants of this region: a C1100-T transition in exon 3 of the apoC-III gene, a G3206-T transversion in exon 4 of the apoC-III gene, and a G-75-A substitution in the promoter region of the apoA-I gene. The association between plasma vitamin A concentrations and differences in the plasma concentrations of apolipoproteins A-I and C-III based on the different genotypes was assessed in 48 FCHL patients and 74 of their normolipidemic relatives. The results indicated that the subjects carrying genetic variants associated with increased concentrations of apoA-I and C-III (C1100-T and G-75-A) also presented increased plasma concentrations of vitamin A. This was only observed among the FCHL patients, which suggested that certain characteristics of these patients contributed to this association. The G3206-T was not associated with changes in either apolipoprotein concentrations or in vitamin A. In summary, we report a relationship between genetically determined elevations of proteins of the AI-CIII-AIV gene cluster and vitamin A in FCHL patients. More studies will be needed to confirm that vitamin A plays a role in FCHL which might also be important for its potential application to therapeutical approaches.  (+info)

Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. (7/3171)

Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis. In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  (+info)

Plasma-soluble CD30 in childhood tuberculosis: effects of disease severity, nutritional status, and vitamin A therapy. (8/3171)

Plasma-soluble CD30 (sCD30) is the result of proteolytic splicing from the membrane-bound form of CD30, a putative marker of type 2 cytokine-producing cells. We measured sCD30 levels in children with tuberculosis, a disease characterized by prominent type 1 lymphocyte cytokine responses. We postulated that disease severity and nutritional status would alter cytokine responses and therefore sCD30 levels. Samples from South African children enrolled prospectively at the time of diagnosis of tuberculosis were analyzed. (Patients were originally enrolled in a randomized, double-blind placebo-controlled study of the effects of oral vitamin A supplementation on prognosis of tuberculosis.) Plasma samples collected at the time of diagnosis and 6 and 12 weeks later (during antituberculosis therapy) were analyzed. sCD30 levels were measured by enzyme immunoassay. The 91 children included in the study demonstrated high levels of sCD30 at diagnosis (median, 98 U/liter; range, 11 to 1,569 U/liter). Although there was a trend toward higher sCD30 levels in more severe disease (e.g., culture-positive disease or miliary disease), this was not statistically significant. Significantly higher sCD30 levels were demonstrated in the presence of nutritional compromise: the sCD30 level was higher in patients with a weight below the third percentile for age, in those with clinical signs of kwashiorkor, and in those with a low hemoglobin content. There was minimal change in the sCD30 level after 12 weeks of therapy, even though patients improved clinically. However, changes in sCD30 after 12 weeks differed significantly when 46 patients (51%) who received vitamin A were compared with those who had received a placebo. Vitamin A-supplemented children demonstrated a mean (+/- standard error of the mean) decrease in sCD30 by a factor of 0.99 +/- 0.02 over 12 weeks, whereas a factor increase of 1.05 +/- 0.02 was demonstrated in the placebo group (P = 0.02). We conclude that children with tuberculosis had high sCD30 levels, which may reflect the presence of a type 2 cytokine response. Nutritional compromise was associated with higher sCD30 levels. Vitamin A therapy resulted in modulation of sCD30 levels over time.  (+info)

Medical Definition of Vitamin A:

Vitamin A is a fat-soluble vitamin that is essential for normal vision, immune function, and cell growth. It is also an antioxidant that helps protect the body's cells from damage caused by free radicals. Vitamin A can be found in two main forms: preformed vitamin A, which is found in animal products such as dairy, fish, and meat, particularly liver; and provitamin A carotenoids, which are found in plant-based foods such as fruits, vegetables, and vegetable oils.

The most active form of vitamin A is retinoic acid, which plays a critical role in the development and maintenance of the heart, lungs, kidneys, and other organs. Vitamin A deficiency can lead to night blindness, dry skin, and increased susceptibility to infections. Chronic vitamin A toxicity can cause nausea, dizziness, headaches, coma, and even death.

Vitamins are organic substances that are essential in small quantities for the normal growth, development, and maintenance of life in humans. They are required for various biochemical functions in the body such as energy production, blood clotting, immune function, and making DNA.

Unlike macronutrients (carbohydrates, proteins, and fats), vitamins do not provide energy but they play a crucial role in energy metabolism. Humans require 13 essential vitamins, which can be divided into two categories: fat-soluble and water-soluble.

Fat-soluble vitamins (A, D, E, and K) are stored in the body's fat tissues and liver, and can stay in the body for a longer period of time. Water-soluble vitamins (B-complex vitamins and vitamin C) are not stored in the body and need to be replenished regularly through diet or supplementation.

Deficiency of vitamins can lead to various health problems, while excessive intake of certain fat-soluble vitamins can also be harmful due to toxicity. Therefore, it is important to maintain a balanced diet that provides all the essential vitamins in adequate amounts.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Medical Definition of Vitamin E:

Vitamin E is a fat-soluble antioxidant that plays a crucial role in protecting your body's cells from damage caused by free radicals, which are unstable molecules produced when your body breaks down food or is exposed to environmental toxins like cigarette smoke and radiation. Vitamin E is also involved in immune function, DNA repair, and other metabolic processes.

It is a collective name for a group of eight fat-soluble compounds that include four tocopherols and four tocotrienols. Alpha-tocopherol is the most biologically active form of vitamin E in humans and is the one most commonly found in supplements.

Vitamin E deficiency is rare but can occur in people with certain genetic disorders or who cannot absorb fat properly. Symptoms of deficiency include nerve and muscle damage, loss of feeling in the arms and legs, muscle weakness, and vision problems.

Food sources of vitamin E include vegetable oils (such as sunflower, safflower, and wheat germ oil), nuts and seeds (like almonds, peanuts, and sunflower seeds), and fortified foods (such as cereals and some fruit juices).

Vitamin B12, also known as cobalamin, is a water-soluble vitamin that plays a crucial role in the synthesis of DNA, formation of red blood cells, and maintenance of the nervous system. It is involved in the metabolism of every cell in the body, particularly affecting DNA regulation and neurological function.

Vitamin B12 is unique among vitamins because it contains a metal ion, cobalt, from which its name is derived. This vitamin can be synthesized only by certain types of bacteria and is not produced by plants or animals. The major sources of vitamin B12 in the human diet include animal-derived foods such as meat, fish, poultry, eggs, and dairy products, as well as fortified plant-based milk alternatives and breakfast cereals.

Deficiency in vitamin B12 can lead to various health issues, including megaloblastic anemia, fatigue, neurological symptoms such as numbness and tingling in the extremities, memory loss, and depression. Since vitamin B12 is not readily available from plant-based sources, vegetarians and vegans are at a higher risk of deficiency and may require supplementation or fortified foods to meet their daily requirements.

Vitamin A deficiency (VAD) is a condition that occurs when there is a lack of vitamin A in the diet. This essential fat-soluble vitamin plays crucial roles in vision, growth, cell division, reproduction, and immune system regulation.

In its severe form, VAD leads to xerophthalmia, which includes night blindness (nyctalopia) and keratomalacia - a sight-threatening condition characterized by dryness of the conjunctiva and cornea, with eventual ulceration and perforation. Other symptoms of VAD may include Bitot's spots (foamy, triangular, white spots on the conjunctiva), follicular hyperkeratosis (goose bump-like bumps on the skin), and increased susceptibility to infections due to impaired immune function.

Vitamin A deficiency is most prevalent in developing countries where diets are often low in animal source foods and high in plant-based foods with low bioavailability of vitamin A. It primarily affects children aged 6 months to 5 years, pregnant women, and lactating mothers. Prevention strategies include dietary diversification, food fortification, and supplementation programs.

Vitamin D deficiency is a condition characterized by insufficient levels of vitamin D in the body, typically defined as a serum 25-hydroxyvitamin D level below 20 nanograms per milliliter (ng/mL) or 50 nanomoles per liter (nmol/L). Vitamin D is an essential fat-soluble vitamin that plays a crucial role in maintaining healthy bones and teeth by regulating the absorption of calcium and phosphorus. It also has various other functions in the body, including modulation of cell growth, immune function, and neuromuscular activity.

Vitamin D can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements, but the majority of vitamin D is produced in the skin upon exposure to sunlight. Deficiency can occur due to inadequate dietary intake, insufficient sun exposure, or impaired absorption or metabolism of vitamin D.

Risk factors for vitamin D deficiency include older age, darker skin tone, obesity, malabsorption syndromes, liver or kidney disease, and certain medications. Symptoms of vitamin D deficiency can be subtle and nonspecific, such as fatigue, bone pain, muscle weakness, and mood changes. However, prolonged deficiency can lead to more severe health consequences, including osteoporosis, osteomalacia, and increased risk of fractures.

Vitamin K1, also known as phylloquinone, is a type of fat-soluble vitamin K. It is the primary form of Vitamin K found in plants, particularly in green leafy vegetables such as kale, spinach, and collard greens. Vitamin K1 plays a crucial role in blood clotting and helps to prevent excessive bleeding by assisting in the production of several proteins involved in this process. It is also essential for maintaining healthy bones by aiding in the regulation of calcium deposition in bone tissue. A deficiency in Vitamin K1 can lead to bleeding disorders and, in some cases, osteoporosis.

Medical Definition of Vitamin B6:

Vitamin B6, also known as pyridoxine, is a water-soluble vitamin that plays a crucial role in various bodily functions. It is involved in the process of making serotonin and norepinephrine, which are chemicals that transmit signals in the brain. Vitamin B6 is also necessary for the formation of myelin, a protein layer that forms around nerve cells. Additionally, it helps the body to metabolize proteins, carbohydrates, and fats, and is involved in the creation of red blood cells.

Vitamin B6 can be found in a wide variety of foods, including poultry, seafood, bananas, potatoes, and fortified cereals. A deficiency in vitamin B6 can lead to anemia, confusion, and a weakened immune system. On the other hand, excessive intake of vitamin B6 can cause nerve damage and skin lesions. It is important to maintain appropriate levels of vitamin B6 through a balanced diet and, if necessary, supplementation under the guidance of a healthcare provider.

Vitamin E deficiency is a condition that occurs when there is a lack of sufficient vitamin E in the body. Vitamin E is a fat-soluble antioxidant that plays an essential role in maintaining the health of cell membranes, protecting them from damage caused by free radicals. It also helps to support the immune system and promotes healthy blood vessels and nerves.

Vitamin E deficiency can occur due to several reasons, including malnutrition, malabsorption disorders such as cystic fibrosis or celiac disease, premature birth, or genetic defects affecting the alpha-tocopherol transfer protein (alpha-TTP), which is responsible for transporting vitamin E from the liver to other tissues.

Symptoms of vitamin E deficiency may include:

* Neurological problems such as peripheral neuropathy, ataxia (loss of coordination), and muscle weakness
* Retinopathy (damage to the retina) leading to vision loss
* Increased susceptibility to oxidative stress and inflammation
* Impaired immune function

Vitamin E deficiency is rare in healthy individuals who consume a balanced diet, but it can occur in people with certain medical conditions or those who have undergone bariatric surgery. In these cases, supplementation may be necessary to prevent or treat vitamin E deficiency.

Vitamin B12 deficiency is a condition characterized by insufficient levels of vitamin B12 in the body, leading to impaired production of red blood cells, nerve function damage, and potential neurological complications. Vitamin B12 is an essential nutrient that plays a crucial role in DNA synthesis, fatty acid metabolism, and maintaining the health of the nervous system.

The medical definition of vitamin B12 deficiency includes:

1. Reduced serum or whole blood vitamin B12 concentrations (typically below 200 pg/mL or 145 pmol/L)
2. Presence of clinical symptoms and signs, such as:
* Fatigue, weakness, and lethargy
* Pale skin, shortness of breath, and heart palpitations due to anemia (megaloblastic or macrocytic anemia)
* Neurological symptoms like numbness, tingling, or burning sensations in the hands and feet (peripheral neuropathy), balance problems, confusion, memory loss, and depression
3. Laboratory findings consistent with deficiency, such as:
* Increased mean corpuscular volume (MCV) of red blood cells
* Reduced numbers of red and white blood cells and platelets in severe cases
* Elevated homocysteine and methylmalonic acid levels in the blood due to impaired metabolism

The most common causes of vitamin B12 deficiency include dietary insufficiency (common in vegetarians and vegans), pernicious anemia (an autoimmune condition affecting intrinsic factor production), gastrointestinal disorders (such as celiac disease, Crohn's disease, or gastric bypass surgery), and certain medications that interfere with vitamin B12 absorption.

Untreated vitamin B12 deficiency can lead to severe complications, including irreversible nerve damage, cognitive impairment, and increased risk of cardiovascular diseases. Therefore, prompt diagnosis and treatment are essential for preventing long-term health consequences.

Vitamin K deficiency is a condition that occurs when the body lacks adequate amounts of Vitamin K, a fat-soluble vitamin essential for blood clotting and bone metabolism. This can lead to an increased risk of excessive bleeding (hemorrhage) and calcification of tissues.

Vitamin K is required for the activation of several proteins involved in blood clotting, known as coagulation factors II, VII, IX, and X. A deficiency in Vitamin K can result in these factors remaining in their inactive forms, leading to impaired blood clotting and an increased risk of bleeding.

Vitamin K deficiency can occur due to several reasons, including malnutrition, malabsorption disorders (such as cystic fibrosis or celiac disease), liver diseases, use of certain medications (such as antibiotics or anticoagulants), and prolonged use of warfarin therapy.

In newborns, Vitamin K deficiency can lead to a serious bleeding disorder known as hemorrhagic disease of the newborn. This is because newborns have low levels of Vitamin K at birth, and their gut bacteria, which are responsible for producing Vitamin K, are not yet fully developed. Therefore, it is recommended that newborns receive a dose of Vitamin K within the first few days of life to prevent this condition.

Symptoms of Vitamin K deficiency can include easy bruising, nosebleeds, bleeding gums, blood in urine or stools, and excessive menstrual bleeding. In severe cases, it can lead to life-threatening hemorrhage. Treatment typically involves administering Vitamin K supplements or injections to replenish the body's levels of this essential nutrient.

Vitamin B6 deficiency refers to the condition in which there is an insufficient amount of vitamin B6 (pyridoxine) in the body. Vitamin B6 is an essential nutrient that plays a crucial role in various bodily functions, including protein metabolism, neurotransmitter synthesis, hemoglobin production, and immune function.

A deficiency in vitamin B6 can lead to several health issues, such as:

1. Anemia: Vitamin B6 is essential for the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. A deficiency in this nutrient can lead to anemia, characterized by fatigue, weakness, and shortness of breath.
2. Peripheral neuropathy: Vitamin B6 deficiency can cause nerve damage, leading to symptoms such as numbness, tingling, and pain in the hands and feet.
3. Depression and cognitive impairment: Pyridoxine is necessary for the synthesis of neurotransmitters like serotonin and dopamine, which are involved in mood regulation. A deficiency in vitamin B6 can lead to depression, irritability, and cognitive decline.
4. Seizures: In severe cases, vitamin B6 deficiency can cause seizures due to the impaired synthesis of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter that helps regulate brain activity.
5. Skin changes: A deficiency in this nutrient can also lead to skin changes, such as dryness, scaling, and cracks around the mouth.

Vitamin B6 deficiency is relatively uncommon in developed countries but can occur in individuals with certain medical conditions, such as malabsorption syndromes, alcoholism, kidney disease, or those taking medications that interfere with vitamin B6 metabolism. Additionally, older adults, pregnant women, and breastfeeding mothers may have an increased need for this nutrient, making them more susceptible to deficiency.

Cholecalciferol is the chemical name for Vitamin D3. It is a fat-soluble vitamin that is essential for the regulation of calcium and phosphate levels in the body, which helps to maintain healthy bones and teeth. Cholecalciferol can be synthesized by the skin upon exposure to sunlight or obtained through dietary sources such as fatty fish, liver, and fortified foods. It is also available as a dietary supplement.

Ascorbic acid is the chemical name for Vitamin C. It is a water-soluble vitamin that is essential for human health. Ascorbic acid is required for the synthesis of collagen, a protein that plays a role in the structure of bones, tendons, ligaments, and blood vessels. It also functions as an antioxidant, helping to protect cells from damage caused by free radicals.

Ascorbic acid cannot be produced by the human body and must be obtained through diet or supplementation. Good food sources of vitamin C include citrus fruits, strawberries, bell peppers, broccoli, and spinach.

In the medical field, ascorbic acid is used to treat or prevent vitamin C deficiency and related conditions, such as scurvy. It may also be used in the treatment of various other health conditions, including common cold, cancer, and cardiovascular disease, although its effectiveness for these uses is still a matter of scientific debate.

A dietary supplement is a product that contains nutrients, such as vitamins, minerals, amino acids, herbs or other botanicals, and is intended to be taken by mouth, to supplement the diet. Dietary supplements can include a wide range of products, such as vitamin and mineral supplements, herbal supplements, and sports nutrition products.

Dietary supplements are not intended to treat, diagnose, cure, or alleviate the effects of diseases. They are intended to be used as a way to add extra nutrients to the diet or to support specific health functions. It is important to note that dietary supplements are not subject to the same rigorous testing and regulations as drugs, so it is important to choose products carefully and consult with a healthcare provider if you have any questions or concerns about using them.

Calcitriol receptors, also known as Vitamin D receptors (VDR), are nuclear receptor proteins that bind to calcitriol (1,25-dihydroxyvitamin D3), the active form of vitamin D. These receptors are found in various tissues and cells throughout the body, including the small intestine, bone, kidney, and parathyroid gland.

When calcitriol binds to its receptor, it forms a complex that regulates the expression of genes involved in calcium and phosphate homeostasis, cell growth, differentiation, and immune function. Calcitriol receptors play a critical role in maintaining normal levels of calcium and phosphate in the blood by increasing the absorption of these minerals from the gut, promoting bone mineralization, and regulating the production of parathyroid hormone (PTH).

Calcitriol receptors have also been implicated in various disease processes, including cancer, autoimmune disorders, and infectious diseases. Modulation of calcitriol receptor activity has emerged as a potential therapeutic strategy for the treatment of these conditions.

Vitamin D-Binding Protein (DBP), also known as Group-specific Component (Gc-globulin), is a protein that binds and transports vitamin D and its metabolites in the bloodstream. It plays a crucial role in maintaining the homeostasis of vitamin D by regulating the amount of free, active vitamin D available to cells. DBP also has other functions, including acting as an actin scavenger to prevent the formation of harmful actin aggregates in circulation and participating in immune responses.

Pyridoxine is the chemical name for Vitamin B6. According to the medical definition, Pyridoxine is a water-soluble vitamin that is part of the B-vitamin complex and is essential for the metabolism of proteins, carbohydrates, and fats. It plays a vital role in the regulation of homocysteine levels in the body, the formation of neurotransmitters such as serotonin and dopamine, and the synthesis of hemoglobin.

Pyridoxine can be found naturally in various foods, including whole grains, legumes, vegetables, nuts, seeds, meat, poultry, and fish. It is also available as a dietary supplement and may be prescribed by healthcare providers to treat or prevent certain medical conditions, such as vitamin B6 deficiency, anemia, seizures, and carpal tunnel syndrome.

Like other water-soluble vitamins, Pyridoxine cannot be stored in the body and must be replenished regularly through diet or supplementation. Excessive intake of Pyridoxine can lead to toxicity symptoms such as nerve damage, skin lesions, and light sensitivity.

Vitamin K2, also known as menaquinone, is a fat-soluble vitamin that plays a crucial role in the blood clotting process and bone metabolism. It is one of the two main forms of Vitamin K (the other being Vitamin K1 or phylloquinone), and it is found in animal-based foods and fermented foods.

Vitamin K2 is a collective name for a group of vitamin K compounds characterized by the presence of a long-chain fatty acid attached to the molecule. The most common forms of Vitamin K2 are MK-4 and MK-7, which differ in the length of their side chains.

Vitamin K2 is absorbed more efficiently than Vitamin K1 and has a longer half-life, which means it stays in the body for a longer period. It is stored in various tissues, including bones, where it plays an essential role in maintaining bone health by assisting in the regulation of calcium deposition and helping to prevent the calcification of blood vessels and other soft tissues.

Deficiency in Vitamin K2 is rare but can lead to bleeding disorders and weakened bones. Food sources of Vitamin K2 include animal-based foods such as liver, egg yolks, and fermented dairy products like cheese and natto (a Japanese food made from fermented soybeans). Some studies suggest that supplementing with Vitamin K2 may have benefits for bone health, heart health, and cognitive function. However, more research is needed to confirm these potential benefits.

Calcifediol is the medical term for 25-hydroxyvitamin D, which is a form of vitamin D that is produced in the liver when it processes vitamin D from sunlight or from dietary sources. It is an important precursor to the active form of vitamin D, calcitriol, and is often used as a supplement for people who have low levels of vitamin D. Calcifediol is converted to calcitriol in the kidneys, where it plays a role in regulating calcium and phosphate levels in the body, which are important for maintaining healthy bones and teeth.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

Vitamin B deficiency refers to a condition where an individual's body lacks adequate amounts of one or more essential Vitamin B compounds, including Vitamin B1 (thiamin), Vitamin B2 (riboflavin), Vitamin B3 (niacin), Vitamin B5 (pantothenic acid), Vitamin B6 (pyridoxine), Vitamin B7 (biotin), Vitamin B9 (folate), and Vitamin B12 (cobalamin). These water-soluble vitamins play crucial roles in various bodily functions, such as energy production, nerve function, DNA repair, and the formation of red blood cells.

Deficiency in any of these Vitamin B compounds can lead to specific health issues. For instance:

1. Vitamin B1 (thiamin) deficiency can cause beriberi, a condition characterized by muscle weakness, peripheral neuropathy, and heart failure.
2. Vitamin B2 (riboflavin) deficiency may result in ariboflavinosis, which presents with inflammation of the mouth and tongue, anemia, and skin disorders.
3. Vitamin B3 (niacin) deficiency can lead to pellagra, marked by diarrhea, dermatitis, dementia, and, if left untreated, death.
4. Vitamin B5 (pantothenic acid) deficiency is rare but can cause acne-like skin lesions and neurological symptoms.
5. Vitamin B6 (pyridoxine) deficiency may result in anemia, peripheral neuropathy, seizures, and skin disorders.
6. Vitamin B7 (biotin) deficiency can cause hair loss, skin rashes, and neurological symptoms.
7. Vitamin B9 (folate) deficiency can lead to megaloblastic anemia, neural tube defects in fetuses during pregnancy, and increased homocysteine levels, which may contribute to cardiovascular disease.
8. Vitamin B12 (cobalamin) deficiency can cause pernicious anemia, characterized by fatigue, weakness, neurological symptoms, and, if left untreated, irreversible nerve damage.

Deficiencies in these vitamins can arise from inadequate dietary intake, malabsorption syndromes, or certain medications that interfere with absorption or metabolism. It is essential to maintain a balanced diet and consider supplementation if necessary under the guidance of a healthcare professional.

Ergocalciferols are a form of vitamin D, specifically vitamin D2, that is found in some plants. They are not produced by the human body and must be obtained through diet or supplementation. Ergocalciferols can be converted into an active form of vitamin D in the body, which is important for maintaining healthy bones and calcium levels. However, vitamin D3 (cholecalciferol), which is produced by the body in response to sunlight exposure, is generally considered to be more effective at raising and maintaining vitamin D levels in the body than ergocalciferols.

Vitamin K3 is not typically referred to as a medical definition, but it is a form of Vitamin K. Medically, Vitamins K are coagulation factors that play a crucial role in blood clotting. Specifically, Vitamin K3 is known as Menadione and it is a synthetic version of Vitamin K. Unlike other forms of Vitamin K (K1 and K2), which are found naturally in foods like leafy green vegetables and fermented products, Vitamin K3 is not found in food and must be synthetically produced in a laboratory. It is used in some dietary supplements and animal feed additives. However, the use of Vitamin K3 in human nutrition is limited due to its potential toxicity, especially when given in large doses or to infants.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Vitamin K Deficiency Bleeding (VKDB) is a condition characterized by an insufficient amount of vitamin K in the body, leading to bleeding complications. It can be further classified into three types:

1. Early onset VKDB: This occurs in the first 24 hours of life and is often seen in infants whose mothers have taken medications that interfere with vitamin K metabolism or who are born prematurely.
2. Classic onset VKDB: This occurs between 2-7 days after birth and is most commonly seen in breastfed infants who have not received vitamin K supplementation at birth.
3. Late onset VKDB: This occurs after the first week of life and can occur up to six months of age. It is often associated with underlying medical conditions that affect vitamin K absorption or metabolism, such as liver disease, cystic fibrosis, or celiac disease.

Symptoms of VKDB may include bleeding from the umbilical cord, gastrointestinal tract, nose, or brain. Treatment typically involves administering vitamin K to stop the bleeding and prevent further complications. Prevention strategies include providing vitamin K supplementation to all newborns at birth.

Folic acid is the synthetic form of folate, a type of B vitamin (B9). It is widely used in dietary supplements and fortified foods because it is more stable and has a longer shelf life than folate. Folate is essential for normal cell growth and metabolism, and it plays a critical role in the formation of DNA and RNA, the body's genetic material. Folic acid is also crucial during early pregnancy to prevent birth defects of the brain and spine called neural tube defects.

Medical Definition: "Folic acid is the synthetic form of folate (vitamin B9), a water-soluble vitamin involved in DNA synthesis, repair, and methylation. It is used in dietary supplementation and food fortification due to its stability and longer shelf life compared to folate. Folic acid is critical for normal cell growth, development, and red blood cell production."

Avitaminosis is a medical condition that results from a deficiency of vitamins in the body. It occurs when an individual fails to consume sufficient amounts of essential vitamins, either due to poor nutrition, malabsorption, or increased requirements. The symptoms and severity of avitaminosis depend on the specific vitamin that is lacking and can range from mild to life-threatening.

For example:

* Avitaminosis A (deficiency of vitamin A) may lead to night blindness, dry skin, and impaired immunity.
* Avitaminosis B1 (deficiency of thiamine) can cause beriberi, a condition characterized by muscle weakness, peripheral neuropathy, and heart failure.
* Avitaminosis C (deficiency of ascorbic acid) may result in scurvy, which is marked by fatigue, swollen gums, joint pain, and anemia.
* Avitaminosis D (deficiency of calciferol) can lead to rickets in children or osteomalacia in adults, both of which are characterized by weakened bones and skeletal deformities.

To prevent avitaminosis, it is essential to maintain a balanced diet that includes all the necessary vitamins and minerals. In some cases, supplementation may be required to meet daily requirements, especially in individuals with medical conditions that affect nutrient absorption or increased needs. Always consult a healthcare professional before starting any supplement regimen.

Rickets is a medical condition characterized by the softening and weakening of bones in children, primarily caused by deficiency of vitamin D, calcium, or phosphate. It leads to skeletal deformities, bone pain, and growth retardation. Prolonged lack of sunlight exposure, inadequate intake of vitamin D-rich foods, or impaired absorption or utilization of vitamin D can contribute to the development of rickets.

I'm sorry for any confusion, but "sunlight" is not a term with a specific medical definition. However, sunlight does have various implications in the field of medicine. It is the light that comes from the sun, which is a star at the center of our solar system. Sunlight is essential for the production of vitamin D in humans, and it can also have effects on mood and sleep patterns due to its influence on circadian rhythms.

In a medical context, sunlight is often discussed in relation to its potential health benefits and risks. For instance, moderate sun exposure can help increase vitamin D levels, which are important for bone health, immune function, and other bodily processes. However, excessive sun exposure can lead to harmful effects, such as sunburn, premature skin aging, and an increased risk of skin cancer.

It's essential to balance the benefits and risks of sunlight exposure by practicing safe sun habits, such as wearing protective clothing, using a broad-spectrum sunscreen with an SPF of at least 30, seeking shade during peak sunlight hours, and avoiding intentional tanning.

Nutritional status is a concept that refers to the condition of an individual in relation to their nutrient intake, absorption, metabolism, and excretion. It encompasses various aspects such as body weight, muscle mass, fat distribution, presence of any deficiencies or excesses of specific nutrients, and overall health status.

A comprehensive assessment of nutritional status typically includes a review of dietary intake, anthropometric measurements (such as height, weight, waist circumference, blood pressure), laboratory tests (such as serum albumin, total protein, cholesterol levels, vitamin and mineral levels), and clinical evaluation for signs of malnutrition or overnutrition.

Malnutrition can result from inadequate intake or absorption of nutrients, increased nutrient requirements due to illness or injury, or excessive loss of nutrients due to medical conditions. On the other hand, overnutrition can lead to obesity and related health problems such as diabetes, cardiovascular disease, and certain types of cancer.

Therefore, maintaining a good nutritional status is essential for overall health and well-being, and it is an important consideration in the prevention, diagnosis, and treatment of various medical conditions.

Alpha-tocopherol is the most active form of vitamin E in humans and is a fat-soluble antioxidant that helps protect cells from damage caused by free radicals. It plays a role in immune function, cell signaling, and metabolic processes. Alpha-tocopherol is found naturally in foods such as nuts, seeds, leafy green vegetables, and vegetable oils, and it is also available as a dietary supplement.

Beta-carotene is a type of carotenoid, which is a pigment found in plants that gives them their vibrant colors. It is commonly found in fruits and vegetables, such as carrots, sweet potatoes, and spinach.

Beta-carotene is converted into vitamin A in the body, which is an essential nutrient for maintaining healthy vision, immune function, and cell growth. It acts as an antioxidant, helping to protect cells from damage caused by free radicals.

According to the medical definition, beta-carotene is a provitamin A carotenoid that is converted into vitamin A in the body. It has a variety of health benefits, including supporting eye health, boosting the immune system, and reducing the risk of certain types of cancer. However, it is important to note that excessive consumption of beta-carotene supplements can lead to a condition called carotenemia, which causes the skin to turn yellow or orange.

Sodium-coupled vitamin C transporters, also known as SVCTs, are a type of membrane transport protein responsible for the active transport of vitamin C (ascorbic acid) into cells. There are two types of sodium-coupled vitamin C transporters, SVCT1 and SVCT2, which differ in their tissue distribution and function.

SVCT1 is primarily expressed in epithelial cells of the intestine and kidney, where it facilitates the absorption of vitamin C from food in the diet and reabsorption of vitamin C in the kidney. SVCT1 transports two sodium ions along with one molecule of vitamin C, using the energy generated by the sodium gradient to drive the uptake of vitamin C against its concentration gradient.

SVCT2, on the other hand, is widely expressed in various tissues, including the brain, eyes, and immune cells. It transports only one molecule of vitamin C at a time, without the need for sodium ions. SVCT2 plays a critical role in maintaining intracellular levels of vitamin C, particularly in tissues with high metabolic activity or high demand for vitamin C.

Overall, sodium-coupled vitamin C transporters are essential for the regulation of vitamin C homeostasis and play a crucial role in various physiological processes, including immune function, collagen synthesis, and antioxidant defense.

25-Hydroxyvitamin D3 1-alpha-Hydroxylase is an enzyme that is responsible for converting 25-hydroxyvitamin D3 (a precursor form of vitamin D) to its active form, 1,25-dihydroxyvitamin D3. This activation process occurs primarily in the kidneys and is tightly regulated by various factors such as calcium levels, parathyroid hormone, and vitamin D status.

The activated form of vitamin D, 1,25-dihydroxyvitamin D3, plays a crucial role in maintaining calcium homeostasis by increasing the absorption of calcium from the gut and promoting bone health. It also has various other functions, including modulation of immune function, cell growth regulation, and protection against cancer.

Deficiencies in 25-Hydroxyvitamin D3 1-alpha-Hydroxylase can lead to vitamin D deficiency and its associated symptoms, such as osteomalacia (softening of the bones) and osteoporosis (brittle bones). Conversely, overactivity of this enzyme can result in hypercalcemia (elevated levels of calcium in the blood), which can cause a range of symptoms including kidney stones, abdominal pain, nausea, and vomiting.

Vitamin K epoxide reductases (VKORs) are enzymes that play a crucial role in the vitamin K cycle, which is essential for the post-translational modification of certain proteins involved in blood coagulation and bone metabolism. Specifically, VKORs reduce vitamin K epoxide back to its active form, vitamin K hydroquinone, allowing it to participate in the carboxylation of these proteins.

The most well-known member of this enzyme family is VKORC1 (Vitamin K Epoxide Reductase Complex Subunit 1), which is the target of the anticoagulant drug warfarin. Warfarin inhibits VKORC1, preventing the reduction of vitamin K epoxide and thereby interfering with the carboxylation of coagulation factors II, VII, IX, and X, as well as proteins C and S. This leads to the production of functionally inactive forms of these proteins and results in the anticoagulant effect of warfarin.

Hydroxycholecalciferols are metabolites of vitamin D that are formed in the liver and kidneys. They are important for maintaining calcium homeostasis in the body by promoting the absorption of calcium from the gut and reabsorption of calcium from the kidneys.

The two main forms of hydroxycholecalciferols are 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D). 25-hydroxyvitamin D is the major circulating form of vitamin D in the body and is used as a clinical measure of vitamin D status. It is converted to 1,25-dihydroxyvitamin D in the kidneys by the enzyme 1α-hydroxylase, which is activated in response to low serum calcium or high phosphate levels.

1,25-dihydroxyvitamin D is the biologically active form of vitamin D and plays a critical role in regulating calcium homeostasis by increasing intestinal calcium absorption and promoting bone health. Deficiency in hydroxycholecalciferols can lead to rickets in children and osteomalacia or osteoporosis in adults, characterized by weakened bones and increased risk of fractures.

Homocysteine is an amino acid that is formed in the body during the metabolism of another amino acid called methionine. It's an important intermediate in various biochemical reactions, including the synthesis of proteins, neurotransmitters, and other molecules. However, elevated levels of homocysteine in the blood (a condition known as hyperhomocysteinemia) have been linked to several health issues, such as cardiovascular disease, stroke, and cognitive decline.

Homocysteine can be converted back to methionine with the help of vitamin B12 and a cofactor called betaine, or it can be converted to another amino acid called cystathionine with the help of vitamin B6 and folate (vitamin B9). Imbalances in these vitamins and other factors can lead to an increase in homocysteine levels.

It is crucial to maintain normal homocysteine levels for overall health, as high levels may contribute to the development of various diseases. Regular monitoring and maintaining a balanced diet rich in folate, vitamin B6, and vitamin B12 can help regulate homocysteine levels and reduce the risk of related health issues.

Transcobalamins are a group of proteins in the human body that are responsible for the transport of vitamin B12, also known as cobalamin. There are three main types of transcobalamins:

1. Transcobalamin I (also known as haptocorrin or R-binders): This is a protein produced in various tissues, including the salivary glands and gastric mucosa. It binds to vitamin B12 in the stomach and protects it from degradation by digestive enzymes. However, this form of vitamin B12 is not available for absorption and must be converted to other forms.

2. Transcobalamin II: This is a protein produced mainly in the kidneys and intestines. It binds to vitamin B12 that has been freed from its binding proteins in the stomach and facilitates its absorption in the intestine. Once absorbed, transcobalamin II transports vitamin B12 to tissues throughout the body.

3. Transcobalamin III (also known as intrinsic factor): This is a protein produced by the parietal cells of the stomach. It binds to vitamin B12 and protects it from degradation in the acidic environment of the stomach. Intrinsic factor is essential for the absorption of vitamin B12 in the intestine, as it facilitates its transport across the intestinal wall.

Deficiencies in transcobalamins can lead to vitamin B12 deficiency, which can result in a range of health problems, including anemia, fatigue, neurological symptoms, and developmental delays in children.

Tocopherols are a group of fat-soluble compounds that occur naturally in vegetable oils, nuts, and some fruits and vegetables. They are known for their antioxidant properties and are often referred to as "vitamin E." The term "tocopherol" is derived from the Greek words "tokos," meaning childbirth, and "pherein," meaning to bear, reflecting the historical observation that consumption of certain foods during pregnancy seemed to prevent fetal death and spontaneous abortion.

There are four major forms of tocopherols: alpha, beta, gamma, and delta. Alpha-tocopherol is the most biologically active form and is the one most commonly found in supplements. Tocopherols play a crucial role in protecting cell membranes from damage caused by free radicals, which are unstable molecules that can harm cells and contribute to aging and diseases such as cancer and heart disease. They also help to maintain the integrity of the skin and mucous membranes, support immune function, and have been shown to have anti-inflammatory effects.

Nutritional requirements refer to the necessary amount of nutrients, including macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals), that an individual requires to maintain good health, support normal growth and development, and promote optimal bodily functions. These requirements vary based on factors such as age, sex, body size, pregnancy status, and physical activity level. Meeting one's nutritional requirements typically involves consuming a balanced and varied diet, with additional consideration given to any specific dietary restrictions or medical conditions that may influence nutrient needs.

"Fortified food" is a term used in the context of nutrition and dietary guidelines. It refers to a food product that has had nutrients added to it during manufacturing to enhance its nutritional value. These added nutrients can include vitamins, minerals, proteins, or other beneficial components. The goal of fortifying foods is often to address specific nutrient deficiencies in populations or to improve the overall nutritional quality of a food product. Examples of fortified foods include certain breakfast cereals that have added vitamins and minerals, as well as plant-based milk alternatives that are fortified with calcium and vitamin D to mimic the nutritional profile of cow's milk. It is important to note that while fortified foods can be a valuable source of essential nutrients, they should not replace whole, unprocessed foods in a balanced diet.

25-Hydroxyvitamin D 2 (25(OH)D2) is a form of vitamin D that is produced in the body as a result of the metabolism of ergocalciferol, also known as vitamin D2. Vitamin D2 is found in some plant-based foods and is sometimes used as a dietary supplement.

When vitamin D2 is ingested or absorbed through the skin after exposure to sunlight, it is converted in the liver to 25(OH)D2. This form of vitamin D is then further metabolized in the kidneys to the active form of vitamin D, calcitriol (1,25-dihydroxyvitamin D).

Like other forms of vitamin D, 25(OH)D2 is important for maintaining healthy bones and muscles by regulating the absorption of calcium and phosphorus from the diet. It may also have other health benefits, such as reducing the risk of certain cancers and autoimmune disorders.

It's worth noting that 25-Hydroxyvitamin D2 is not usually measured in clinical settings, as it is converted to 25-Hydroxyvitamin D3 (25(OH)D3) in the body, and total 25(OH)D (which includes both 25(OH)D2 and 25(OH)D3) is typically measured to assess vitamin D status.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Methylmalonic acid (MMA) is an organic compound that is produced in the human body during the metabolism of certain amino acids, including methionine and threonine. It is a type of fatty acid that is intermediate in the breakdown of these amino acids in the liver and other tissues.

Under normal circumstances, MMA is quickly converted to succinic acid, which is then used in the Krebs cycle to generate energy in the form of ATP. However, when there are deficiencies or mutations in enzymes involved in this metabolic pathway, such as methylmalonyl-CoA mutase, MMA can accumulate in the body and cause methylmalonic acidemia, a rare genetic disorder that affects approximately 1 in every 50,000 to 100,000 individuals worldwide.

Elevated levels of MMA in the blood or urine can be indicative of various metabolic disorders, including methylmalonic acidemia, vitamin B12 deficiency, and renal insufficiency. Therefore, measuring MMA levels is often used as a diagnostic tool to help identify and manage these conditions.

A Vitamin D Response Element (VDRE) is a specific sequence in the DNA to which the vitamin D receptor (VDR) binds, upon activation by its ligand, vitamin D or one of its metabolites. This binding results in the regulation of gene transcription and subsequent protein synthesis. VDREs are typically located in the promoter region of genes that are involved in calcium homeostasis, cell growth and differentiation, immune function, and other processes. The interaction between VDR and VDRE plays a crucial role in the genomic actions of vitamin D.

Carbon-carbon ligases are a type of enzyme that catalyze the formation of carbon-carbon bonds between two molecules. These enzymes play important roles in various biological processes, including the biosynthesis of natural products and the metabolism of carbohydrates and lipids.

Carbon-carbon ligases can be classified into several categories based on the type of reaction they catalyze. For example, aldolases catalyze the condensation of an aldehyde or ketone with another molecule to form a new carbon-carbon bond and a new carbonyl group. Other examples include the polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), which are large multienzyme complexes that catalyze the sequential addition of activated carbon units to form complex natural products.

Carbon-carbon ligases are important targets for drug discovery and development, as they play critical roles in the biosynthesis of many disease-relevant molecules. Inhibitors of these enzymes have shown promise as potential therapeutic agents for a variety of diseases, including cancer, infectious diseases, and metabolic disorders.

Dihydroxycholecalciferols are a form of calcifediol, which is a type of secosteroid hormone that is produced in the body as a result of the exposure to sunlight and the dietary intake of vitamin D. The term "dihydroxycholecalciferols" specifically refers to the compounds 1,25-dihydroxycholecalciferol (calcitriol) and 24,25-dihydroxycholecalciferol. These compounds are produced in the body through a series of chemical reactions involving enzymes that convert vitamin D into its active forms.

Calcitriol is the biologically active form of vitamin D and plays an important role in regulating the levels of calcium and phosphorus in the blood, as well as promoting the absorption of these minerals from the gut. It also has other functions, such as modulating cell growth and immune function.

24,25-dihydroxycholecalciferol is a less active form of vitamin D that is produced in larger quantities than calcitriol. Its exact role in the body is not well understood, but it is thought to have some effects on calcium metabolism and may play a role in regulating the levels of other hormones in the body.

Dihydroxycholecalciferols are typically measured in the blood as part of an evaluation for vitamin D deficiency or to monitor treatment with vitamin D supplements. Low levels of these compounds can indicate a deficiency, while high levels may indicate excessive intake or impaired metabolism.

Carotenoids are a class of pigments that are naturally occurring in various plants and fruits. They are responsible for the vibrant colors of many vegetables and fruits, such as carrots, pumpkins, tomatoes, and leafy greens. There are over 600 different types of carotenoids, with beta-carotene, alpha-carotene, lycopene, lutein, and zeaxanthin being some of the most well-known.

Carotenoids have antioxidant properties, which means they can help protect the body's cells from damage caused by free radicals. Some carotenoids, such as beta-carotene, can be converted into vitamin A in the body, which is important for maintaining healthy vision, skin, and immune function. Other carotenoids, such as lycopene and lutein, have been studied for their potential role in preventing chronic diseases, including cancer and heart disease.

In addition to being found in plant-based foods, carotenoids can also be taken as dietary supplements. However, it is generally recommended to obtain nutrients from whole foods rather than supplements whenever possible, as food provides a variety of other beneficial compounds that work together to support health.

Dietary calcium is a type of calcium that is obtained through food sources. Calcium is an essential mineral that is necessary for many bodily functions, including bone formation and maintenance, muscle contraction, nerve impulse transmission, and blood clotting.

The recommended daily intake of dietary calcium varies depending on age, sex, and other factors. For example, the recommended daily intake for adults aged 19-50 is 1000 mg, while women over 50 and men over 70 require 1200 mg per day.

Good dietary sources of calcium include dairy products such as milk, cheese, and yogurt; leafy green vegetables like broccoli and kale; fortified cereals and juices; and certain types of fish, such as salmon and sardines. It is important to note that some foods can inhibit the absorption of calcium, including oxalates found in spinach and rhubarb, and phytates found in whole grains and legumes.

If a person is unable to get enough calcium through their diet, they may need to take calcium supplements. However, it is important to talk to a healthcare provider before starting any new supplement regimen, as excessive intake of calcium can lead to negative health effects.

Riboflavin, also known as vitamin B2, is a water-soluble vitamin that plays a crucial role in energy production and cellular function, growth, and development. It is essential for the metabolism of carbohydrates, fats, and proteins, and it helps to maintain healthy skin, hair, and nails. Riboflavin is involved in the production of energy by acting as a coenzyme in various redox reactions. It also contributes to the maintenance of the mucous membranes of the digestive tract and promotes iron absorption.

Riboflavin can be found in a variety of foods, including milk, cheese, leafy green vegetables, liver, kidneys, legumes, yeast, mushrooms, and almonds. It is sensitive to light and heat, so exposure to these elements can lead to its degradation and loss of vitamin activity.

Deficiency in riboflavin is rare but can occur in individuals with poor dietary intake or malabsorption disorders. Symptoms of riboflavin deficiency include inflammation of the mouth and tongue, anemia, skin disorders, and neurological symptoms such as confusion and mood changes. Riboflavin supplements are available for those who have difficulty meeting their daily requirements through diet alone.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Xerophthalmia is a medical condition characterized by dryness of the conjunctiva and cornea due to vitamin A deficiency. It can lead to eye damage, including night blindness (nyctalopia) and, if left untreated, potentially irreversible blindness. Xerophthalmia is often associated with malnutrition and affects children in low-income countries disproportionately.

Hypervitaminosis A is a condition that results from excessive consumption or accumulation of Vitamin A in the body beyond its storage capacity. This can occur due to ingesting large amounts of animal-derived vitamin A sources (like liver and fish liver oil) or through excessive intake of synthetic retinoids found in supplements.

Clinical symptoms of hypervitaminosis A include nausea, dizziness, headaches, skin irritation, joint pain, hair loss, and, in severe cases, liver damage, bone abnormalities, and neurological issues. It's important to note that unlike fat-soluble vitamin D, vitamin E, or K, vitamin A is not needed in as high quantities by the human body, making it easier to reach toxic levels.

However, it's worth noting that while excessive intake of preformed vitamin A can lead to hypervitaminosis A, consuming an excess of provitamin A carotenoids (found abundantly in fruits and vegetables) does not pose the same risk because the body converts these compounds into active vitamin A only as needed.

24,25-Dihydroxyvitamin D3 is a metabolite of vitamin D3, also known as calcitriol. It is formed in the body through the hydroxylation of vitamin D3 by the enzyme 25-hydroxyvitamin D3 1-alpha-hydroxylase, which is primarily found in the kidneys.

24,25-Dihydroxyvitamin D3 plays a role in regulating calcium and phosphate metabolism, but its functions are not as well understood as those of other vitamin D metabolites. Some studies have suggested that it may have anti-inflammatory effects and may be involved in the regulation of cell growth and differentiation. However, more research is needed to fully understand the physiological role of this compound.

It's important to note that 24,25-Dihydroxyvitamin D3 is not typically used as a therapeutic agent, and its levels in the body are not routinely measured in clinical practice.

Pyridoxic acid is the major metabolite of pyridoxine (vitamin B6) in the human body. It is the end product of vitamin B6 catabolism and is excreted in the urine. Pyridoxic acid is formed in the liver by the oxidation of 4-pyridoxic acid, which is a metabolic intermediate in the conversion of pyridoxal 5'-phosphate (the active form of vitamin B6) to 4-pyridoxic acid. Pyridoxic acid has no known coenzyme activity and serves as a marker for vitamin B6 status in the body.

Thiamine, also known as vitamin B1, is a water-soluble vitamin that plays a crucial role in certain metabolic reactions, particularly in the conversion of carbohydrates into energy in the body. It is essential for the proper functioning of the heart, nerves, and digestive system. Thiamine acts as a cofactor for enzymes involved in the synthesis of neurotransmitters and the metabolism of carbohydrates, lipids, and proteins. Deficiency in thiamine can lead to serious health complications, such as beriberi (a disease characterized by peripheral neuropathy, muscle wasting, and heart failure) and Wernicke-Korsakoff syndrome (a neurological disorder often seen in alcoholics due to chronic thiamine deficiency). Thiamine is found in various foods, including whole grains, legumes, pork, beef, and fortified foods.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Folic Acid Deficiency is a condition characterized by insufficient levels of folic acid (Vitamin B9) in the body. Folic acid plays an essential role in the synthesis of DNA and RNA, the production of red blood cells, and the prevention of neural tube defects during fetal development.

A deficiency in folic acid can lead to a variety of health issues, including:
- Megaloblastic anemia: A type of anemia characterized by large, structurally abnormal, immature red blood cells (megaloblasts) that are unable to function properly. This results in fatigue, weakness, shortness of breath, and a pale appearance.
- Neural tube defects: In pregnant women, folic acid deficiency can increase the risk of neural tube defects, such as spina bifida and anencephaly, in the developing fetus.
- Developmental delays and neurological disorders: In infants and children, folic acid deficiency during pregnancy can lead to developmental delays, learning difficulties, and neurological disorders.
- Increased risk of cardiovascular disease: Folate plays a role in maintaining healthy homocysteine levels. Deficiency can result in elevated homocysteine levels, which is an independent risk factor for cardiovascular disease.

Folic acid deficiency can be caused by various factors, including poor dietary intake, malabsorption syndromes (such as celiac disease or Crohn's disease), pregnancy, alcoholism, certain medications (like methotrexate and phenytoin), and genetic disorders affecting folate metabolism. To prevent or treat folic acid deficiency, dietary supplementation with folic acid is often recommended, especially for pregnant women and individuals at risk of deficiency.

The double-blind method is a study design commonly used in research, including clinical trials, to minimize bias and ensure the objectivity of results. In this approach, both the participants and the researchers are unaware of which group the participants are assigned to, whether it be the experimental group or the control group. This means that neither the participants nor the researchers know who is receiving a particular treatment or placebo, thus reducing the potential for bias in the evaluation of outcomes. The assignment of participants to groups is typically done by a third party not involved in the study, and the codes are only revealed after all data have been collected and analyzed.

In the context of nutrition and health, minerals are inorganic elements that are essential for various bodily functions, such as nerve impulse transmission, muscle contraction, maintaining fluid and electrolyte balance, and bone structure. They are required in small amounts compared to macronutrients (carbohydrates, proteins, and fats) and are obtained from food and water.

Some of the major minerals include calcium, phosphorus, magnesium, sodium, potassium, and chloride, while trace minerals or microminerals are required in even smaller amounts and include iron, zinc, copper, manganese, iodine, selenium, and fluoride.

It's worth noting that the term "minerals" can also refer to geological substances found in the earth, but in medical terminology, it specifically refers to the essential inorganic elements required for human health.

Cobalt isotopes are variants of the chemical element Cobalt (Co) that have different numbers of neutrons in their atomic nuclei. This results in the different isotopes having slightly different masses and varying levels of stability.

The most naturally occurring stable cobalt isotope is Co-59, which contains 27 neutrons in its nucleus. However, there are also several radioactive isotopes of cobalt, including Co-60, which is a commonly used medical and industrial radioisotope.

Co-60 has 30 neutrons in its nucleus and undergoes beta decay, emitting gamma rays and becoming Nickel-60. It has a half-life of approximately 5.27 years, making it useful for a variety of applications, including cancer treatment, industrial radiography, and sterilization of medical equipment.

Other radioactive isotopes of cobalt include Co-57, which has a half-life of 271.8 days and is used in medical imaging, and Co-56, which has a half-life of just 77.2 seconds and is used in research.

Retinol-binding proteins (RBPs) are specialized transport proteins that bind and carry retinol (vitamin A alcohol) in the bloodstream. The most well-known and studied RBP is serum retinol-binding protein 4 (RBP4), which is primarily produced in the liver and circulates in the bloodstream.

RBP4 plays a crucial role in delivering retinol to target tissues, where it gets converted into active forms of vitamin A, such as retinal and retinoic acid, which are essential for various physiological functions, including vision, immune response, cell growth, and differentiation. RBP4 binds to retinol in a 1:1 molar ratio, forming a complex that is stable and soluble in the bloodstream.

Additionally, RBP4 has been identified as an adipokine, a protein hormone produced by adipose tissue, and has been associated with insulin resistance, metabolic syndrome, and type 2 diabetes. However, the precise mechanisms through which RBP4 contributes to these conditions are not yet fully understood.

Micronutrients are essential nutrients that our body requires in small quantities to support various bodily functions, such as growth, development, and overall health. They include vitamins and minerals, which are vital for the production of hormones, enzymes, and other substances necessary for optimal health.

Unlike macronutrients (carbohydrates, proteins, and fats), micronutrients do not provide energy or calories but play a crucial role in maintaining the balance and functioning of our body systems. They support immune function, bone health, wound healing, eyesight, skin health, and reproductive processes, among other functions.

Examples of micronutrients include vitamins A, C, D, E, and K, as well as minerals like calcium, iron, magnesium, zinc, and iodine. While our bodies need only small amounts of these nutrients, deficiencies in any of them can lead to serious health problems over time. Therefore, it's essential to consume a balanced and varied diet that includes adequate amounts of micronutrients to support overall health and well-being.

Selenium is a trace element that is essential for the proper functioning of the human body. According to the medical definitions provided by the National Institutes of Health (NIH), selenium is a component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defense systems, and immune function.

Selenium is found in a variety of foods, including nuts (particularly Brazil nuts), cereals, fish, and meat. It exists in several forms, with selenomethionine being the most common form found in food. Other forms include selenocysteine, which is incorporated into proteins, and selenite and selenate, which are inorganic forms of selenium.

The recommended dietary allowance (RDA) for selenium is 55 micrograms per day for adults. While selenium deficiency is rare, chronic selenium deficiency can lead to conditions such as Keshan disease, a type of cardiomyopathy, and Kaschin-Beck disease, which affects the bones and joints.

It's important to note that while selenium is essential for health, excessive intake can be harmful. High levels of selenium can cause symptoms such as nausea, vomiting, hair loss, and neurological damage. The tolerable upper intake level (UL) for selenium is 400 micrograms per day for adults.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Nutrition policy refers to a set of guidelines, regulations, or laws established by governmental or organizational bodies to promote healthy eating habits and reduce the risk of diet-related chronic diseases. These policies aim to create an environment that supports and encourages individuals to make healthier food choices. Nutrition policies can cover various aspects such as food labeling, nutrition education, food safety, agricultural practices, and access to affordable and nutritious foods. They may also address issues related to marketing and advertising of unhealthy food products, particularly to children. The ultimate goal of nutrition policy is to improve public health by creating a food environment that supports optimal nutrition and well-being.

Cholestanetriol 26-monooxygenase is an enzyme that is involved in the metabolism of bile acids and steroids in the body. This enzyme is responsible for adding a hydroxyl group (-OH) to the cholestanetriol molecule at position 26, which is a critical step in the conversion of cholestanetriol to bile acids.

The gene that encodes this enzyme is called CYP3A4, which is located on chromosome 7 in humans. Mutations in this gene can lead to various metabolic disorders, including impaired bile acid synthesis and altered steroid hormone metabolism.

Deficiency or dysfunction of cholestanetriol 26-monooxygenase has been associated with several diseases, such as liver disease, cerebrotendinous xanthomatosis, and some forms of cancer. Therefore, understanding the function and regulation of this enzyme is essential for developing new therapies and treatments for these conditions.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Pyridoxal is a form of vitamin B6, specifically the alcohol form of pyridoxine. It is a cofactor for many enzymes involved in protein metabolism and synthesis of neurotransmitters. Pyridoxal can be converted to its active form, pyridoxal 5'-phosphate (PLP), which serves as a coenzyme in various biochemical reactions, including transamination, decarboxylation, and racemization/elimination reactions. Deficiency in vitamin B6 can lead to neurological disorders and impaired synthesis of amino acids and neurotransmitters.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Osteomalacia is a medical condition characterized by the softening of bones due to defective bone mineralization, resulting from inadequate vitamin D, phosphate, or calcium. It mainly affects adults and is different from rickets, which occurs in children. The primary symptom is bone pain, but muscle weakness can also occur. Prolonged osteomalacia may lead to skeletal deformities and an increased risk of fractures. Treatment typically involves supplementation with vitamin D, calcium, and sometimes phosphate.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Oral administration is a route of giving medications or other substances by mouth. This can be in the form of tablets, capsules, liquids, pastes, or other forms that can be swallowed. Once ingested, the substance is absorbed through the gastrointestinal tract and enters the bloodstream to reach its intended target site in the body. Oral administration is a common and convenient route of medication delivery, but it may not be appropriate for all substances or in certain situations, such as when rapid onset of action is required or when the patient has difficulty swallowing.

Gamma-tocopherol is a form of vitamin E that is found in various plant seeds and oils. It is one of several types of tocopherols, which are fat-soluble antioxidants that help protect the body's cells from damage caused by free radicals. Gamma-tocopherol has been studied for its potential health benefits, including its ability to reduce inflammation and protect against certain diseases such as cancer and heart disease. However, more research is needed to fully understand its effects on human health.

Lipid peroxidation is a process in which free radicals, such as reactive oxygen species (ROS), steal electrons from lipids containing carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). This results in the formation of lipid hydroperoxides, which can decompose to form a variety of compounds including reactive carbonyl compounds, aldehydes, and ketones.

Malondialdehyde (MDA) is one such compound that is commonly used as a marker for lipid peroxidation. Lipid peroxidation can cause damage to cell membranes, leading to changes in their fluidity and permeability, and can also result in the modification of proteins and DNA, contributing to cellular dysfunction and ultimately cell death. It is associated with various pathological conditions such as atherosclerosis, neurodegenerative diseases, and cancer.

Bone density conservation agents, also known as anti-resorptive agents or bone-sparing drugs, are a class of medications that help to prevent the loss of bone mass and reduce the risk of fractures. They work by inhibiting the activity of osteoclasts, the cells responsible for breaking down and reabsorbing bone tissue during the natural remodeling process.

Examples of bone density conservation agents include:

1. Bisphosphonates (e.g., alendronate, risedronate, ibandronate, zoledronic acid) - These are the most commonly prescribed class of bone density conservation agents. They bind to hydroxyapatite crystals in bone tissue and inhibit osteoclast activity, thereby reducing bone resorption.
2. Denosumab (Prolia) - This is a monoclonal antibody that targets RANKL (Receptor Activator of Nuclear Factor-κB Ligand), a key signaling molecule involved in osteoclast differentiation and activation. By inhibiting RANKL, denosumab reduces osteoclast activity and bone resorption.
3. Selective estrogen receptor modulators (SERMs) (e.g., raloxifene) - These medications act as estrogen agonists or antagonists in different tissues. In bone tissue, SERMs mimic the bone-preserving effects of estrogen by inhibiting osteoclast activity and reducing bone resorption.
4. Hormone replacement therapy (HRT) - Estrogen hormone replacement therapy has been shown to preserve bone density in postmenopausal women; however, its use is limited due to increased risks of breast cancer, cardiovascular disease, and thromboembolic events.
5. Calcitonin - This hormone, secreted by the thyroid gland, inhibits osteoclast activity and reduces bone resorption. However, it has largely been replaced by other more effective bone density conservation agents.

These medications are often prescribed for individuals at high risk of fractures due to conditions such as osteoporosis or metabolic disorders that affect bone health. It is essential to follow the recommended dosage and administration guidelines to maximize their benefits while minimizing potential side effects. Regular monitoring of bone density, blood calcium levels, and other relevant parameters is also necessary during treatment with these medications.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

Tocotrienols are a subtype of tocopherols, which are both forms of vitamin E. Vitamin E is a fat-soluble antioxidant that plays a role in the protection of cell membranes from oxidative damage.

Tocotrienols differ from tocopherols in their chemical structure, specifically in the side chain attached to the chroman ring. Tocotrienols have an unsaturated isoprenoid side chain, while tocopherols have a saturated phytyl tail. This structural difference affects their bioavailability and distribution in the body, with tocotrienols being more readily absorbed and distributed to tissues than tocopherols.

Tocotrienols have been found to have potential health benefits, including neuroprotective, anti-inflammatory, and cholesterol-lowering effects. They are found in various plant-based foods such as cereal grains, nuts, and vegetable oils, particularly palm oil, rice bran oil, and annatto seeds.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

Osteocalcin is a protein that is produced by osteoblasts, which are the cells responsible for bone formation. It is one of the most abundant non-collagenous proteins found in bones and plays a crucial role in the regulation of bone metabolism. Osteocalcin contains a high affinity for calcium ions, making it essential for the mineralization of the bone matrix.

Once synthesized, osteocalcin is secreted into the extracellular matrix, where it binds to hydroxyapatite crystals, helping to regulate their growth and contributing to the overall strength and integrity of the bones. Osteocalcin also has been found to play a role in other physiological processes outside of bone metabolism, such as modulating insulin sensitivity, energy metabolism, and male fertility.

In summary, osteocalcin is a protein produced by osteoblasts that plays a critical role in bone formation, mineralization, and turnover, and has been implicated in various other physiological processes.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Tretinoin is a form of vitamin A that is used in the treatment of acne vulgaris, fine wrinkles, and dark spots caused by aging or sun damage. It works by increasing the turnover of skin cells, helping to unclog pores and promote the growth of new skin cells. Tretinoin is available as a cream, gel, or liquid, and is usually applied to the affected area once a day in the evening. Common side effects include redness, dryness, and peeling of the skin. It is important to avoid sunlight and use sunscreen while using tretinoin, as it can make the skin more sensitive to the sun.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Pantothenic Acid, also known as Vitamin B5, is a water-soluble vitamin that plays a vital role in the metabolism of proteins, carbohydrates, and fats. It is essential for the synthesis of coenzyme A (CoA), which is involved in various biochemical reactions in the body, including energy production, fatty acid synthesis, and cholesterol metabolism.

Pantothenic Acid is widely distributed in foods, including meat, poultry, fish, whole grains, legumes, and vegetables. Deficiency of this vitamin is rare but can lead to symptoms such as fatigue, irritability, sleep disturbances, muscle cramps, and gastrointestinal problems.

In addition to its role in metabolism, Pantothenic Acid also has potential benefits for wound healing, reducing inflammation, and supporting the immune system.

Retinol-binding proteins (RBPs) are a group of transport proteins found in plasma that bind and carry retinol (vitamin A alcohol) in the bloodstream. The major form of RBP in humans is known as RBP4, which is synthesized primarily in the liver and secreted into the bloodstream bound to retinol.

RBP4 plays a critical role in delivering retinol from the liver to peripheral tissues, where it is converted to retinal and then to retinoic acid, which are essential for various physiological functions such as vision, immune response, and cell differentiation. RBP4 is also considered a potential biomarker for insulin resistance and metabolic syndrome.

In summary, Retinol-Binding Proteins, Plasma refer to the proteins in the blood that bind and transport retinol (vitamin A alcohol) to peripheral tissues for further metabolism and physiological functions.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Hyperhomocysteinemia is a medical condition characterized by an excessively high level of homocysteine, an amino acid, in the blood. Generally, a level of 15 micromoles per liter (μmol/L) or higher is considered elevated.

Homocysteine is a byproduct of methionine metabolism, an essential amino acid obtained from dietary proteins. Normally, homocysteine gets converted back to methionine with the help of vitamin B12 and folate (vitamin B9), or it can be converted to another amino acid, cysteine, with the aid of vitamin B6.

Hyperhomocysteinemia can occur due to genetic defects in these enzymes, nutritional deficiencies of vitamins B12, B6, or folate, renal insufficiency, or aging. High homocysteine levels are associated with increased risks of cardiovascular diseases, including atherosclerosis, thrombosis, and stroke. It may also contribute to neurodegenerative disorders like Alzheimer's disease and cognitive decline.

It is essential to diagnose and manage hyperhomocysteinemia early to prevent potential complications. Treatment typically involves dietary modifications, supplementation of the deficient vitamins, and, in some cases, medication.

Human milk, also known as breast milk, is the nutrient-rich fluid produced by the human female mammary glands to feed and nourish their infants. It is the natural and species-specific first food for human babies, providing all the necessary nutrients in a form that is easily digestible and absorbed. Human milk contains a balance of proteins, carbohydrates, fats, vitamins, minerals, and other bioactive components that support the growth, development, and immunity of newborns and young infants. Its composition changes over time, adapting to meet the changing needs of the growing infant.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Pernicious anemia is a specific type of vitamin B12 deficiency anemia that is caused by a lack of intrinsic factor, a protein made in the stomach that is needed to absorb vitamin B12. The absence of intrinsic factor leads to poor absorption of vitamin B12 from food and results in its deficiency.

Vitamin B12 is essential for the production of healthy red blood cells, which carry oxygen throughout the body. Without enough vitamin B12, the body cannot produce enough red blood cells, leading to anemia. Pernicious anemia typically develops slowly over several years and can cause symptoms such as fatigue, weakness, pale skin, shortness of breath, and a decreased appetite.

Pernicious anemia is an autoimmune disorder, which means that the body's immune system mistakenly attacks healthy cells in the stomach lining, leading to a loss of intrinsic factor production. It is more common in older adults, particularly those over 60 years old, and can also be associated with other autoimmune disorders such as type 1 diabetes, Hashimoto's thyroiditis, and Addison's disease.

Treatment for pernicious anemia typically involves vitamin B12 replacement therapy, either through oral supplements or injections of the vitamin. In some cases, dietary changes may also be recommended to ensure adequate intake of vitamin B12-rich foods such as meat, fish, poultry, and dairy products.

Biological availability is a term used in pharmacology and toxicology that refers to the degree and rate at which a drug or other substance is absorbed into the bloodstream and becomes available at the site of action in the body. It is a measure of the amount of the substance that reaches the systemic circulation unchanged, after administration by any route (such as oral, intravenous, etc.).

The biological availability (F) of a drug can be calculated using the area under the curve (AUC) of the plasma concentration-time profile after extravascular and intravenous dosing, according to the following formula:

F = (AUCex/AUCiv) x (Doseiv/Doseex)

where AUCex is the AUC after extravascular dosing, AUCiv is the AUC after intravenous dosing, Doseiv is the intravenous dose, and Doseex is the extravascular dose.

Biological availability is an important consideration in drug development and therapy, as it can affect the drug's efficacy, safety, and dosage regimen. Drugs with low biological availability may require higher doses to achieve the desired therapeutic effect, while drugs with high biological availability may have a more rapid onset of action and require lower doses to avoid toxicity.

Dehydroascorbic acid (DHAA) is the oxidized form of ascorbic acid, which is more commonly known as vitamin C. It is the oxidation product of ascorbic acid that is formed when the vitamin C molecule loses two electrons and two protons. This conversion can occur naturally in the body or during the processing and storage of food.

DHAA still retains some vitamin C activity, but it is not as biologically active as ascorbic acid. However, DHAA can be reduced back to ascorbic acid in the body by certain enzymes, which allows it to still contribute to maintaining proper levels of this essential nutrient.

DHAA plays a role in various physiological processes, including collagen synthesis, immune function, and antioxidant defense. It is also involved in the metabolism of amino acids, carbohydrates, and lipids. A deficiency in vitamin C can lead to scurvy, a condition characterized by fatigue, joint pain, anemia, and skin changes.

L-Gulonolactone oxidase is a human gene that encodes for the enzyme L-gulonolactone oxidase, which is involved in the synthesis of ascorbic acid (vitamin C) in many animals. However, this gene is believed to be nonfunctional in humans due to multiple mutations, and therefore, humans are unable to synthesize vitamin C endogenously. Instead, humans must obtain vitamin C through their diet.

Malabsorption syndromes refer to a group of disorders in which the small intestine is unable to properly absorb nutrients from food, leading to various gastrointestinal and systemic symptoms. This can result from a variety of underlying conditions, including:

1. Mucosal damage: Conditions such as celiac disease, inflammatory bowel disease (IBD), or bacterial overgrowth that cause damage to the lining of the small intestine, impairing nutrient absorption.
2. Pancreatic insufficiency: A lack of digestive enzymes produced by the pancreas can lead to poor breakdown and absorption of fats, proteins, and carbohydrates. Examples include chronic pancreatitis or cystic fibrosis.
3. Bile acid deficiency: Insufficient bile acids, which are necessary for fat emulsification and absorption, can result in steatorrhea (fatty stools) and malabsorption. This may occur due to liver dysfunction, gallbladder removal, or ileal resection.
4. Motility disorders: Abnormalities in small intestine motility can affect nutrient absorption, as seen in conditions like gastroparesis, intestinal pseudo-obstruction, or scleroderma.
5. Structural abnormalities: Congenital or acquired structural defects of the small intestine, such as short bowel syndrome, may lead to malabsorption.
6. Infections: Certain bacterial, viral, or parasitic infections can cause transient malabsorption by damaging the intestinal mucosa or altering gut flora.

Symptoms of malabsorption syndromes may include diarrhea, steatorrhea, bloating, abdominal cramps, weight loss, and nutrient deficiencies. Diagnosis typically involves a combination of clinical evaluation, laboratory tests, radiologic imaging, and sometimes endoscopic procedures to identify the underlying cause. Treatment is focused on addressing the specific etiology and providing supportive care to manage symptoms and prevent complications.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

A nutrition survey is not a medical term per se, but it is a research method used in the field of nutrition and public health. Here's a definition:

A nutrition survey is a study design that systematically collects and analyzes data on dietary intake, nutritional status, and related factors from a defined population or sample. It aims to describe the nutritional situation, identify nutritional problems, and monitor trends in a population over time. Nutrition surveys can be cross-sectional, longitudinal, or community-based and may involve various data collection methods such as interviews, questionnaires, observations, physical measurements, and biological samples. The results of nutrition surveys are used to inform nutrition policies, programs, and interventions aimed at improving the nutritional status and health outcomes of populations.

Scurvy is a medical condition caused by a deficiency of vitamin C (ascorbic acid) in the diet, which leads to the breakdown of collagen. This results in various symptoms such as anemia, gum disease, and skin hemorrhages. In severe cases, it can lead to death. It was prevalent among sailors during long voyages before the 18th century when fresh fruits and vegetables were not available, and the condition was eventually linked to the lack of vitamin C in their diet. Nowadays, scurvy is rare in developed countries but can still occur in individuals with extreme diets deficient in vitamin C.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

The Intrinsic Factor is a glycoprotein secreted by the parietal cells in the stomach lining. It plays an essential role in the absorption of vitamin B12 (cobalamin) in the small intestine. After binding with vitamin B12, the intrinsic factor-vitamin B12 complex moves through the digestive tract and gets absorbed in the ileum region of the small intestine. Deficiency in Intrinsic Factor can lead to Vitamin B12 deficiency disorders like pernicious anemia.

Osteoporosis is a systemic skeletal disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone architecture, leading to increased risk of fractures, particularly in the spine, wrist, and hip. It mainly affects older people, especially postmenopausal women, due to hormonal changes that reduce bone density. Osteoporosis can also be caused by certain medications, medical conditions, or lifestyle factors such as smoking, alcohol abuse, and a lack of calcium and vitamin D in the diet. The diagnosis is often made using bone mineral density testing, and treatment may include medication to slow bone loss, promote bone formation, and prevent fractures.

Lactation is the process by which milk is produced and secreted from the mammary glands of female mammals, including humans, for the nourishment of their young. This physiological function is initiated during pregnancy and continues until it is deliberately stopped or weaned off. The primary purpose of lactation is to provide essential nutrients, antibodies, and other bioactive components that support the growth, development, and immune system of newborns and infants.

The process of lactation involves several hormonal and physiological changes in a woman's body. During pregnancy, the hormones estrogen and progesterone stimulate the growth and development of the mammary glands. After childbirth, the levels of these hormones drop significantly, allowing another hormone called prolactin to take over. Prolactin is responsible for triggering the production of milk in the alveoli, which are tiny sacs within the breast tissue.

Another hormone, oxytocin, plays a crucial role in the release or "let-down" of milk from the alveoli to the nipple during lactation. This reflex is initiated by suckling or thinking about the baby, which sends signals to the brain to release oxytocin. The released oxytocin then binds to receptors in the mammary glands, causing the smooth muscles around the alveoli to contract and push out the milk through the ducts and into the nipple.

Lactation is a complex and highly regulated process that ensures the optimal growth and development of newborns and infants. It provides not only essential nutrients but also various bioactive components, such as immunoglobulins, enzymes, and growth factors, which protect the infant from infections and support their immune system.

In summary, lactation is the physiological process by which milk is produced and secreted from the mammary glands of female mammals for the nourishment of their young. It involves hormonal changes, including the actions of prolactin, oxytocin, estrogen, and progesterone, to regulate the production, storage, and release of milk.

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

Cystathionine is a non-proteinogenic amino acid, which means that it is not used in the synthesis of proteins. It is an intermediate in the biosynthetic pathway that converts the amino acid methionine to cysteine in the body. This process involves the removal of a sulfur atom from methionine, resulting in the formation of cystathionine. Further breakdown of cystathionine leads to the production of cysteine and another amino acid called alpha-ketobutyrate.

Cystathionine plays a crucial role in the metabolism of certain sulfur-containing amino acids, and its levels are regulated by an enzyme called cystathionine beta-synthase (CBS). Genetic defects or deficiencies in this enzyme can result in a disorder known as homocystinuria, which is characterized by the accumulation of homocysteine and methionine in the body and an increased risk of various health complications.

In summary, cystathionine is a biologically important amino acid that functions as an intermediate in the conversion of methionine to cysteine, and its levels are tightly regulated by enzymatic processes in the body.

I'm sorry for any confusion, but "Nutritional Physiological Phenomena" is not a widely recognized or established medical term. It seems to be a very specific phrase that may refer to the physiological processes and phenomena related to nutrition.

Nutrition, in a medical context, refers to the process of providing or obtaining food necessary for health and growth. Physiological phenomena, on the other hand, refer to the functional manifestations of living organisms and their parts.

So, "Nutritional Physiological Phenomena" could hypothetically refer to the various physiological processes that occur in the body in relation to nutrition, such as digestion, absorption, metabolism, transportation, and storage of nutrients. However, I would recommend consulting the specific source or context where this term was used for a more accurate definition.

Retinoids are a class of chemical compounds that are derivatives of vitamin A. They are widely used in dermatology for the treatment of various skin conditions, including acne, psoriasis, and photoaging. Retinoids can help to reduce inflammation, improve skin texture and tone, and stimulate collagen production.

Retinoids work by binding to specific receptors in the skin cells, which triggers a series of biochemical reactions that regulate gene expression and promote cell differentiation and turnover. This can help to unclog pores, reduce the appearance of fine lines and wrinkles, and improve the overall health and appearance of the skin.

There are several different types of retinoids used in skincare products, including retinoic acid, retinaldehyde, and retinol. Retinoic acid is the most potent form of retinoid and is available by prescription only. Retinaldehyde and retinol are weaker forms of retinoid that can be found in over-the-counter skincare products.

While retinoids can be highly effective for treating various skin conditions, they can also cause side effects such as dryness, irritation, and sensitivity to the sun. It is important to use retinoids as directed by a healthcare professional and to follow proper sun protection measures when using these products.

Warfarin is a anticoagulant medication that works by inhibiting the vitamin K-dependent activation of several coagulation factors (factors II, VII, IX, and X). This results in prolonged clotting times and reduced thrombus formation. It is commonly used to prevent and treat blood clots in conditions such as atrial fibrillation, deep vein thrombosis, and pulmonary embolism. Warfarin is also known by its brand names Coumadin and Jantoven.

It's important to note that warfarin has a narrow therapeutic index, meaning that the difference between an effective dose and a toxic one is small. Therefore, it requires careful monitoring of the patient's coagulation status through regular blood tests (INR) to ensure that the dosage is appropriate and to minimize the risk of bleeding complications.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

A placebo is a substance or treatment that has no inherent therapeutic effect. It is often used in clinical trials as a control against which the effects of a new drug or therapy can be compared. Placebos are typically made to resemble the active treatment, such as a sugar pill for a medication trial, so that participants cannot tell the difference between what they are receiving and the actual treatment.

The placebo effect refers to the phenomenon where patients experience real improvements in their symptoms or conditions even when given a placebo. This may be due to psychological factors such as belief in the effectiveness of the treatment, suggestion, or conditioning. The placebo effect is often used as a comparison group in clinical trials to help determine if the active treatment has a greater effect than no treatment at all.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

Pyridoxal Kinase (PK) is an enzyme that plays a crucial role in the metabolism of amino acids. The medical definition of Pyridoxal Kinase is as follows:

Pyridoxal Kinase (PK, EC 2.7.1.35) is an enzyme involved in the activation of vitamin B6 (pyridoxine, pyridoxal, or pyridoxamine) and its derivatives. Specifically, PK catalyzes the phosphorylation of pyridoxal to form pyridoxal 5'-phosphate (PLP), which is the biologically active cofactor for many enzymes involved in amino acid metabolism, neurotransmitter synthesis, and other essential physiological processes.

In humans, there are two isoforms of Pyridoxal Kinase: PKL (liver-type) and PKR (rotype). Mutations in the PKL gene can lead to a rare autosomal recessive disorder called Pyridox(am)ine 5'-phosphate oxidase deficiency (PNPO Deficiency), which is characterized by seizures, developmental delay, and other neurological symptoms. This disorder results from impaired synthesis of the active form of vitamin B6, PLP, due to defective PK enzyme activity.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Hydroxocobalamin is a form of vitamin B12 that is used in medical treatments. It is a synthetic version of the naturally occurring compound, and it is often used to treat vitamin B12 deficiencies. Hydroxocobalamin is also used to treat poisoning from cyanide, as it can bind with the cyanide to form a non-toxic compound that can be excreted from the body.

In medical terms, hydroxocobalamin is defined as: "A bright red crystalline compound, C21H30CoN4O7·2H2O, used in the treatment of vitamin B12 deficiency and as an antidote for cyanide poisoning. It is converted in the body to active coenzyme forms."

It's important to note that hydroxocobalamin should only be used under the supervision of a medical professional, as improper use can lead to serious side effects or harm.

Thiobarbituric acid reactive substances (TBARS) is not a medical term per se, but rather a method used to measure lipid peroxidation in biological samples. Lipid peroxidation is a process by which free radicals steal electrons from lipids, leading to cellular damage and potential disease progression.

The TBARS assay measures the amount of malondialdehyde (MDA), a byproduct of lipid peroxidation, that reacts with thiobarbituric acid (TBA) to produce a pink-colored complex. The concentration of this complex is then measured and used as an indicator of lipid peroxidation in the sample.

While TBARS has been widely used as a measure of oxidative stress, it has limitations, including potential interference from other compounds that can react with TBA and produce similar-colored complexes. Therefore, more specific and sensitive methods for measuring lipid peroxidation have since been developed.

Medically, "milk" is not defined. However, it is important to note that human babies are fed with breast milk, which is the secretion from the mammary glands of humans. It is rich in nutrients like proteins, fats, carbohydrates (lactose), vitamins and minerals that are essential for growth and development.

Other mammals also produce milk to feed their young. These include cows, goats, and sheep, among others. Their milk is often consumed by humans as a source of nutrition, especially in dairy products. However, the composition of these milks can vary significantly from human breast milk.

Malondialdehyde (MDA) is a naturally occurring organic compound that is formed as a byproduct of lipid peroxidation, a process in which free radicals or reactive oxygen species react with polyunsaturated fatty acids. MDA is a highly reactive aldehyde that can modify proteins, DNA, and other biomolecules, leading to cellular damage and dysfunction. It is often used as a marker of oxidative stress in biological systems and has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

Retinoic acid receptors (RARs) are a type of nuclear receptor proteins that play crucial roles in the regulation of gene transcription. They are activated by retinoic acid, which is a metabolite of vitamin A. There are three subtypes of RARs, namely RARα, RARβ, and RARγ, each encoded by different genes.

Once retinoic acid binds to RARs, they form heterodimers with another type of nuclear receptor called retinoid X receptors (RXRs). The RAR-RXR complex then binds to specific DNA sequences called retinoic acid response elements (RAREs) in the promoter regions of target genes. This binding event leads to the recruitment of coactivator proteins and the modification of chromatin structure, ultimately resulting in the activation or repression of gene transcription.

Retinoic acid and its receptors play essential roles in various biological processes, including embryonic development, cell differentiation, apoptosis, and immune function. In addition, RARs have been implicated in several diseases, such as cancer, where they can act as tumor suppressors or oncogenes depending on the context. Therefore, understanding the mechanisms of RAR signaling has important implications for the development of novel therapeutic strategies for various diseases.

A vegetarian diet is a type of eating pattern that excludes meat, poultry, and fish, and sometimes other animal products like eggs, dairy, or honey, depending on the individual's specific dietary choices. There are several types of vegetarian diets, including:

1. Ovo-vegetarian: This diet includes vegetables, fruits, grains, nuts, seeds, dairy products, and eggs but excludes meat, poultry, and fish.
2. Lacto-vegetarian: This diet includes vegetables, fruits, grains, nuts, seeds, dairy products, and eggs but excludes meat, poultry, fish, and sometimes eggs.
3. Ovo-lacto vegetarian: This is the most common type of vegetarian diet and includes vegetables, fruits, grains, nuts, seeds, dairy products, and eggs but excludes meat, poultry, and fish.
4. Vegan: This diet excludes all animal products, including meat, poultry, fish, dairy, eggs, and sometimes honey or other bee products.
5. Fruitarian: This is a more restrictive form of veganism that includes only fruits, nuts, seeds, and other plant foods that can be harvested without killing the plant.
6. Raw vegan: This diet includes only raw fruits, vegetables, nuts, seeds, and other plant foods that have not been cooked or processed above 115°F (46°C).

Vegetarian diets can provide a range of health benefits, including lower risks of heart disease, high blood pressure, type 2 diabetes, and certain cancers. However, it is important to ensure that vegetarian diets are well-planned and nutritionally adequate to meet individual nutrient needs, particularly for nutrients like vitamin B12, iron, calcium, and omega-3 fatty acids.

Nutritive value is a term used to describe the amount and kind of nutrients, such as carbohydrates, proteins, fats, vitamins, minerals, and water, that a food provides. It refers to the ability of a food to supply the necessary components for growth, repair, maintenance, and energy in the body. The nutritive value of a food is usually expressed in terms of its content of these various nutrients per 100 grams or per serving. Foods with high nutritive value are those that provide a significant amount of essential nutrients in relation to their calorie content.

Trace elements are essential minerals that the body needs in very small or tiny amounts, usually less than 100 milligrams per day, for various biological processes. These include elements like iron, zinc, copper, manganese, fluoride, selenium, and iodine. They are vital for maintaining good health and proper functioning of the human body, but they are required in such minute quantities that even a slight excess or deficiency can lead to significant health issues.

Pyridoxamine is a form of vitamin B6, which is a water-soluble vitamin that plays an essential role in the body's protein metabolism, neurotransmitter synthesis, and hemoglobin production. Pyridoxamine is a specific chemical compound that is a derivative of pyridoxine, another form of vitamin B6.

Pyridoxamine functions as a cofactor for various enzymes involved in the metabolism of amino acids, the building blocks of proteins. It helps to convert harmful homocysteine into the essential amino acid methionine, which is important for maintaining normal levels of homocysteine and supporting cardiovascular health.

Pyridoxamine has been studied for its potential role in treating or preventing certain medical conditions, such as diabetic nephropathy and neurodegenerative diseases, due to its antioxidant properties and ability to protect against protein glycation, a process that can damage tissues and contribute to aging and disease. However, more research is needed to establish its safety and efficacy for these uses.

Maternal nutritional physiological phenomena refer to the various changes and processes that occur in a woman's body during pregnancy, lactation, and postpartum periods to meet the increased nutritional demands and support the growth and development of the fetus or infant. These phenomena involve complex interactions between maternal nutrition, hormonal regulation, metabolism, and physiological functions to ensure optimal pregnancy outcomes and offspring health.

Examples of maternal nutritional physiological phenomena include:

1. Adaptations in maternal nutrient metabolism: During pregnancy, the mother's body undergoes various adaptations to increase the availability of essential nutrients for fetal growth and development. For instance, there are increased absorption and utilization of glucose, amino acids, and fatty acids, as well as enhanced storage of glycogen and lipids in maternal tissues.
2. Placental transfer of nutrients: The placenta plays a crucial role in facilitating the exchange of nutrients between the mother and fetus. It selectively transports essential nutrients such as glucose, amino acids, fatty acids, vitamins, and minerals from the maternal circulation to the fetal compartment while removing waste products.
3. Maternal weight gain: Pregnant women typically experience an increase in body weight due to the growth of the fetus, placenta, amniotic fluid, and maternal tissues such as the uterus and breasts. Adequate gestational weight gain is essential for ensuring optimal pregnancy outcomes and reducing the risk of adverse perinatal complications.
4. Changes in maternal hormonal regulation: Pregnancy is associated with significant changes in hormonal profiles, including increased levels of estrogen, progesterone, human chorionic gonadotropin (hCG), and other hormones that regulate various physiological functions such as glucose metabolism, appetite regulation, and maternal-fetal immune tolerance.
5. Lactation: Following childbirth, the mother's body undergoes further adaptations to support lactation and breastfeeding. This involves the production and secretion of milk, which contains essential nutrients and bioactive components that promote infant growth, development, and immunity.
6. Nutrient requirements: Pregnancy and lactation increase women's nutritional demands for various micronutrients such as iron, calcium, folate, vitamin D, and omega-3 fatty acids. Meeting these increased nutritional needs is crucial for ensuring optimal pregnancy outcomes and supporting maternal health during the postpartum period.

Understanding these physiological adaptations and their implications for maternal and fetal health is essential for developing evidence-based interventions to promote positive pregnancy outcomes, reduce the risk of adverse perinatal complications, and support women's health throughout the reproductive lifespan.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

A diet survey is a questionnaire or interview designed to gather information about an individual's eating habits and patterns. It typically includes questions about the types and quantities of foods and beverages consumed, meal frequency and timing, and any dietary restrictions or preferences. The purpose of a diet survey is to assess an individual's nutritional intake and identify areas for improvement or intervention in order to promote health and prevent or manage chronic diseases. Diet surveys may also be used in research settings to gather data on the eating habits of larger populations.

Zinc is an essential mineral that is vital for the functioning of over 300 enzymes and involved in various biological processes in the human body, including protein synthesis, DNA synthesis, immune function, wound healing, and cell division. It is a component of many proteins and participates in the maintenance of structural integrity and functionality of proteins. Zinc also plays a crucial role in maintaining the sense of taste and smell.

The recommended daily intake of zinc varies depending on age, sex, and life stage. Good dietary sources of zinc include red meat, poultry, seafood, beans, nuts, dairy products, and fortified cereals. Zinc deficiency can lead to various health problems, including impaired immune function, growth retardation, and developmental delays in children. On the other hand, excessive intake of zinc can also have adverse effects on health, such as nausea, vomiting, and impaired immune function.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

"Food analysis" is not a medical term per se, but it falls under the broader field of food science and nutrition. Food analysis refers to the laboratory methods and techniques used to determine the composition and quality of food products. This can include testing for nutrients (such as proteins, fats, carbohydrates, vitamins, and minerals), contaminants (like heavy metals, pesticides, or allergens), and other components that may affect the safety, quality, or authenticity of food.

The results of food analysis can be used to ensure compliance with regulatory standards, develop new food products, assess the nutritional value of diets, investigate food-borne illnesses, and monitor trends in food consumption. While not a medical definition, food analysis is an important tool for promoting public health and preventing diet-related diseases.

I'm sorry for any confusion, but "fruit" is not a medical term per se. It is a common term used to describe the part of a plant that develops from the ovary after flowering and contains seeds. However, in a nutritional or dietary context, "fruits" are often referred to as foods that are typically sweet and juicy, and come from plants' flowers. They are rich in fiber, vitamins, and minerals, making them an essential part of a healthy diet. But in a strict medical sense, there isn't a specific definition for "fruit."

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Skin pigmentation is the coloration of the skin that is primarily determined by two types of melanin pigments, eumelanin and pheomelanin. These pigments are produced by melanocytes, which are specialized cells located in the epidermis. Eumelanin is responsible for brown or black coloration, while pheomelanin produces a red or yellow hue.

The amount and distribution of melanin in the skin can vary depending on genetic factors, age, sun exposure, and various other influences. Increased production of melanin in response to UV radiation from the sun helps protect the skin from damage, leading to darkening or tanning of the skin. However, excessive sun exposure can also cause irregular pigmentation, such as sunspots or freckles.

Abnormalities in skin pigmentation can result from various medical conditions, including albinism (lack of melanin production), vitiligo (loss of melanocytes leading to white patches), and melasma (excessive pigmentation often caused by hormonal changes). These conditions may require medical treatment to manage or improve the pigmentation issues.

Macrocytic anemia is a type of anemia in which the red blood cells are larger than normal in size (macrocytic). This condition can be caused by various factors such as deficiency of vitamin B12 or folate, alcohol abuse, certain medications, bone marrow disorders, and some inherited genetic conditions.

The large red blood cells may not function properly, leading to symptoms such as fatigue, weakness, shortness of breath, pale skin, and a rapid heartbeat. Macrocytic anemia can be diagnosed through a complete blood count (CBC) test, which measures the size and number of red blood cells in the blood.

Treatment for macrocytic anemia depends on the underlying cause. In cases of vitamin B12 or folate deficiency, supplements or dietary changes may be recommended. If the anemia is caused by medication, a different medication may be prescribed. In severe cases, blood transfusions or injections of vitamin B12 may be necessary.

I'm sorry for any confusion, but "vegetables" is not a term that has a medical definition. It is a dietary category that includes various plant-based foods, typically referring to the edible parts of herbaceous plants excluding fruit (but including seeds), such as leaves, stems, roots, tubers, and bulbs.

However, in a nutritional or clinical context, vegetables are often defined by their nutrient content. For example, they may be classified as foods that are high in certain vitamins, minerals, and fiber, and low in calories and fat. Different healthcare professionals or organizations might have slightly different definitions or classifications of what constitutes a vegetable, but there is no single medical definition for this term.

Retinoid X receptors (RXRs) are a subfamily of nuclear receptor proteins that function as transcription factors, playing crucial roles in the regulation of gene expression. They are activated by binding to retinoids, which are derivatives of vitamin A. RXRs can form heterodimers with other nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), and thyroid hormone receptors (THRs). Upon activation by their respective ligands, these heterodimers bind to specific DNA sequences called response elements in the promoter regions of target genes, leading to modulation of transcription. RXRs are involved in various biological processes, including cell differentiation, development, metabolism, and homeostasis. Dysregulation of RXR-mediated signaling pathways has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders.

Beta-Carotene 15,15'-Monooxygenase is an enzyme that catalyzes the conversion of beta-carotene to retinal, which is a form of vitamin A. This enzyme adds a single oxygen atom to the beta-carotene molecule at the 15,15' position, creating two molecules of retinal.

Retinal is an essential nutrient that plays a critical role in vision, immune function, and cell growth and differentiation. Deficiency in vitamin A can lead to various health issues, including night blindness, impaired immunity, and growth retardation.

Beta-Carotene 15,15'-Monooxygenase is primarily found in the intestinal mucosa of humans and other mammals, where it helps convert dietary beta-carotene into a usable form of vitamin A. This enzyme is also present in some bacteria and fungi, where it plays a similar role in their metabolism of carotenoids.

Lipid peroxides are chemical compounds that form when lipids (fats or fat-like substances) oxidize. This process, known as lipid peroxidation, involves the reaction of lipids with oxygen in a way that leads to the formation of hydroperoxides and various aldehydes, such as malondialdehyde.

Lipid peroxidation is a naturally occurring process that can also be accelerated by factors such as exposure to radiation, certain chemicals, or enzymatic reactions. It plays a role in many biological processes, including cell signaling and regulation of gene expression, but it can also contribute to the development of various diseases when it becomes excessive.

Examples of lipid peroxides include phospholipid hydroperoxides, cholesteryl ester hydroperoxides, and triglyceride hydroperoxides. These compounds are often used as markers of oxidative stress in biological systems and have been implicated in the pathogenesis of atherosclerosis, cancer, neurodegenerative diseases, and other conditions associated with oxidative damage.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Megaloblastic anemia is a type of macrocytic anemia, which is characterized by the presence of large, structurally abnormal, and immature red blood cells called megaloblasts in the bone marrow. This condition arises due to impaired DNA synthesis during erythropoiesis (the process of red blood cell production), often as a result of deficiencies in vitamin B12 or folate, or from the use of certain medications that interfere with DNA synthesis.

The hallmark feature of megaloblastic anemia is the presence of megaloblasts in the bone marrow, which exhibit an asynchrony between nuclear and cytoplasmic maturation. This means that although the cytoplasm of these cells may appear well-developed, their nuclei remain underdeveloped and fragmented. As a result, the peripheral blood shows an increase in mean corpuscular volume (MCV), reflecting the larger size of the red blood cells.

Additional hematological findings include decreased reticulocyte counts, neutrophil hypersegmentation, and occasionally thrombocytopenia or leukopenia. Neurological symptoms may also be present due to the involvement of the nervous system in vitamin B12 deficiency.

Megaloblastic anemia is typically treated with supplementation of the deficient vitamin (B12 or folate), which helps restore normal erythropoiesis and alleviate symptoms over time.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

I'm sorry for any confusion, but "Indonesia" is not a medical term. It is a country located in Southeast Asia and Oceania, between the Indian and Pacific oceans. It is the world's largest island country, with more than thirteen thousand islands. If you have any questions about medical terms or concepts, I would be happy to help with those!

4-Hydroxycoumarins are a type of chemical compound that contains a hydroxy group (-OH) attached to the 4th carbon atom of the coumarin structure. Coumarins themselves are aromatic organic compounds, characterized by a benzene ring fused to a pyrone ring.

4-Hydroxycoumarins have gained attention in medical research due to their potential biological activities. For instance, some 4-hydroxycoumarins exhibit anticoagulant properties and are used as oral anticoagulant drugs, such as warfarin. These compounds work by inhibiting the vitamin K epoxide reductase enzyme, thereby interfering with the blood clotting process.

Additionally, 4-hydroxycoumarins have been investigated for their potential anticancer, anti-inflammatory, and antibacterial activities. However, more research is needed to fully understand their therapeutic potential and safety profiles.

Glutathione peroxidase (GPx) is a family of enzymes with peroxidase activity whose main function is to protect the organism from oxidative damage. They catalyze the reduction of hydrogen peroxide, lipid peroxides, and organic hydroperoxides to water or corresponding alcohols, using glutathione (GSH) as a reducing agent, which is converted to its oxidized form (GSSG). There are several isoforms of GPx found in different tissues, including GPx1 (also known as cellular GPx), GPx2 (gastrointestinal GPx), GPx3 (plasma GPx), GPx4 (also known as phospholipid hydroperoxide GPx), and GPx5-GPx8. These enzymes play crucial roles in various biological processes, such as antioxidant defense, cell signaling, and apoptosis regulation.

I'm sorry for any confusion, but "Infant Nutritional Physiological Phenomena" is not a standard or widely recognized medical term. It seems to be a very specific phrase that may relate to various physiological processes and phenomena related to infant nutrition.

To try and provide some clarity, I can offer a brief explanation of the individual terms:

1. Infant: A young child, typically under one year of age.
2. Nutritional: Relating to food or nourishment, particularly in relation to energy and the balance of essential nutrients required for growth, repair, and maintenance of bodily functions.
3. Physiological: Describing processes and functions that occur within a living organism as part of normal bodily function, including biochemical reactions, organ function, and responses to environmental stimuli.
4. Phenomena: Observable events or occurrences.

So, "Infant Nutritional Physiological Phenomena" could refer to observable events or processes related to an infant's nutrition and physiology. However, without further context, it is difficult to provide a more precise definition. Examples of such phenomena might include the development of feeding skills, growth patterns, or changes in metabolism related to dietary intake.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Fat substitutes are substances that are used in food production to mimic the taste, texture, and other sensory properties of fat, while providing fewer calories or no calories at all. They can be derived from natural sources, such as carbohydrates or proteins, or synthesized in a lab.

Fat substitutes can be classified into three main categories:

1. Macronutrient-based fat substitutes: These are made up of carbohydrates, proteins, or fiber that provide fewer calories than fat. Examples include maltodextrin, modified food starch, and whey protein concentrate.
2. Fat-based fat substitutes: These are made up of fat molecules that have been chemically altered to reduce their calorie content. Examples include olestra (sucrose polyester) and caprenin.
3. Non-nutritive fat substitutes: These provide no calories or nutrients and are often used in small amounts to enhance the texture and taste of food. Examples include cellulose gel, microcrystalline cellulose, and silica.

Fat substitutes can be useful for people who are trying to reduce their calorie intake, maintain a healthy weight, or manage certain medical conditions such as diabetes or high cholesterol. However, it's important to note that fat substitutes should not replace all dietary fats, as some fats are essential for good health. It's also important to read food labels carefully and consume fat substitutes in moderation, as they may have other negative effects on health if consumed in excess.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

"Energy intake" is a medical term that refers to the amount of energy or calories consumed through food and drink. It is an important concept in the study of nutrition, metabolism, and energy balance, and is often used in research and clinical settings to assess an individual's dietary habits and health status.

Energy intake is typically measured in kilocalories (kcal) or joules (J), with one kcal equivalent to approximately 4.184 J. The recommended daily energy intake varies depending on factors such as age, sex, weight, height, physical activity level, and overall health status.

It's important to note that excessive energy intake, particularly when combined with a sedentary lifestyle, can lead to weight gain and an increased risk of chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease. On the other hand, inadequate energy intake can lead to malnutrition, decreased immune function, and other health problems. Therefore, it's essential to maintain a balanced energy intake that meets individual nutritional needs while promoting overall health and well-being.

Diet records are documents used to track and record an individual's food and beverage intake over a specific period. These records may include details such as the type and quantity of food consumed, time of consumption, and any related observations or notes. Diet records can be used for various purposes, including assessing dietary habits and patterns, identifying potential nutritional deficiencies or excesses, and developing personalized nutrition plans. They are often used in research, clinical settings, and weight management programs.

S100 calcium binding protein G, also known as calgranulin A or S100A8, is a member of the S100 family of proteins. These proteins are characterized by their ability to bind calcium ions and play a role in intracellular signaling and regulation of various cellular processes.

S100 calcium binding protein G forms a heterodimer with S100 calcium binding protein B (S100A9) and is involved in the inflammatory response, immune function, and tumor growth and progression. The S100A8/A9 heterocomplex has been shown to play a role in neutrophil activation and recruitment, as well as the regulation of cytokine production and cell proliferation.

Elevated levels of S100 calcium binding protein G have been found in various inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, as well as in several types of cancer, including breast, lung, and colon cancer. Therefore, it has been suggested that S100 calcium binding protein G may be a useful biomarker for the diagnosis and prognosis of these conditions.

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Pregnancy complications refer to any health problems that arise during pregnancy which can put both the mother and the baby at risk. These complications may occur at any point during the pregnancy, from conception until childbirth. Some common pregnancy complications include:

1. Gestational diabetes: a type of diabetes that develops during pregnancy in women who did not have diabetes before becoming pregnant.
2. Preeclampsia: a pregnancy complication characterized by high blood pressure and damage to organs such as the liver or kidneys.
3. Placenta previa: a condition where the placenta covers the cervix, which can cause bleeding and may require delivery via cesarean section.
4. Preterm labor: when labor begins before 37 weeks of gestation, which can lead to premature birth and other complications.
5. Intrauterine growth restriction (IUGR): a condition where the fetus does not grow at a normal rate inside the womb.
6. Multiple pregnancies: carrying more than one baby, such as twins or triplets, which can increase the risk of premature labor and other complications.
7. Rh incompatibility: a condition where the mother's blood type is different from the baby's, which can cause anemia and jaundice in the newborn.
8. Pregnancy loss: including miscarriage, stillbirth, or ectopic pregnancy, which can be emotionally devastating for the parents.

It is important to monitor pregnancy closely and seek medical attention promptly if any concerning symptoms arise. With proper care and management, many pregnancy complications can be treated effectively, reducing the risk of harm to both the mother and the baby.

Night blindness, also known as nyctalopia, is a visual impairment characterized by the inability to see well in low light or darkness. It's not an eye condition itself but rather a symptom of various underlying eye disorders, most commonly vitamin A deficiency and retinal diseases like retinitis pigmentosa.

In a healthy eye, a molecule called rhodopsin is present in the rods (special light-sensitive cells in our eyes responsible for vision in low light conditions). This rhodopsin requires sufficient amounts of vitamin A to function properly. When there's a deficiency of vitamin A or damage to the rods, the ability to see in dim light gets affected, leading to night blindness.

People with night blindness often have difficulty adjusting to changes in light levels, such as when entering a dark room from bright sunlight. They may also experience trouble seeing stars at night, driving at dusk or dawn, and navigating in poorly lit areas. If you suspect night blindness, it's essential to consult an eye care professional for proper diagnosis and treatment of the underlying cause.

1-Carboxyglutamic acid, also known as γ-carboxyglutamic acid, is a post-translational modification found on certain blood clotting factors and other calcium-binding proteins. It is formed by the carboxylation of glutamic acid residues in these proteins, which enhances their ability to bind to calcium ions. This modification is essential for the proper functioning of many physiological processes, including blood coagulation, bone metabolism, and wound healing.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Retinol-binding proteins (RBPs) are a group of proteins found in the body that play a crucial role in transporting and delivering retinol (vitamin A alcohol) to various tissues and cells. RBPs are synthesized primarily in the liver and then secreted into the bloodstream, where they bind to retinol and form a complex called holo-RBP.

Cellular RBPs, also known as intracellular RBPs or CRBPs (cellular retinol-binding proteins), are a subclass of RBPs that function inside cells. They are responsible for transporting retinol within the cell and facilitating its conversion to retinal and then to retinoic acid, which are active forms of vitamin A involved in various physiological processes such as vision, immune function, and embryonic development.

CRBPs have a high affinity for retinol and help regulate its intracellular concentration by preventing its degradation and promoting its uptake into the cell. There are several isoforms of CRBPs, including CRBP-I, CRBP-II, CRBP-III, and CRBP-IV, each with distinct expression patterns and functions in different tissues and cells.

Overall, CRBPs play a critical role in maintaining the homeostasis of vitamin A metabolism and ensuring its proper utilization in various physiological processes.

In a medical context, "meat" generally refers to the flesh of animals that is consumed as food. This includes muscle tissue, as well as fat and other tissues that are often found in meat products. However, it's worth noting that some people may have dietary restrictions or medical conditions that prevent them from consuming meat, so it's always important to consider individual preferences and needs when discussing food options.

It's also worth noting that the consumption of meat can have both positive and negative health effects. On the one hand, meat is a good source of protein, iron, vitamin B12, and other essential nutrients. On the other hand, consuming large amounts of red and processed meats has been linked to an increased risk of heart disease, stroke, and certain types of cancer. Therefore, it's generally recommended to consume meat in moderation as part of a balanced diet.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

A questionnaire in the medical context is a standardized, systematic, and structured tool used to gather information from individuals regarding their symptoms, medical history, lifestyle, or other health-related factors. It typically consists of a series of written questions that can be either self-administered or administered by an interviewer. Questionnaires are widely used in various areas of healthcare, including clinical research, epidemiological studies, patient care, and health services evaluation to collect data that can inform diagnosis, treatment planning, and population health management. They provide a consistent and organized method for obtaining information from large groups or individual patients, helping to ensure accurate and comprehensive data collection while minimizing bias and variability in the information gathered.

Breastfeeding is the process of providing nutrition to an infant or young child by feeding them breast milk directly from the mother's breast. It is also known as nursing. Breast milk is the natural food for newborns and infants, and it provides all the nutrients they need to grow and develop during the first six months of life.

Breastfeeding has many benefits for both the mother and the baby. For the baby, breast milk contains antibodies that help protect against infections and diseases, and it can also reduce the risk of sudden infant death syndrome (SIDS), allergies, and obesity. For the mother, breastfeeding can help her lose weight after pregnancy, reduce the risk of certain types of cancer, and promote bonding with her baby.

Breastfeeding is recommended exclusively for the first six months of an infant's life, and then continued along with appropriate complementary foods until the child is at least two years old or beyond. However, it is important to note that every mother and baby pair is unique, and what works best for one may not work as well for another. It is recommended that mothers consult with their healthcare provider to determine the best feeding plan for themselves and their baby.

F2-isoprostanes are a type of prostaglandin-like compound that is formed in the body through the free radical-catalyzed peroxidation of arachidonic acid, a polyunsaturated fatty acid found in cell membranes. They are produced in response to oxidative stress and are often used as a biomarker for lipid peroxidation and oxidative damage in various diseases, including atherosclerosis, cancer, and neurodegenerative disorders. F2-isoprostanes are chemically stable and can be measured in biological fluids such as blood, urine, and breath condensate. They have been shown to cause vasoconstriction, platelet aggregation, and inflammation, which may contribute to the pathogenesis of various diseases.

Prothrombin time (PT) is a medical laboratory test that measures the time it takes for blood to clot. It's often used to evaluate the functioning of the extrinsic and common pathways of the coagulation system, which is responsible for blood clotting. Specifically, PT measures how long it takes for prothrombin (a protein produced by the liver) to be converted into thrombin, an enzyme that converts fibrinogen into fibrin and helps form a clot.

Prolonged PT may indicate a bleeding disorder or a deficiency in coagulation factors, such as vitamin K deficiency or the use of anticoagulant medications like warfarin. It's important to note that PT is often reported with an international normalized ratio (INR), which allows for standardization and comparison of results across different laboratories and reagent types.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

A bone fracture is a medical condition in which there is a partial or complete break in the continuity of a bone due to external or internal forces. Fractures can occur in any bone in the body and can vary in severity from a small crack to a shattered bone. The symptoms of a bone fracture typically include pain, swelling, bruising, deformity, and difficulty moving the affected limb. Treatment for a bone fracture may involve immobilization with a cast or splint, surgery to realign and stabilize the bone, or medication to manage pain and prevent infection. The specific treatment approach will depend on the location, type, and severity of the fracture.

I'm sorry for any confusion, but "Nepal" is not a medical term. It is a country located in South Asia, between China and India. If you have any questions about medical terminology or health-related topics, I would be happy to try and help answer those for you.

Deficiency diseases are a group of medical conditions that occur when an individual's diet lacks essential nutrients, such as vitamins and minerals. These diseases develop because the body needs these nutrients to function correctly, and without them, various bodily functions can become impaired, leading to disease.

Deficiency diseases can manifest in many different ways, depending on which nutrient is lacking. For example:

* Vitamin A deficiency can lead to night blindness and increased susceptibility to infectious diseases.
* Vitamin C deficiency can result in scurvy, a condition characterized by fatigue, swollen gums, joint pain, and anemia.
* Vitamin D deficiency can cause rickets in children, a disease that leads to weakened bones and skeletal deformities.
* Iron deficiency can result in anemia, a condition in which the blood lacks adequate healthy red blood cells.

Preventing deficiency diseases involves eating a balanced diet that includes a variety of foods from all the major food groups. In some cases, supplements may be necessary to ensure adequate nutrient intake, especially for individuals who have restricted diets or medical conditions that affect nutrient absorption.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

Dihydrotachysterol is a synthetic form of vitamin D that is used as a medication to treat hypocalcemia (low levels of calcium in the blood) in people with certain medical conditions, such as hypoparathyroidism and vitamin D deficiency. It works by increasing the absorption of calcium from the gut and promoting the release of calcium from bones into the bloodstream.

Dihydrotachysterol is available in tablet form and is typically taken once or twice a day, with the dosage adjusted based on the individual's response to treatment and serum calcium levels. Common side effects of dihydrotachysterol include hypercalcemia (high levels of calcium in the blood), nausea, vomiting, and constipation. It is important to monitor serum calcium levels regularly while taking this medication to prevent toxicity.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Niacin, also known as vitamin B3 or nicotinic acid, is a water-soluble vitamin that is essential for human health. It is a crucial component of the coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate), which play key roles in energy production, DNA repair, and cellular signaling.

Niacin can be obtained from various dietary sources, including meat, poultry, fish, legumes, whole grains, and fortified foods. It is also available as a dietary supplement and prescription medication. Niacin deficiency can lead to a condition called pellagra, which is characterized by symptoms such as diarrhea, dermatitis, dementia, and, if left untreated, death.

In addition to its role in energy metabolism and DNA repair, niacin has been shown to have potential benefits for cardiovascular health, including lowering LDL (low-density lipoprotein) cholesterol and triglyceride levels while raising HDL (high-density lipoprotein) cholesterol levels. However, high-dose niacin therapy can also have adverse effects, such as flushing, itching, and liver toxicity, so it should be used under the guidance of a healthcare professional.

"Intramuscular injections" refer to a medical procedure where a medication or vaccine is administered directly into the muscle tissue. This is typically done using a hypodermic needle and syringe, and the injection is usually given into one of the large muscles in the body, such as the deltoid (shoulder), vastus lateralis (thigh), or ventrogluteal (buttock) muscles.

Intramuscular injections are used for a variety of reasons, including to deliver medications that need to be absorbed slowly over time, to bypass stomach acid and improve absorption, or to ensure that the medication reaches the bloodstream quickly and directly. Common examples of medications delivered via intramuscular injection include certain vaccines, antibiotics, and pain relievers.

It is important to follow proper technique when administering intramuscular injections to minimize pain and reduce the risk of complications such as infection or injury to surrounding tissues. Proper site selection, needle length and gauge, and injection technique are all critical factors in ensuring a safe and effective intramuscular injection.

I'm sorry for any confusion, but "Linear Models" is actually a term from the field of statistics and machine learning, rather than medicine. A linear model is a type of statistical model that is used to analyze the relationship between two or more variables. In a linear model, the relationship between the dependent variable (the outcome or result) and the independent variable(s) (the factors being studied) is assumed to be linear, meaning that it can be described by a straight line on a graph.

The equation for a simple linear model with one independent variable (x) and one dependent variable (y) looks like this:

y = β0 + β1*x + ε

In this equation, β0 is the y-intercept or the value of y when x equals zero, β1 is the slope or the change in y for each unit increase in x, and ε is the error term or the difference between the actual values of y and the predicted values of y based on the linear model.

Linear models are widely used in medical research to study the relationship between various factors (such as exposure to a risk factor or treatment) and health outcomes (such as disease incidence or mortality). They can also be used to adjust for confounding variables, which are factors that may influence both the independent variable and the dependent variable, and thus affect the observed relationship between them.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Riboflavin deficiency, also known as ariboflavinosis, is a condition that results from inadequate intake or absorption of riboflavin (vitamin B2). This vitamin plays a crucial role in energy production, cellular function, growth, and development.

The medical definition of riboflavin deficiency includes the following symptoms:

1. Fatigue and weakness due to impaired energy production
2. Swelling and inflammation of the mouth and tongue, which can lead to painful lesions, soreness, and a smooth red tongue (glossitis)
3. Angular cheilosis - cracks at the corners of the mouth
4. Skin disorders such as seborrheic dermatitis, characterized by scaly, itchy, or greasy skin around the nose, eyebrows, ears, and genital area
5. Anemia due to impaired synthesis of heme (the iron-containing component of hemoglobin)
6. Impaired vision, particularly in low light conditions, due to damage to the light-sensitive cells in the eyes (photosensitivity)
7. Nerve damage and degeneration leading to neurological symptoms such as numbness, tingling, or burning sensations in the hands and feet
8. Slowed growth and development in children
9. Increased susceptibility to infections due to impaired immune function

Riboflavin deficiency is usually seen in individuals with poor nutrition, alcoholism, or those who have conditions affecting nutrient absorption, such as celiac disease or inflammatory bowel disease. Additionally, certain medications and pregnancy may increase the risk of riboflavin deficiency.

Cobamides are a class of compounds that are structurally related to vitamin B12 (cobalamin). They consist of a corrin ring, which is a large heterocyclic ring made up of four pyrrole rings, and a cobalt ion in the center. The lower axial ligand of the cobalt ion can be a variety of different groups, including cyano, hydroxo, methyl, or 5'-deoxyadenosyl groups.

Cobamides are involved in a number of important biological processes, including the synthesis of amino acids and nucleotides, the metabolism of fatty acids and cholesterol, and the regulation of gene expression. They function as cofactors for enzymes called cobamide-dependent methyltransferases, which transfer methyl groups (CH3) from one molecule to another.

Cobamides are found in a wide variety of organisms, including bacteria, archaea, and eukaryotes. In humans, the most important cobamide is vitamin B12, which is essential for the normal functioning of the nervous system and the production of red blood cells. Vitamin B12 deficiency can lead to neurological problems and anemia.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

"Chromans" are a class of organic compounds that contain a benzene fused to a five-membered saturated carbon ring containing one oxygen atom. This particular ring structure is also known as a chromane. Chromans have various applications in the field of medicinal chemistry and pharmacology, with some derivatives exhibiting biological activities such as antioxidant, anti-inflammatory, and cardiovascular protective effects. Some well-known chroman derivatives include vitamin E (tocopherols and tocotrienols) and several synthetic drugs like chromanol, a calcium channel blocker used in the treatment of hypertension and angina pectoris.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

"Animal nutritional physiological phenomena" is not a standardized medical or scientific term. However, it seems to refer to the processes and functions related to nutrition and physiology in animals. Here's a breakdown of the possible components:

1. Animal: This term refers to non-human living organisms that are multicellular, heterotrophic, and have a distinct nervous system.
2. Nutritional: This term pertains to the nourishment and energy requirements of an animal, including the ingestion, digestion, absorption, transportation, metabolism, and excretion of nutrients.
3. Physiological: This term refers to the functions and processes that occur within a living organism, including the interactions between different organs and systems.
4. Phenomena: This term generally means an observable fact or event.

Therefore, "animal nutritional physiological phenomena" could refer to the observable events and processes related to nutrition and physiology in animals. Examples of such phenomena include digestion, absorption, metabolism, energy production, growth, reproduction, and waste elimination.

I'm sorry for any confusion, but "United States" is a geopolitical entity, specifically the name of the country consisting of 50 states, and it is not a medical term or concept. Therefore, I can't provide a medical definition for it. If you have any questions related to health, medicine, or biology, I would be happy to try to help answer those!

Anthropometry is the scientific study of measurements and proportions of the human body. It involves the systematic measurement and analysis of various physical characteristics, such as height, weight, blood pressure, waist circumference, and other body measurements. These measurements are used in a variety of fields, including medicine, ergonomics, forensics, and fashion design, to assess health status, fitness level, or to design products and environments that fit the human body. In a medical context, anthropometry is often used to assess growth and development, health status, and disease risk factors in individuals and populations.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

In the context of medicine, growth generally refers to the increase in size or mass of an organism or a specific part of the body over time. This can be quantified through various methods such as measuring height, weight, or the dimensions of particular organs or tissues. In children, normal growth is typically assessed using growth charts that plot measurements like height and weight against age to determine whether a child's growth is following a typical pattern.

Growth can be influenced by a variety of factors, including genetics, nutrition, hormonal regulation, and overall health status. Abnormalities in growth patterns may indicate underlying medical conditions or developmental disorders that require further evaluation and treatment.

The Schilling test is a medical procedure that was used to diagnose pernicious anemia and malabsorption of vitamin B12. The test measures the body's ability to absorb vitamin B12 from food or supplements.

In the test, the patient is given a small amount of radioactive vitamin B12 to swallow. After a set period of time, a urine sample is collected and measured for the amount of radioactivity present. If the body has properly absorbed the vitamin B12, it will be excreted in the urine.

If the test shows that the patient is not absorbing enough vitamin B12, they may have pernicious anemia or another condition that affects vitamin B12 absorption. The Schilling test has largely been replaced by other diagnostic tests, such as blood tests for anti-intrinsic factor antibodies and parietal cell antibodies.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

Steroid receptors are a type of nuclear receptor protein that are activated by the binding of steroid hormones or related molecules. These receptors play crucial roles in various physiological processes, including development, homeostasis, and metabolism. Steroid receptors function as transcription factors, regulating gene expression when activated by their respective ligands.

There are several subtypes of steroid receptors, classified based on the specific steroid hormones they bind to:

1. Glucocorticoid receptor (GR): Binds to glucocorticoids, which regulate metabolism, immune response, and stress response.
2. Mineralocorticoid receptor (MR): Binds to mineralocorticoids, which regulate electrolyte and fluid balance.
3. Androgen receptor (AR): Binds to androgens, which are male sex hormones that play a role in the development and maintenance of male sexual characteristics.
4. Estrogen receptor (ER): Binds to estrogens, which are female sex hormones that play a role in the development and maintenance of female sexual characteristics.
5. Progesterone receptor (PR): Binds to progesterone, which is a female sex hormone involved in the menstrual cycle and pregnancy.
6. Vitamin D receptor (VDR): Binds to vitamin D, which plays a role in calcium homeostasis and bone metabolism.

Upon ligand binding, steroid receptors undergo conformational changes that allow them to dimerize, interact with co-regulatory proteins, and bind to specific DNA sequences called hormone response elements (HREs) in the promoter regions of target genes. This interaction leads to the recruitment of transcriptional machinery, ultimately resulting in the modulation of gene expression. Dysregulation of steroid receptor signaling has been implicated in various diseases, including cancer, metabolic disorders, and inflammatory conditions.

Cobalt radioisotopes are radioactive forms of the element cobalt, which are used in various medical applications. The most commonly used cobalt radioisotope is Cobalt-60 (Co-60), which has a half-life of 5.27 years.

Co-60 emits gamma rays and beta particles, making it useful for radiation therapy to treat cancer, as well as for sterilizing medical equipment and food irradiation. In radiation therapy, Co-60 is used in teletherapy machines to deliver a focused beam of radiation to tumors, helping to destroy cancer cells while minimizing damage to surrounding healthy tissue.

It's important to note that handling and disposal of cobalt radioisotopes require strict safety measures due to their radioactive nature, as they can pose risks to human health and the environment if not managed properly.

A randomized controlled trial (RCT) is a type of clinical study in which participants are randomly assigned to receive either the experimental intervention or the control condition, which may be a standard of care, placebo, or no treatment. The goal of an RCT is to minimize bias and ensure that the results are due to the intervention being tested rather than other factors. This design allows for a comparison between the two groups to determine if there is a significant difference in outcomes. RCTs are often considered the gold standard for evaluating the safety and efficacy of medical interventions, as they provide a high level of evidence for causal relationships between the intervention and health outcomes.

Metabolic bone diseases are a group of conditions that affect the bones and are caused by disorders in the body's metabolism. These disorders can result in changes to the bone structure, density, and strength, leading to an increased risk of fractures and other complications. Some common examples of metabolic bone diseases include:

1. Osteoporosis: a condition characterized by weak and brittle bones that are more likely to break, often as a result of age-related bone loss or hormonal changes.
2. Paget's disease of bone: a chronic disorder that causes abnormal bone growth and deformities, leading to fragile and enlarged bones.
3. Osteomalacia: a condition caused by a lack of vitamin D or problems with the body's ability to absorb it, resulting in weak and soft bones.
4. Hyperparathyroidism: a hormonal disorder that causes too much parathyroid hormone to be produced, leading to bone loss and other complications.
5. Hypoparathyroidism: a hormonal disorder that results in low levels of parathyroid hormone, causing weak and brittle bones.
6. Renal osteodystrophy: a group of bone disorders that occur as a result of chronic kidney disease, including osteomalacia, osteoporosis, and high turnover bone disease.

Treatment for metabolic bone diseases may include medications to improve bone density and strength, dietary changes, exercise, and lifestyle modifications. In some cases, surgery may be necessary to correct bone deformities or fractures.

Cardiovascular diseases (CVDs) are a class of diseases that affect the heart and blood vessels. They are the leading cause of death globally, according to the World Health Organization (WHO). The term "cardiovascular disease" refers to a group of conditions that include:

1. Coronary artery disease (CAD): This is the most common type of heart disease and occurs when the arteries that supply blood to the heart become narrowed or blocked due to the buildup of cholesterol, fat, and other substances in the walls of the arteries. This can lead to chest pain, shortness of breath, or a heart attack.
2. Heart failure: This occurs when the heart is unable to pump blood efficiently to meet the body's needs. It can be caused by various conditions, including coronary artery disease, high blood pressure, and cardiomyopathy.
3. Stroke: A stroke occurs when the blood supply to a part of the brain is interrupted or reduced, often due to a clot or a ruptured blood vessel. This can cause brain damage or death.
4. Peripheral artery disease (PAD): This occurs when the arteries that supply blood to the limbs become narrowed or blocked, leading to pain, numbness, or weakness in the legs or arms.
5. Rheumatic heart disease: This is a complication of untreated strep throat and can cause damage to the heart valves, leading to heart failure or other complications.
6. Congenital heart defects: These are structural problems with the heart that are present at birth. They can range from mild to severe and may require medical intervention.
7. Cardiomyopathy: This is a disease of the heart muscle that makes it harder for the heart to pump blood efficiently. It can be caused by various factors, including genetics, infections, and certain medications.
8. Heart arrhythmias: These are abnormal heart rhythms that can cause the heart to beat too fast, too slow, or irregularly. They can lead to symptoms such as palpitations, dizziness, or fainting.
9. Valvular heart disease: This occurs when one or more of the heart valves become damaged or diseased, leading to problems with blood flow through the heart.
10. Aortic aneurysm and dissection: These are conditions that affect the aorta, the largest artery in the body. An aneurysm is a bulge in the aorta, while a dissection is a tear in the inner layer of the aorta. Both can be life-threatening if not treated promptly.

It's important to note that many of these conditions can be managed or treated with medical interventions such as medications, surgery, or lifestyle changes. If you have any concerns about your heart health, it's important to speak with a healthcare provider.

According to the medical definition, ultraviolet (UV) rays are invisible radiations that fall in the range of the electromagnetic spectrum between 100-400 nanometers. UV rays are further divided into three categories: UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm).

UV rays have various sources, including the sun and artificial sources like tanning beds. Prolonged exposure to UV rays can cause damage to the skin, leading to premature aging, eye damage, and an increased risk of skin cancer. UVA rays penetrate deeper into the skin and are associated with skin aging, while UVB rays primarily affect the outer layer of the skin and are linked to sunburns and skin cancer. UVC rays are the most harmful but fortunately, they are absorbed by the Earth's atmosphere and do not reach the surface.

Healthcare professionals recommend limiting exposure to UV rays, wearing protective clothing, using broad-spectrum sunscreen with an SPF of at least 30, and avoiding tanning beds to reduce the risk of UV-related health problems.

Dairy products are foods produced from the milk of animals, primarily cows but also goats, sheep, and buffalo. The term "dairy" refers to the place or process where these products are made. According to the medical definition, dairy products include a variety of foods such as:

1. Milk - This is the liquid produced by mammals to feed their young. It's rich in nutrients like calcium, protein, and vitamins A, D, and B12.
2. Cheese - Made from milk, it can vary greatly in texture, taste, and nutritional content depending on the type. Cheese is a good source of protein and calcium.
3. Yogurt - This is formed by bacterial fermentation of milk. It contains probiotics which are beneficial bacteria that can help maintain gut health.
4. Butter - Made from cream or churned milk, butter is high in fat and calories but also provides some essential nutrients like vitamin A.
5. Ice Cream - A frozen dessert made from cream, milk, sugar, and often egg yolks. While it can be a source of calcium and protein, it's also high in sugar and should be consumed in moderation.
6. Casein and Whey Proteins - These are proteins derived from milk that are often used as dietary supplements for muscle building and recovery after exercise.

Individuals who are lactose intolerant may have difficulty digesting dairy products due to the sugar lactose found in them. For such individuals, there are lactose-free versions of these products available or they can opt for plant-based alternatives like almond milk, soy milk, etc.

Postmenopause is a stage in a woman's life that follows 12 months after her last menstrual period (menopause) has occurred. During this stage, the ovaries no longer release eggs and produce lower levels of estrogen and progesterone hormones. The reduced levels of these hormones can lead to various physical changes and symptoms, such as hot flashes, vaginal dryness, and mood changes. Postmenopause is also associated with an increased risk of certain health conditions, including osteoporosis and heart disease. It's important for women in postmenopause to maintain a healthy lifestyle, including regular exercise, a balanced diet, and routine medical check-ups to monitor their overall health and manage any potential risks.

The odds ratio (OR) is a statistical measure used in epidemiology and research to estimate the association between an exposure and an outcome. It represents the odds that an event will occur in one group versus the odds that it will occur in another group, assuming that all other factors are held constant.

In medical research, the odds ratio is often used to quantify the strength of the relationship between a risk factor (exposure) and a disease outcome. An OR of 1 indicates no association between the exposure and the outcome, while an OR greater than 1 suggests that there is a positive association between the two. Conversely, an OR less than 1 implies a negative association.

It's important to note that the odds ratio is not the same as the relative risk (RR), which compares the incidence rates of an outcome in two groups. While the OR can approximate the RR when the outcome is rare, they are not interchangeable and can lead to different conclusions about the association between an exposure and an outcome.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Hemoglobin (Hb or Hgb) is the main oxygen-carrying protein in the red blood cells, which are responsible for delivering oxygen throughout the body. It is a complex molecule made up of four globin proteins and four heme groups. Each heme group contains an iron atom that binds to one molecule of oxygen. Hemoglobin plays a crucial role in the transport of oxygen from the lungs to the body's tissues, and also helps to carry carbon dioxide back to the lungs for exhalation.

There are several types of hemoglobin present in the human body, including:

* Hemoglobin A (HbA): This is the most common type of hemoglobin, making up about 95-98% of total hemoglobin in adults. It consists of two alpha and two beta globin chains.
* Hemoglobin A2 (HbA2): This makes up about 1.5-3.5% of total hemoglobin in adults. It consists of two alpha and two delta globin chains.
* Hemoglobin F (HbF): This is the main type of hemoglobin present in fetal life, but it persists at low levels in adults. It consists of two alpha and two gamma globin chains.
* Hemoglobin S (HbS): This is an abnormal form of hemoglobin that can cause sickle cell disease when it occurs in the homozygous state (i.e., both copies of the gene are affected). It results from a single amino acid substitution in the beta globin chain.
* Hemoglobin C (HbC): This is another abnormal form of hemoglobin that can cause mild to moderate hemolytic anemia when it occurs in the homozygous state. It results from a different single amino acid substitution in the beta globin chain than HbS.

Abnormal forms of hemoglobin, such as HbS and HbC, can lead to various clinical disorders, including sickle cell disease, thalassemia, and other hemoglobinopathies.

Antifibrinolytic agents are a class of medications that inhibit the breakdown of blood clots. They work by blocking the action of enzymes called plasminogen activators, which convert plasminogen to plasmin, the main enzyme responsible for breaking down fibrin, a protein that forms the framework of a blood clot.

By preventing the conversion of plasminogen to plasmin, antifibrinolytic agents help to stabilize existing blood clots and prevent their premature dissolution. These medications are often used in clinical settings where excessive bleeding is a concern, such as during or after surgery, childbirth, or trauma.

Examples of antifibrinolytic agents include tranexamic acid, aminocaproic acid, and epsilon-aminocaproic acid. While these medications can be effective in reducing bleeding, they also carry the risk of thromboembolic events, such as deep vein thrombosis or pulmonary embolism, due to their pro-coagulant effects. Therefore, they should be used with caution and only under the close supervision of a healthcare provider.

The duodenum is the first part of the small intestine, immediately following the stomach. It is a C-shaped structure that is about 10-12 inches long and is responsible for continuing the digestion process that begins in the stomach. The duodenum receives partially digested food from the stomach through the pyloric valve and mixes it with digestive enzymes and bile produced by the pancreas and liver, respectively. These enzymes help break down proteins, fats, and carbohydrates into smaller molecules, allowing for efficient absorption in the remaining sections of the small intestine.

Hypoparathyroidism is a medical condition characterized by decreased levels or insufficient function of parathyroid hormone (PTH), which is produced and released by the parathyroid glands. These glands are located in the neck, near the thyroid gland, and play a crucial role in regulating calcium and phosphorus levels in the body.

In hypoparathyroidism, low PTH levels result in decreased absorption of calcium from the gut, increased excretion of calcium through the kidneys, and impaired regulation of bone metabolism. This leads to low serum calcium levels (hypocalcemia) and high serum phosphorus levels (hyperphosphatemia).

Symptoms of hypoparathyroidism can include muscle cramps, spasms, or tetany (involuntary muscle contractions), numbness or tingling sensations in the fingers, toes, and around the mouth, fatigue, weakness, anxiety, cognitive impairment, and in severe cases, seizures. Hypoparathyroidism can be caused by various factors, including surgical removal or damage to the parathyroid glands, autoimmune disorders, radiation therapy, genetic defects, or low magnesium levels. Treatment typically involves calcium and vitamin D supplementation to maintain normal serum calcium levels and alleviate symptoms. In some cases, recombinant PTH (Natpara) may be prescribed as well.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

"Child Nutritional Physiological Phenomena" is a broad term that refers to various physical and biological processes related to nutrition in children. While I couldn't find a precise medical definition for this specific phrase, I can provide you with some key physiological phenomena associated with child nutrition. These include:

1. Growth and Development: Proper nutrition is crucial for normal growth and development in children. Adequate intake of essential nutrients, vitamins, and minerals supports physical growth, brain development, and overall well-being.
2. Digestion and Absorption: The gastrointestinal tract undergoes significant changes during childhood, affecting the ability to digest and absorb various nutrients. For example, lactase production decreases in some children after weaning, leading to lactose intolerance.
3. Energy Metabolism: Children have higher energy requirements per unit of body weight compared to adults due to their rapid growth and development. Proper nutrition ensures efficient energy metabolism and prevents issues like obesity or undernutrition.
4. Immune Function: Nutrition plays a vital role in supporting the immune system. Adequate intake of nutrients like vitamin C, vitamin D, iron, zinc, and protein helps maintain immune function and resistance to infections.
5. Micronutrient Deficiencies: Inadequate nutrition can lead to micronutrient deficiencies, which may impair children's growth, cognitive development, and overall health. Examples include iron deficiency anemia, vitamin A deficiency, and iodine deficiency disorders.
6. Overnutrition and Obesity: Excessive energy intake, coupled with reduced physical activity, can lead to overweight and obesity in children. This increases the risk of developing non-communicable diseases like diabetes, cardiovascular disease, and certain types of cancer later in life.
7. Food Allergies and Intolerances: Children are more prone to food allergies and intolerances than adults. These can manifest as various symptoms, such as skin rashes, digestive issues, or respiratory problems, and may require dietary modifications.
8. Eating Behaviors and Preferences: Childhood is a critical period for shaping eating behaviors and food preferences. Exposure to a variety of healthy foods during this stage can help establish lifelong healthy eating habits.

Maternal-fetal exchange, also known as maternal-fetal transport or placental transfer, refers to the physiological process by which various substances are exchanged between the mother and fetus through the placenta. This exchange includes the transfer of oxygen and nutrients from the mother's bloodstream to the fetal bloodstream, as well as the removal of waste products and carbon dioxide from the fetal bloodstream to the mother's bloodstream.

The process occurs via passive diffusion, facilitated diffusion, and active transport mechanisms across the placental barrier, which is composed of fetal capillary endothelial cells, the extracellular matrix, and the syncytiotrophoblast layer of the placenta. The maternal-fetal exchange is crucial for the growth, development, and survival of the fetus throughout pregnancy.

I'm sorry for any confusion, but "India" is not a medical term or concept. It is a country in South Asia, the second-most populous country in the world, known for its rich history, diverse culture, and numerous contributions to various fields including medicine. If you have any questions related to medical topics, I would be happy to help answer them!

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

Calbindins are a family of calcium-binding proteins that are widely distributed in various tissues, including the gastrointestinal tract, brain, and kidney. They play important roles in regulating intracellular calcium levels and modulating calcium-dependent signaling pathways. Calbindin D28k, one of the major isoforms, is particularly abundant in the central nervous system and has been implicated in neuroprotection, neuronal plasticity, and regulation of neurotransmitter release. Deficiencies or alterations in calbindins have been associated with various pathological conditions, including neurological disorders and cancer.

Hypoprothrombinemia is a medical condition characterized by a decreased level of prothrombin (coagulation factor II) in the blood, which can lead to an increased bleeding tendency. Prothrombin is a protein involved in the coagulation cascade that helps to form blood clots and stop bleeding.

Hypoprothrombinemia can be caused by various factors, including vitamin K deficiency, liver disease, inherited or acquired disorders of prothrombin synthesis, or the use of certain medications such as warfarin. Symptoms may include easy bruising, prolonged bleeding from cuts or injuries, nosebleeds, and in severe cases, internal bleeding. Treatment typically involves addressing the underlying cause and may include vitamin K supplementation, fresh frozen plasma transfusions, or other specific therapies depending on the etiology of the condition.

Smoking is not a medical condition, but it's a significant health risk behavior. Here is the definition from a public health perspective:

Smoking is the act of inhaling and exhaling the smoke of burning tobacco that is commonly consumed through cigarettes, pipes, and cigars. The smoke contains over 7,000 chemicals, including nicotine, tar, carbon monoxide, and numerous toxic and carcinogenic substances. These toxins contribute to a wide range of diseases and health conditions, such as lung cancer, heart disease, stroke, chronic obstructive pulmonary disease (COPD), and various other cancers, as well as adverse reproductive outcomes and negative impacts on the developing fetus during pregnancy. Smoking is highly addictive due to the nicotine content, which makes quitting smoking a significant challenge for many individuals.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Postmenopausal osteoporosis is a specific type of osteoporosis that occurs in women after they have gone through menopause. It is defined as a skeletal disorder characterized by compromised bone strength, leading to an increased risk of fractures. In this condition, the decline in estrogen levels that occurs during menopause accelerates bone loss, resulting in a decrease in bone density and quality, which can lead to fragility fractures, particularly in the hips, wrists, and spine.

It's important to note that while postmenopausal osteoporosis is more common in women, men can also develop osteoporosis due to other factors such as aging, lifestyle choices, and medical conditions.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Body Mass Index (BMI) is a measure used to assess whether a person has a healthy weight for their height. It's calculated by dividing a person's weight in kilograms by the square of their height in meters. Here is the medical definition:

Body Mass Index (BMI) = weight(kg) / [height(m)]^2

According to the World Health Organization, BMI categories are defined as follows:

* Less than 18.5: Underweight
* 18.5-24.9: Normal or healthy weight
* 25.0-29.9: Overweight
* 30.0 and above: Obese

It is important to note that while BMI can be a useful tool for identifying weight issues in populations, it does have limitations when applied to individuals. For example, it may not accurately reflect body fat distribution or muscle mass, which can affect health risks associated with excess weight. Therefore, BMI should be used as one of several factors when evaluating an individual's health status and risk for chronic diseases.

"Sex factors" is a term used in medicine and epidemiology to refer to the differences in disease incidence, prevalence, or response to treatment that are observed between males and females. These differences can be attributed to biological differences such as genetics, hormones, and anatomy, as well as social and cultural factors related to gender.

For example, some conditions such as autoimmune diseases, depression, and osteoporosis are more common in women, while others such as cardiovascular disease and certain types of cancer are more prevalent in men. Additionally, sex differences have been observed in the effectiveness and side effects of various medications and treatments.

It is important to consider sex factors in medical research and clinical practice to ensure that patients receive appropriate and effective care.

I'm sorry for any confusion, but "Bangladesh" is a country located in South Asia, rather than a medical term or condition. It is bordered by India to the west, north, and east, and by Myanmar (Burma) to the southeast, with the Bay of Bengal to the south. The official name of the country is the People's Republic of Bangladesh.

If you have any questions related to medical terminology or health-related topics, I would be happy to help answer them for you!

In the context of medicine, risk is the probability or likelihood of an adverse health effect or the occurrence of a negative event related to treatment or exposure to certain hazards. It is usually expressed as a ratio or percentage and can be influenced by various factors such as age, gender, lifestyle, genetics, and environmental conditions. Risk assessment involves identifying, quantifying, and prioritizing risks to make informed decisions about prevention, mitigation, or treatment strategies.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Dehydrocholesterols are a type of sterol that is derived from cholesterol through the process of oxidation and the removal of hydrogen atoms. These compounds are important intermediates in the biosynthesis of vitamin D and other steroid hormones in the body.

The most well-known dehydrocholesterol is 7-dehydrocholesterol, which is converted to vitamin D3 (cholecalciferol) through a reaction that involves exposure to ultraviolet B (UVB) radiation from sunlight. This conversion occurs in the skin and is an essential step in the production of vitamin D, which plays a critical role in maintaining healthy bones, teeth, and immune function.

Other dehydrocholesterols include 4-en-3-oxo-5α-cholest-8(14)-en-3β-ol (also known as Δ4-dehydrocholesterol) and 5,7,22,24-tetrahydroxycholesterol, which are also important intermediates in the biosynthesis of steroid hormones.

It is worth noting that dehydrocholesterols can be oxidized further to form other compounds known as oxysterols, which have been implicated in various disease processes such as atherosclerosis and neurodegeneration.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Pyridoxamine Phosphate Oxidase (PNPO) is an enzyme that is involved in the metabolism of the vitamin B6. The protein code for this enzyme is PNPO, and its systematic name is pyridoxamine 5'-phosphate:oxygen oxidoreductase (dephosphorylating).

The primary function of Pyridoxamine Phosphate Oxidase is to convert pyridoxamine phosphate (PMP) into pyridoxal 5'-phosphate (PLP), which is an active form of vitamin B6 and a cofactor for many enzymatic reactions in the body, particularly those involved in amino acid metabolism.

Deficiency or dysfunction of Pyridoxamine Phosphate Oxidase can lead to neurological disorders and seizures, as PLP is essential for the synthesis of neurotransmitters and other vital compounds in the brain.

Neural Tube Defects (NTDs) are a group of birth defects that affect the brain, spine, or spinal cord. They occur when the neural tube, which forms the early brain and spinal cord of the embryo, does not close properly during fetal development. This can result in various conditions such as:

1. Anencephaly: a severe defect where most of the brain and skull are missing. Infants with anencephaly are usually stillborn or die shortly after birth.
2. Spina bifida: a condition where the spine does not close properly, leaving a portion of the spinal cord and nerves exposed. This can result in various neurological problems, including paralysis, bladder and bowel dysfunction, and hydrocephalus (fluid buildup in the brain).
3. Encephalocele: a condition where the skull does not close properly, allowing the brain to protrude through an opening in the skull. This can result in various neurological problems, including developmental delays, vision and hearing impairments, and seizures.

NTDs are thought to be caused by a combination of genetic and environmental factors, such as folic acid deficiency, obesity, diabetes, and exposure to certain medications during pregnancy. Folic acid supplementation before and during early pregnancy has been shown to reduce the risk of NTDs.

Dietary iron is a vital nutrient that plays a crucial role in the production of hemoglobin, a protein in red blood cells responsible for carrying oxygen throughout the body. It is also essential for various other bodily functions, including energy production and immune function.

There are two forms of dietary iron: heme and non-heme. Heme iron is found in animal products such as meat, poultry, and fish, while non-heme iron is found in plant-based foods such as beans, lentils, tofu, spinach, and fortified cereals.

The recommended daily intake of dietary iron varies depending on age, sex, and other factors. For example, adult men typically require 8 milligrams (mg) per day, while adult women need 18 mg per day. Pregnant women may require up to 27 mg per day, while breastfeeding women need around 9-10 mg per day.

It is important to note that the absorption of non-heme iron from plant-based foods can be enhanced by consuming them with vitamin C-rich foods or drinks, such as citrus fruits, strawberries, and bell peppers. On the other hand, certain substances such as tannins (found in tea and coffee) and phytates (found in whole grains and legumes) can inhibit the absorption of non-heme iron.

"Food habits" refer to the established patterns or behaviors that individuals develop in relation to their food choices and eating behaviors. These habits can include preferences for certain types of foods, meal timing, portion sizes, and dining experiences. Food habits are influenced by a variety of factors including cultural background, personal beliefs, taste preferences, social norms, and economic resources. They can have significant impacts on an individual's nutritional status, overall health, and quality of life.

It is important to note that while "food habits" may not be a formal medical term, it is often used in the context of nutrition and public health research and interventions to describe the behaviors related to food choices and eating patterns.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Recommended Dietary Allowances (RDAs) are the average daily levels of nutrients that are sufficient to meet the nutrient requirements of nearly all (97-98%) healthy individuals in a specific life stage and gender group. They are considered as the gold standard for establishing nutrient intake recommendations and are used as a benchmark for planning and assessing the nutrient intakes of individuals and populations. The RDAs are established by the Food and Nutrition Board of the National Academies of Sciences, Engineering, and Medicine in the United States. They represent the minimum daily amounts of various nutrients that are necessary to prevent deficiencies and maintain good health.

The term "European Continental Ancestry Group" is a medical/ethnic classification that refers to individuals who trace their genetic ancestry to the continent of Europe. This group includes people from various ethnic backgrounds and nationalities, such as Northern, Southern, Eastern, and Western European descent. It is often used in research and medical settings for population studies or to identify genetic patterns and predispositions to certain diseases that may be more common in specific ancestral groups. However, it's important to note that this classification can oversimplify the complex genetic diversity within and between populations, and should be used with caution.

I'm sorry for any confusion, but "Guatemala" is not a medical term or concept. It is the name of a country located in Central America. If you have any questions related to medical terminology or health-related topics, I would be happy to help with those!

Thiamine deficiency, also known as beriberi, is a condition that results from inadequate intake or impaired absorption of thiamine (vitamin B1), which is essential for energy metabolism and nerve function. This deficiency can lead to various symptoms such as peripheral neuropathy, muscle weakness, heart failure, and in severe cases, Wernicke-Korsakoff syndrome, a neurological disorder associated with alcoholism. Thiamine deficiency is commonly found in populations with poor nutrition, alcohol dependence, and gastrointestinal disorders affecting nutrient absorption.

Bone development, also known as ossification, is the process by which bone tissue is formed and grows. This complex process involves several different types of cells, including osteoblasts, which produce new bone matrix, and osteoclasts, which break down and resorb existing bone tissue.

There are two main types of bone development: intramembranous and endochondral ossification. Intramembranous ossification occurs when bone tissue forms directly from connective tissue, while endochondral ossification involves the formation of a cartilage model that is later replaced by bone.

During fetal development, most bones develop through endochondral ossification, starting as a cartilage template that is gradually replaced by bone tissue. However, some bones, such as those in the skull and clavicles, develop through intramembranous ossification.

Bone development continues after birth, with new bone tissue being laid down and existing tissue being remodeled throughout life. This ongoing process helps to maintain the strength and integrity of the skeleton, allowing it to adapt to changing mechanical forces and repair any damage that may occur.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

Prealbumin, also known as transthyretin, is a protein produced primarily in the liver and circulates in the blood. It plays a role in transporting thyroid hormones and vitamin A throughout the body. Prealbumin levels are often used as an indicator of nutritional status and liver function. Low prealbumin levels may suggest malnutrition or inflammation, while increased levels can be seen in certain conditions like hyperthyroidism. It is important to note that prealbumin levels should be interpreted in conjunction with other clinical findings and laboratory tests for a more accurate assessment of a patient's health status.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

A drug combination refers to the use of two or more drugs in combination for the treatment of a single medical condition or disease. The rationale behind using drug combinations is to achieve a therapeutic effect that is superior to that obtained with any single agent alone, through various mechanisms such as:

* Complementary modes of action: When different drugs target different aspects of the disease process, their combined effects may be greater than either drug used alone.
* Synergistic interactions: In some cases, the combination of two or more drugs can result in a greater-than-additive effect, where the total response is greater than the sum of the individual responses to each drug.
* Antagonism of adverse effects: Sometimes, the use of one drug can mitigate the side effects of another, allowing for higher doses or longer durations of therapy.

Examples of drug combinations include:

* Highly active antiretroviral therapy (HAART) for HIV infection, which typically involves a combination of three or more antiretroviral drugs to suppress viral replication and prevent the development of drug resistance.
* Chemotherapy regimens for cancer treatment, where combinations of cytotoxic agents are used to target different stages of the cell cycle and increase the likelihood of tumor cell death.
* Fixed-dose combination products, such as those used in the treatment of hypertension or type 2 diabetes, which combine two or more active ingredients into a single formulation for ease of administration and improved adherence to therapy.

However, it's important to note that drug combinations can also increase the risk of adverse effects, drug-drug interactions, and medication errors. Therefore, careful consideration should be given to the selection of appropriate drugs, dosing regimens, and monitoring parameters when using drug combinations in clinical practice.

Biotin is a water-soluble vitamin, also known as Vitamin B7 or Vitamin H. It is a cofactor for several enzymes involved in metabolism, particularly in the synthesis and breakdown of fatty acids, amino acids, and carbohydrates. Biotin plays a crucial role in maintaining healthy skin, hair, nails, nerves, and liver function. It is found in various foods such as nuts, seeds, whole grains, milk, and vegetables. Biotin deficiency is rare but can occur in people with malnutrition, alcoholism, pregnancy, or certain genetic disorders.

'Infant food' is not a term with a single, universally accepted medical definition. However, in general, it refers to food products that are specifically designed and marketed for feeding infants, typically during the first year of life. These foods are often formulated to meet the unique nutritional needs of infants, who have smaller stomachs, higher metabolic rates, and different dietary requirements compared to older children and adults.

Infant food can include a variety of products such as:

1. Infant formula: A breast milk substitute that is designed to provide all the nutrients an infant needs for growth and development during the first six months of life. It is typically made from cow's milk, soy, or other protein sources and is fortified with vitamins, minerals, and other nutrients.
2. Baby cereal: A single-grain cereal that is often one of the first solid foods introduced to infants around 4-6 months of age. It is usually made from rice, oats, or barley and can be mixed with breast milk, formula, or water to create a thin porridge.
3. Pureed fruits and vegetables: Soft, cooked, and pureed fruits and vegetables are often introduced to infants around 6-8 months of age as they begin to develop their chewing skills. These foods provide important nutrients such as vitamins, minerals, and fiber.
4. Meats, poultry, and fish: Soft, cooked, and finely chopped or pureed meats, poultry, and fish can be introduced to infants around 8-10 months of age. These foods provide essential protein, iron, and other nutrients.
5. Dairy products: Infant food may also include dairy products such as yogurt and cheese, which can be introduced to infants around 9-12 months of age. These foods provide calcium, protein, and other nutrients.

It is important to note that the introduction and composition of infant food may vary depending on cultural practices, individual dietary needs, and medical recommendations. Parents should consult their healthcare provider for guidance on introducing solid foods to their infants and selecting appropriate infant food products.

Pellagra is a nutritional disorder caused by a deficiency of niacin (vitamin B3) or tryptophan, an amino acid that the body can convert into niacin. It's characterized by the four D's: diarrhea, dermatitis, dementia, and death. The skin lesions typically appear on sun-exposed areas and are often described as "photosensitive." Other symptoms can include inflammation of the mucous membranes, mouth sores, anemia, and depression. If left untreated, pellagra can be fatal. It was once common in regions where people subsisted on corn as a staple food, as corn is low in tryptophan and contains niacin in a form that is not easily absorbed by the body. Nowadays, it's most commonly seen in alcoholics, people with malabsorption disorders, and those with severely restricted diets.

Hydroxylation is a biochemical process that involves the addition of a hydroxyl group (-OH) to a molecule, typically a steroid or xenobiotic compound. This process is primarily catalyzed by enzymes called hydroxylases, which are found in various tissues throughout the body.

In the context of medicine and biochemistry, hydroxylation can have several important functions:

1. Drug metabolism: Hydroxylation is a common way that the liver metabolizes drugs and other xenobiotic compounds. By adding a hydroxyl group to a drug molecule, it becomes more polar and water-soluble, which facilitates its excretion from the body.
2. Steroid hormone biosynthesis: Hydroxylation is an essential step in the biosynthesis of many steroid hormones, including cortisol, aldosterone, and the sex hormones estrogen and testosterone. These hormones are synthesized from cholesterol through a series of enzymatic reactions that involve hydroxylation at various steps.
3. Vitamin D activation: Hydroxylation is also necessary for the activation of vitamin D in the body. In order to become biologically active, vitamin D must undergo two successive hydroxylations, first in the liver and then in the kidneys.
4. Toxin degradation: Some toxic compounds can be rendered less harmful through hydroxylation. For example, phenol, a toxic compound found in cigarette smoke and some industrial chemicals, can be converted to a less toxic form through hydroxylation by enzymes in the liver.

Overall, hydroxylation is an important biochemical process that plays a critical role in various physiological functions, including drug metabolism, hormone biosynthesis, and toxin degradation.

A medical definition of 'food' would be:

"Substances consumed by living organisms, usually in the form of meals, which contain necessary nutrients such as carbohydrates, proteins, fats, vitamins, minerals, and water. These substances are broken down during digestion to provide energy, build and repair tissues, and regulate bodily functions."

It's important to note that while this is a medical definition, it also aligns with common understanding of what food is.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

The postpartum period refers to the time frame immediately following childbirth, typically defined as the first 6-12 weeks. During this time, significant physical and emotional changes occur as the body recovers from pregnancy and delivery. Hormone levels fluctuate dramatically, leading to various symptoms such as mood swings, fatigue, and breast engorgement. The reproductive system also undergoes significant changes, with the uterus returning to its pre-pregnancy size and shape, and the cervix closing.

It is essential to monitor physical and emotional health during this period, as complications such as postpartum depression, infection, or difficulty breastfeeding may arise. Regular check-ups with healthcare providers are recommended to ensure a healthy recovery and address any concerns. Additionally, proper rest, nutrition, and support from family and friends can help facilitate a smooth transition into this new phase of life.

Multivariate analysis is a statistical method used to examine the relationship between multiple independent variables and a dependent variable. It allows for the simultaneous examination of the effects of two or more independent variables on an outcome, while controlling for the effects of other variables in the model. This technique can be used to identify patterns, associations, and interactions among multiple variables, and is commonly used in medical research to understand complex health outcomes and disease processes. Examples of multivariate analysis methods include multiple regression, factor analysis, cluster analysis, and discriminant analysis.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

Dietary proteins are sources of protein that come from the foods we eat. Protein is an essential nutrient for the human body, required for various bodily functions such as growth, repair, and immune function. Dietary proteins are broken down into amino acids during digestion, which are then absorbed and used to synthesize new proteins in the body.

Dietary proteins can be classified as complete or incomplete based on their essential amino acid content. Complete proteins contain all nine essential amino acids that cannot be produced by the human body and must be obtained through the diet. Examples of complete protein sources include meat, poultry, fish, eggs, dairy products, soy, and quinoa.

Incomplete proteins lack one or more essential amino acids and are typically found in plant-based foods such as grains, legumes, nuts, and seeds. However, by combining different incomplete protein sources, it is possible to obtain all the essential amino acids needed for a complete protein diet. This concept is known as complementary proteins.

It's important to note that while dietary proteins are essential for good health, excessive protein intake can have negative effects on the body, such as increased stress on the kidneys and bones. Therefore, it's recommended to consume protein in moderation as part of a balanced and varied diet.

Nutrition disorders refer to conditions that result from eating, drinking, or absorbing nutrients in a way that is not consistent with human physiological needs. These disorders can manifest as both undernutrition and overnutrition. Undernutrition includes disorders such as protein-energy malnutrition, vitamin deficiencies, and mineral deficiencies, while overnutrition includes conditions such as obesity and diet-related noncommunicable diseases like diabetes, cardiovascular disease, and certain types of cancer.

Malnutrition is the broad term used to describe a state in which a person's nutrient intake is insufficient or excessive, leading to negative consequences for their health. Malnutrition can be caused by a variety of factors, including poverty, food insecurity, lack of education, cultural practices, and chronic diseases.

In addition to under- and overnutrition, disordered eating patterns such as anorexia nervosa, bulimia nervosa, binge eating disorder, and other specified feeding or eating disorders can also be considered nutrition disorders. These conditions are characterized by abnormal eating habits that can lead to serious health consequences, including malnutrition, organ damage, and mental health problems.

Overall, nutrition disorders are complex conditions that can have significant impacts on a person's physical and mental health. They require careful assessment, diagnosis, and treatment by healthcare professionals with expertise in nutrition and dietetics.

Esters are organic compounds that are formed by the reaction between an alcohol and a carboxylic acid. They are widely found in nature and are used in various industries, including the production of perfumes, flavors, and pharmaceuticals. In the context of medical definitions, esters may be mentioned in relation to their use as excipients in medications or in discussions of organic chemistry and biochemistry. Esters can also be found in various natural substances such as fats and oils, which are triesters of glycerol and fatty acids.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Sunscreening agents, also known as sunscreens or sunblocks, are substances that protect the skin from the harmful effects of ultraviolet (UV) radiation from the sun. They work by absorbing, reflecting, or scattering UV radiation, preventing it from reaching the skin and causing damage such as sunburn, premature aging, and skin cancer.

Sunscreening agents can be chemical or physical. Chemical sunscreens contain organic compounds that absorb UV radiation and convert it into heat, which is then released from the skin. Examples of chemical sunscreens include oxybenzone, avobenzone, octinoxate, and homosalate.

Physical sunscreens, on the other hand, contain inorganic compounds that reflect or scatter UV radiation away from the skin. The most common physical sunscreen agents are zinc oxide and titanium dioxide.

Sunscreening agents are usually formulated into creams, lotions, gels, sprays, or sticks and are applied to the skin before sun exposure. They should be reapplied every two hours or after swimming, sweating, or toweling off to ensure continued protection. It is recommended to use a broad-spectrum sunscreen with an SPF (Sun Protection Factor) of at least 30, which blocks both UVA and UVB radiation.

Methylmalonyl-CoA mutase is a mitochondrial enzyme that plays a crucial role in the metabolism of certain amino acids and fatty acids. Specifically, it catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA, which is an important step in the catabolic pathways of valine, isoleucine, threonine, methionine, odd-chain fatty acids, and cholesterol.

The enzyme requires a cofactor called adenosylcobalamin (vitamin B12) for its activity. In the absence of this cofactor or due to mutations in the gene encoding the enzyme, methylmalonyl-CoA mutase deficiency can occur, leading to the accumulation of methylmalonic acid and other toxic metabolites, which can cause a range of symptoms including vomiting, dehydration, lethargy, hypotonia, developmental delay, and metabolic acidosis. This condition is typically inherited in an autosomal recessive manner and can be diagnosed through biochemical tests and genetic analysis.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Low-Density Lipoprotein Receptor-Related Protein 2 (LRP2), also known as Megalin, is a large transmembrane protein that belongs to the low-density lipoprotein receptor family. It is primarily expressed in the epithelial cells of various organs, including the kidneys, brain, and liver.

LRP2 plays a crucial role in endocytosis and intracellular signaling by binding to a wide range of ligands, such as lipoproteins, proteases, enzyme inhibitors, and vitamins. In the kidneys, LRP2 is involved in the reabsorption of filtered proteins and the clearance of circulating substances from the primary urine.

In the central nervous system, LRP2 is essential for the development and maintenance of the brain by mediating the uptake of various molecules necessary for neuronal survival and function. Mutations in the LRP2 gene have been associated with several genetic disorders, including Donnai-Barrow syndrome and facio-oculo-acoustico-renal (FOAR) syndrome, which are characterized by developmental abnormalities affecting multiple organ systems.

Deuterium is a stable and non-radioactive isotope of hydrogen. The atomic nucleus of deuterium, called a deuteron, contains one proton and one neutron, giving it an atomic weight of approximately 2.014 atomic mass units (amu). It is also known as heavy hydrogen or heavy water because its hydrogen atoms contain one neutron in addition to the usual one proton found in common hydrogen atoms.

Deuterium occurs naturally in trace amounts in water and other organic compounds, typically making up about 0.015% to 0.018% of all hydrogen atoms. It can be separated from regular hydrogen through various methods such as electrolysis or distillation, and it has many applications in scientific research, particularly in the fields of chemistry and physics.

In medical contexts, deuterium is sometimes used as a tracer to study metabolic processes in the body. By replacing hydrogen atoms in specific molecules with deuterium atoms, researchers can track the movement and transformation of those molecules within living organisms. This technique has been used to investigate various physiological processes, including drug metabolism, energy production, and lipid synthesis.

Tetrahydrofolates (THFs) are a type of folate, which is a form of vitamin B9. Folate is essential for the production and maintenance of new cells, especially in DNA synthesis and methylation. THFs are the active forms of folate in the body and are involved in various metabolic processes, including:

1. The conversion of homocysteine to methionine, an amino acid required for protein synthesis and the formation of S-adenosylmethionine (SAM), a major methyl donor in the body.
2. The transfer of one-carbon units in various metabolic reactions, such as the synthesis of purines and pyrimidines, which are essential components of DNA and RNA.
3. The remethylation of homocysteine to methionine, a process that helps maintain normal homocysteine levels in the body. Elevated homocysteine levels have been linked to an increased risk of cardiovascular disease.

THFs can be obtained from dietary sources, such as leafy green vegetables, legumes, and fortified cereals. They can also be synthesized endogenously in the body through the action of the enzyme dihydrofolate reductase (DHFR), which reduces dihydrofolate (DHF) to THF using NADPH as a cofactor.

Deficiencies in folate or impaired THF metabolism can lead to various health issues, including megaloblastic anemia, neural tube defects during fetal development, and an increased risk of cardiovascular disease due to elevated homocysteine levels.

Free radicals are molecules or atoms that have one or more unpaired electrons in their outermost shell, making them highly reactive. They can be formed naturally in the body through processes such as metabolism and exercise, or they can come from external sources like pollution, radiation, and certain chemicals. Free radicals can cause damage to cells and contribute to the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Antioxidants are substances that can neutralize free radicals and help protect against their harmful effects.

Logistic models, specifically logistic regression models, are a type of statistical analysis used in medical and epidemiological research to identify the relationship between the risk of a certain health outcome or disease (dependent variable) and one or more independent variables, such as demographic factors, exposure variables, or other clinical measurements.

In contrast to linear regression models, logistic regression models are used when the dependent variable is binary or dichotomous in nature, meaning it can only take on two values, such as "disease present" or "disease absent." The model uses a logistic function to estimate the probability of the outcome based on the independent variables.

Logistic regression models are useful for identifying risk factors and estimating the strength of associations between exposures and health outcomes, adjusting for potential confounders, and predicting the probability of an outcome given certain values of the independent variables. They can also be used to develop clinical prediction rules or scores that can aid in decision-making and patient care.

Weight gain is defined as an increase in body weight over time, which can be attributed to various factors such as an increase in muscle mass, fat mass, or total body water. It is typically measured in terms of pounds or kilograms and can be intentional or unintentional. Unintentional weight gain may be a cause for concern if it's significant or accompanied by other symptoms, as it could indicate an underlying medical condition such as hypothyroidism, diabetes, or heart disease.

It is important to note that while body mass index (BMI) can be used as a general guideline for weight status, it does not differentiate between muscle mass and fat mass. Therefore, an increase in muscle mass through activities like strength training could result in a higher BMI, but this may not necessarily be indicative of increased health risks associated with excess body fat.

Photon Absorptiometry is a medical technique used to measure the absorption of photons (light particles) by tissues or materials. In clinical practice, it is often used as a non-invasive method for measuring bone mineral density (BMD). This technique uses a low-energy X-ray beam or gamma ray to penetrate the tissue and then measures the amount of radiation absorbed by the bone. The amount of absorption is related to the density and thickness of the bone, allowing for an assessment of BMD. It can be used to diagnose osteoporosis and monitor treatment response in patients with bone diseases. There are two types of photon absorptiometry: single-photon absorptiometry (SPA) and dual-photon absorptiometry (DPA). SPA uses one energy level, while DPA uses two different energy levels to measure BMD, providing more precise measurements.

5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase is also known as Methionine Synthase. It is a vital enzyme in the human body that plays a crucial role in methionine metabolism and homocysteine regulation.

The medical definition of 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase is as follows:

A enzyme (EC 2.1.1.13) that catalyzes the methylation of homocysteine to methionine, using 5-methyltetrahydrofolate as a methyl donor. This reaction also requires the cofactor vitamin B12 (cobalamin) as a coenzyme. The enzyme is located in the cytosol of cells and is essential for the synthesis of methionine, which is an important amino acid required for various biological processes such as protein synthesis, methylation reactions, and the formation of neurotransmitters.

Deficiency or dysfunction of this enzyme can lead to several health issues, including homocystinuria, a genetic disorder characterized by elevated levels of homocysteine in the blood, which can cause serious complications such as neurological damage, cardiovascular disease, and skeletal abnormalities.

Ethane is not a medical term, but it is a chemical compound that is part of the human environment. Ethane is a hydrocarbon, which means it contains only hydrogen and carbon atoms. Specifically, ethane is made up of two carbon atoms and six hydrogen atoms (C2H6). It is a colorless gas at room temperature and has no smell or taste.

In the context of human health, ethane is not considered to be harmful in small amounts. However, exposure to high levels of ethane can cause respiratory irritation and other symptoms. Ethane is also a greenhouse gas, which means that it contributes to global warming when released into the atmosphere.

Ethane is produced naturally during the breakdown of organic matter, such as plants and animals. It is also produced in small amounts during the digestion of food in the human body. However, most ethane used in industry is extracted from natural gas and petroleum deposits. Ethane is used as a fuel and as a raw material in the production of plastics and other chemicals.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Medical definitions generally do not include plant oils as a specific term. However, in a biological or biochemical context, plant oils, also known as vegetable oils, are defined as lipid extracts derived from various parts of plants such as seeds, fruits, and leaves. They mainly consist of triglycerides, which are esters of glycerol and three fatty acids. The composition of fatty acids can vary between different plant sources, leading to a range of physical and chemical properties that make plant oils useful for various applications in the pharmaceutical, cosmetic, and food industries. Some common examples of plant oils include olive oil, coconut oil, sunflower oil, and jojoba oil.

Bone resorption is the process by which bone tissue is broken down and absorbed into the body. It is a normal part of bone remodeling, in which old or damaged bone tissue is removed and new tissue is formed. However, excessive bone resorption can lead to conditions such as osteoporosis, in which bones become weak and fragile due to a loss of density. This process is carried out by cells called osteoclasts, which break down the bone tissue and release minerals such as calcium into the bloodstream.

The small intestine is the portion of the gastrointestinal tract that extends from the pylorus of the stomach to the beginning of the large intestine (cecum). It plays a crucial role in the digestion and absorption of nutrients from food. The small intestine is divided into three parts: the duodenum, jejunum, and ileum.

1. Duodenum: This is the shortest and widest part of the small intestine, approximately 10 inches long. It receives chyme (partially digested food) from the stomach and begins the process of further digestion with the help of various enzymes and bile from the liver and pancreas.
2. Jejunum: The jejunum is the middle section, which measures about 8 feet in length. It has a large surface area due to the presence of circular folds (plicae circulares), finger-like projections called villi, and microvilli on the surface of the absorptive cells (enterocytes). These structures increase the intestinal surface area for efficient absorption of nutrients, electrolytes, and water.
3. Ileum: The ileum is the longest and final section of the small intestine, spanning about 12 feet. It continues the absorption process, mainly of vitamin B12, bile salts, and any remaining nutrients. At the end of the ileum, there is a valve called the ileocecal valve that prevents backflow of contents from the large intestine into the small intestine.

The primary function of the small intestine is to absorb the majority of nutrients, electrolytes, and water from ingested food. The mucosal lining of the small intestine contains numerous goblet cells that secrete mucus, which protects the epithelial surface and facilitates the movement of chyme through peristalsis. Additionally, the small intestine hosts a diverse community of microbiota, which contributes to various physiological functions, including digestion, immunity, and protection against pathogens.

Organic anion transporters (OATs) are membrane transport proteins that facilitate the movement of organic anions across biological membranes. The term "sodium-dependent" refers to a specific type of OAT that requires sodium ions (Na+) as a co-transport substrate to move organic anions across the membrane. These transporters play crucial roles in the elimination and distribution of various endogenous and exogenous organic anions, including drugs, toxins, and metabolites. Sodium-dependent OATs are primarily located in the kidneys and liver, where they help maintain homeostasis by regulating the reabsorption and secretion of these substances.

Anemia is a medical condition characterized by a lower than normal number of red blood cells or lower than normal levels of hemoglobin in the blood. Hemoglobin is an important protein in red blood cells that carries oxygen from the lungs to the rest of the body. Anemia can cause fatigue, weakness, shortness of breath, and a pale complexion because the body's tissues are not getting enough oxygen.

Anemia can be caused by various factors, including nutritional deficiencies (such as iron, vitamin B12, or folate deficiency), blood loss, chronic diseases (such as kidney disease or rheumatoid arthritis), inherited genetic disorders (such as sickle cell anemia or thalassemia), and certain medications.

There are different types of anemia, classified based on the underlying cause, size and shape of red blood cells, and the level of hemoglobin in the blood. Treatment for anemia depends on the underlying cause and may include dietary changes, supplements, medication, or blood transfusions.

Iron-deficiency anemia is a condition characterized by a decrease in the total amount of hemoglobin or red blood cells in the blood, caused by insufficient iron levels in the body. Hemoglobin is a protein in red blood cells that carries oxygen from the lungs to the rest of the body. When iron levels are low, the body cannot produce enough hemoglobin, leading to the production of smaller and fewer red blood cells, known as microcytic hypochromic anemia.

Iron is essential for the production of hemoglobin, and a deficiency in iron can result from inadequate dietary intake, chronic blood loss, or impaired absorption. In addition to fatigue and weakness, symptoms of iron-deficiency anemia may include shortness of breath, headaches, dizziness, pale skin, and brittle nails. Treatment typically involves iron supplementation and addressing the underlying cause of the iron deficiency.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

Protein S is a vitamin K-dependent protein found in the blood that functions as a natural anticoagulant. It plays a crucial role in regulating the body's clotting system by inhibiting the activation of coagulation factors, thereby preventing excessive blood clotting. Protein S also acts as a cofactor for activated protein C, which is another important anticoagulant protein.

Protein S exists in two forms: free and bound to a protein called C4b-binding protein (C4BP). Only the free form of Protein S has biological activity in inhibiting coagulation. Inherited or acquired deficiencies in Protein S can lead to an increased risk of thrombosis, or abnormal blood clot formation, which can cause various medical conditions such as deep vein thrombosis (DVT) and pulmonary embolism (PE). Regular monitoring of Protein S levels is essential for patients with a history of thrombotic events or those who have a family history of thrombophilia.

'Euglena' is a genus of unicellular flagellate protists that are typically characterized by their oval-shaped bodies, long whip-like tail (flagellum), and eyespot (stigma) which helps them to move towards light. They are commonly found in freshwater environments and can also be found in soil and brackish water. Some species of Euglena have the ability to photosynthesize, while others obtain their nutrition through heterotrophy (consuming other organisms or organic matter). The term 'Euglena' is derived from the Greek word 'euglenes', which means "well-shaped" or "true-eyed". Medical professionals and researchers may study Euglena as part of broader research into protists, microbiology, or ecology.

HL-60 cells are a type of human promyelocytic leukemia cell line that is commonly used in scientific research. They are named after the hospital where they were first isolated, the Hospital of the University of Pennsylvania (HUP) and the 60th culture attempt to grow these cells.

HL-60 cells have the ability to differentiate into various types of blood cells, such as granulocytes, monocytes, and macrophages, when exposed to certain chemical compounds or under specific culturing conditions. This makes them a valuable tool for studying the mechanisms of cell differentiation, proliferation, and apoptosis (programmed cell death).

HL-60 cells are also often used in toxicity studies, drug discovery and development, and research on cancer, inflammation, and infectious diseases. They can be easily grown in the lab and have a stable genotype, making them ideal for use in standardized experiments and comparisons between different studies.

Anticarcinogenic agents are substances that prevent, inhibit or reduce the development of cancer. They can be natural or synthetic compounds that interfere with the process of carcinogenesis at various stages, such as initiation, promotion, and progression. Anticarcinogenic agents may work by preventing DNA damage, promoting DNA repair, reducing inflammation, inhibiting cell proliferation, inducing apoptosis (programmed cell death), or modulating immune responses.

Examples of anticarcinogenic agents include chemopreventive agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and retinoids; phytochemicals found in fruits, vegetables, and other plant-based foods; and medications used to treat cancer, such as chemotherapy, radiation therapy, and targeted therapies.

It is important to note that while some anticarcinogenic agents have been shown to be effective in preventing or reducing the risk of certain types of cancer, they may also have potential side effects and risks. Therefore, it is essential to consult with a healthcare professional before using any anticarcinogenic agent for cancer prevention or treatment purposes.

Renal osteodystrophy is a bone disease that occurs in individuals with chronic kidney disease (CKD). It is characterized by abnormalities in the bones' structure and mineral composition due to disturbances in the metabolism of calcium, phosphorus, and vitamin D. These metabolic disturbances result from the kidneys' decreased ability to maintain balance in the levels of these minerals and hormones.

Renal osteodystrophy can manifest as several bone disorders, including:

1. Osteitis fibrosa cystica: Increased bone turnover due to excessive parathyroid hormone (PTH) production, leading to high levels of alkaline phosphatase and increased resorption of bones.
2. Adynamic bone disease: Decreased bone turnover due to reduced PTH levels, resulting in low bone formation rates and increased fracture risk.
3. Mixed uremic osteodystrophy: A combination of high and low bone turnover, with varying degrees of mineralization defects.
4. Osteomalacia: Defective mineralization of bones due to vitamin D deficiency or resistance, leading to soft and weak bones.

Symptoms of renal osteodystrophy may include bone pain, muscle weakness, fractures, deformities, and growth retardation in children. Diagnosis typically involves laboratory tests, imaging studies, and sometimes bone biopsies. Treatment focuses on correcting the metabolic imbalances through dietary modifications, medications (such as phosphate binders, vitamin D analogs, and calcimimetics), and addressing any secondary hyperparathyroidism if present.

Peroxides, in a medical context, most commonly refer to chemical compounds that contain the peroxide ion (O2−2). Peroxides are characterized by the presence of an oxygen-oxygen single bond and can be found in various substances.

In dentistry, hydrogen peroxide (H2O2) is a widely used agent for teeth whitening or bleaching due to its oxidizing properties. It can help remove stains and discoloration on the tooth surface by breaking down into water and oxygen-free radicals, which react with the stain molecules, ultimately leading to their oxidation and elimination.

However, it is essential to note that high concentrations of hydrogen peroxide or prolonged exposure can cause tooth sensitivity, irritation to the oral soft tissues, and potential damage to the dental pulp. Therefore, professional supervision and appropriate concentration control are crucial when using peroxides for dental treatments.

Longitudinal studies are a type of research design where data is collected from the same subjects repeatedly over a period of time, often years or even decades. These studies are used to establish patterns of changes and events over time, and can help researchers identify causal relationships between variables. They are particularly useful in fields such as epidemiology, psychology, and sociology, where the focus is on understanding developmental trends and the long-term effects of various factors on health and behavior.

In medical research, longitudinal studies can be used to track the progression of diseases over time, identify risk factors for certain conditions, and evaluate the effectiveness of treatments or interventions. For example, a longitudinal study might follow a group of individuals over several decades to assess their exposure to certain environmental factors and their subsequent development of chronic diseases such as cancer or heart disease. By comparing data collected at multiple time points, researchers can identify trends and correlations that may not be apparent in shorter-term studies.

Longitudinal studies have several advantages over other research designs, including their ability to establish temporal relationships between variables, track changes over time, and reduce the impact of confounding factors. However, they also have some limitations, such as the potential for attrition (loss of participants over time), which can introduce bias and affect the validity of the results. Additionally, longitudinal studies can be expensive and time-consuming to conduct, requiring significant resources and a long-term commitment from both researchers and study participants.

Corrinoids are a class of compounds that include vitamin B12 and its analogs. Vitamin B12 is an essential nutrient for humans and other animals, playing a critical role in the synthesis of DNA, the maintenance of the nervous system, and the metabolism of fatty acids and amino acids.

The corrinoid ring is the structural backbone of vitamin B12 and its analogs. It is a complex, planar molecule made up of four pyrrole rings joined together in a macrocycle. The corrinoid ring contains a central cobalt ion, which can form coordination bonds with various ligands, including organic groups such as methyl, hydroxo, and cyano.

Corrinoids can be found in a wide variety of foods, including meat, dairy products, fish, eggs, and some fortified plant-based foods. They are also produced by certain bacteria, which can synthesize the corrinoid ring and the cobalt ion de novo. Some corrinoids have biological activity similar to vitamin B12, while others do not.

In addition to their role in human nutrition, corrinoids are also used in industrial applications, such as the production of antibiotics and other pharmaceuticals. They are also used as catalysts in chemical reactions, due to their ability to form stable coordination complexes with various ligands.

Orthomolecular therapy is not a widely accepted or recognized medical treatment, and it does not have an official medical definition. However, the term "orthomolecular" was coined by Linus Pauling and refers to the practice of using high doses of vitamins, minerals, amino acids, or other naturally occurring substances to prevent or treat various health conditions. The idea behind orthomolecular therapy is to provide the body with the right molecules in the right concentrations to help it achieve optimal health and functioning.

It's important to note that while some of the nutrients used in orthomolecular therapy may have health benefits when taken in appropriate doses, high doses can also be harmful and may interact with medications or other health conditions. Therefore, it is essential to consult with a qualified healthcare provider before starting any new supplement regimen.

The intestinal mucosa is the innermost layer of the intestines, which comes into direct contact with digested food and microbes. It is a specialized epithelial tissue that plays crucial roles in nutrient absorption, barrier function, and immune defense. The intestinal mucosa is composed of several cell types, including absorptive enterocytes, mucus-secreting goblet cells, hormone-producing enteroendocrine cells, and immune cells such as lymphocytes and macrophages.

The surface of the intestinal mucosa is covered by a single layer of epithelial cells, which are joined together by tight junctions to form a protective barrier against harmful substances and microorganisms. This barrier also allows for the selective absorption of nutrients into the bloodstream. The intestinal mucosa also contains numerous lymphoid follicles, known as Peyer's patches, which are involved in immune surveillance and defense against pathogens.

In addition to its role in absorption and immunity, the intestinal mucosa is also capable of producing hormones that regulate digestion and metabolism. Dysfunction of the intestinal mucosa can lead to various gastrointestinal disorders, such as inflammatory bowel disease, celiac disease, and food allergies.

Medical Definition:

Superoxide dismutase (SOD) is an enzyme that catalyzes the dismutation of superoxide radicals (O2-) into oxygen (O2) and hydrogen peroxide (H2O2). This essential antioxidant defense mechanism helps protect the body's cells from damage caused by reactive oxygen species (ROS), which are produced during normal metabolic processes and can lead to oxidative stress when their levels become too high.

There are three main types of superoxide dismutase found in different cellular locations:
1. Copper-zinc superoxide dismutase (CuZnSOD or SOD1) - Present mainly in the cytoplasm of cells.
2. Manganese superoxide dismutase (MnSOD or SOD2) - Located within the mitochondrial matrix.
3. Extracellular superoxide dismutase (EcSOD or SOD3) - Found in the extracellular spaces, such as blood vessels and connective tissues.

Imbalances in SOD levels or activity have been linked to various pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Oral contraceptives, also known as "birth control pills," are synthetic hormonal medications that are taken by mouth to prevent pregnancy. They typically contain a combination of synthetic versions of the female hormones estrogen and progesterone, which work together to inhibit ovulation (the release of an egg from the ovaries), thicken cervical mucus (making it harder for sperm to reach the egg), and thin the lining of the uterus (making it less likely that a fertilized egg will implant).

There are several different types of oral contraceptives, including combination pills, progestin-only pills, and extended-cycle pills. Combination pills contain both estrogen and progestin, while progestin-only pills contain only progestin. Extended-cycle pills are a type of combination pill that are taken for 12 weeks followed by one week of placebo pills, which can help reduce the frequency of menstrual periods.

It's important to note that oral contraceptives do not protect against sexually transmitted infections (STIs), so it's still important to use barrier methods like condoms if you are at risk for STIs. Additionally, oral contraceptives can have side effects and may not be suitable for everyone, so it's important to talk to your healthcare provider about the potential risks and benefits before starting to take them.

... B2 (riboflavin) Vitamin B3 (niacin) Vitamin B5 (pantothenic acid) Vitamin B6 (pyridoxine) Vitamin B7 (biotin) Vitamin ... vitamin A and vitamins B1, B2 and B12. The body's stores for different vitamins vary widely; vitamins A, D, and B12 are stored ... Vitamin C (ascorbic acid and ascorbates) Vitamin D (calciferols) Vitamin E (tocopherols and tocotrienols) Vitamin K ( ... Vitamin C can be synthesized by some species but not by others. Vitamin B12 is the only vitamin or nutrient not available from ...
Vitamin may also refer to: Vitamin (TV series) Vitamins (short story) "Vitamin" (Andrea song) Vitamin (Music for Dead Birds ... Look up vitamin in Wiktionary, the free dictionary. A vitamin is an organic compound and a vital nutrient that an organism ... "Vitamin", a song by NCT 127 from 2 Baddies (2022) This disambiguation page lists articles associated with the title Vitamin. If ... album) "Vitamin", a song by Jamiroquai from Automaton (2017) " ...
"Vitamin L" is a song by the American pop rock band B.E. Taylor Group. It is the fifth track on the band's second studio album, ... Three whole lines in the third verse are changed, but these do not change the story in any way.[citation needed] A. "Vitamin L ... The lyrics tell the story of a man whose medical condition can only be treated with an unstable drug, called Vitamin L, that ... erasing the idea that the vitamin is an unstable drug. ... " (Club Version) (4:46) B. "Vitamin L" (LP Version) (5:29) ( ...
Verda T. "Vitamin" Smith, Jr. (October 30, 1923 - February 14, 2000) was a National Football League (NFL) running back for the ... "Standout Ram Kick Returner Vitamin T. Smith Dead at 76". Los Angeles Times. Associated Press. 16 February 2000. Retrieved 15 ...
In December, 2017 Vitamin World, Inc became a "C" class Corporation, "Vitamin World USA Corp." In January 2018, Vitamin World ... Vitamin World was acquired from Nature's Bounty by private equity firm Center Lane Partners in 2016. Vitamin World USA Corp. ... Vitamin World USA Corporation is a global retailer of vitamins and nutritional supplements and is headquartered on Long Island ... Companies portal Vitamin World Company Information (Official corporate website) "Carlyle's NBTY to sell Vitamin World to Center ...
... may refer to: Methylphenidate, also known as Ritalin or Vitamin R "Vitamin R (Leading Us Along)", a song by Chevelle ... of beer in the Pacific Northwest of the United States This disambiguation page lists articles associated with the title Vitamin ...
... is a former designation given to several distinct chemical compounds, none of which is currently considered a true ... vitamin: Adenine Carnitine Choline This set index article lists chemical compounds articles associated with the same name. If ...
... is a water-soluble vitamin, one of the B vitamins. The vitamin actually comprises a group of six chemically related ... Wu Y, Zhang L, Li S, Zhang D (April 2021). "Associations of dietary vitamin B1, vitamin B2, vitamin B6, and vitamin B12 with ... Overconsumption of seeds from Ginkgo biloba can deplete vitamin B6, because the ginkgotoxin is an anti-vitamin (vitamin ... Vitamin B6 is one of the B vitamins, and thus an essential nutrient. The term refers to a group of six chemically similar ...
... is a subcategory of vitamin A. Dehydroretinal (3,4-dehydroretinal) belongs to the group of vitamin A2 as a ... Törmä H, Vahlquist A (1985). "Biosynthesis of 3-dehydroretinol (vitamin A2) from all-trans-retinol (vitamin A1) in human ... vitamin A2 acid). Vitamin A2 was first identified by Richard Alan Morton using newly-developed absorption spectroscopy in 1941 ... Babino D, Golczak M, Kiser PD, Wyss A, Placzewski K, von Lintig J (2016). "The Biochemical Basis of Vitamin A3 Production in ...
... , colloquially referred to as niacin, is a vitamin family that includes three forms, or vitamers: niacin (nicotinic ... "Vitamin B3 (Niacin)". VivaHealth.org. 2000. Retrieved 12 May 2020. "Effects of Cooking on Vitamins (Table)". Beyondveg. ... Because deficiencies of other B-vitamins may be present, the WHO recommends a multi-vitamin in addition to the niacinamide. ... Institute of Medicine (1998). "Niacin". Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin ...
... had a six-week theatre run and was declared a super hit. According to various theater owners in Gujarat, Vitamin ... "Vitamin She Movie Review, Trailer, & Show timings at Times of India". The Times of India. Archived from the original on 31 ... Vitamin She (Gujarati: વિટામીન શી) is a 2017 Gujarati romantic comedy-drama film directed by Faisal Hashmi and produced by ... "Vitamin She". MoviesFYI. Archived from the original on 5 August 2017. Retrieved 5 August 2017. "૯૩.૪ ટકા કલેક્શન સાથે વિટામિન ...
... (sitocalciferol) is a form of vitamin D. Analogs of calcitriol, a form of vitamin D3, have been proposed for use as ... The effects of vitamin D5 on prostate cancer have also been studied, and unlike vitamin D3, vitamin D5 does not cause ... Studies on vitamin D3 have shown inhibition of cell proliferation in prostate cancer, but high doses of vitamin D3 result in ... The most researched analogue of vitamin D5 as an antitumor agent is 1α-hydroxyvitamin D5. 1α-Hydroxyvitamin D5 is a chemical ...
... is a fat-soluble vitamin, a category that also includes vitamins D, E and K. The vitamin encompasses several ... Vitamin A is found in many foods. Vitamin A in food exists either as preformed retinol - an active form of vitamin A - found in ... Vitamin A is a fat-soluble vitamin and an essential nutrient for animals. The term "vitamin A" encompasses a group of ... Institute of Medicine (2001). "Vitamin A". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper ...
... is a Turkish pop and pop rock band which make parody songs. The Grup Vitamin is composed of Emrah Anul, Selçuk ... The real Vitamin continued with Gökhan Semiz, Selçuk Aksoy, Emrah Anul and Sertaç Demirtaş. At the same time, Ercan Saatçi and ... He and Ufuk changed their band's name to Uf-Er and release two albums, Vitamin Değil Şifa Niyetine in 1992 and Ebabil Kuştur in ... Debates about which the real Vitamin is started to exist. Ercan and Ufuk attended a morning show and lip synced one of Gökhan's ...
"Vitamin Z Chart History". Billboard.com. Retrieved 25 June 2019. Vitamin Z: Official website (Articles with short description, ... Vitamin Z also made news when their video for the song "Circus Ring (We Scream About)" was filmed in Istanbul, making them the ... Vitamin Z were an English band, formed in 1982 by vocalist Geoff Barradale and bassist Nick Lockwood. Their biggest hit " ... Vitamin Z founders Geoff Barradale and Nick Lockwood were born and raised in Sheffield.[citation needed] The group originally ...
... got its first trailer in January, 2020, and was announced to have a release date of February 20, 2020 as a ... Vitamin Connection is a 2020 action-adventure game developed and published by WayForward, exclusively for the Nintendo Switch. ... Reception Vitamin Connection was generally well received by critics. Review aggregator website Metacritic gave the game 80/100 ... "Vitamin Connection, Mighty Switch Force! Collection getting physical releases at Limited Run Games". Nintendo Wire. January 10 ...
Wikimedia Commons has media related to Vitamin X. Vitamin X US tour at Punknews.org Vitamin X - Bad Trip at ScenePointBlank ... Vitamin X (abbreviated VX) is a Dutch hardcore punk band from Amsterdam formed in 1997. Their sound is characterized by furious ... Exclaim! review "VITAMIN X: Amsterdam-Based Hardcore Punk Act to Release New LP Through Southern Lord This Spring". 15 March ... "Hear Dinosaur Jr.'s J Mascis Solo over Vitamin X's Hardcore Ripper "Flip the Switch"". 27 April 2018. ...
... prescriptions decreased by 53% while vitamin C remained constant and vitamin D increased by 454%. A report on vitamin ... Institute of Medicine (2000). "Vitamin E". Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. ... Vitamin E is fat soluble, so dietary supplement products are usually in the form of the vitamin, esterified with acetic acid to ... Pyrolysis of vitamin E acetate produces a range of toxic gases. Vitamin E was discovered in 1922 by Herbert McLean Evans and ...
... , also known as cobalamin, is a water-soluble vitamin involved in metabolism. It is one of eight B vitamins. It is ... Vitamin B12 is the most chemically complex of all vitamins, and for humans, the only vitamin that must be sourced from animal- ... "Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency: a systematic review of randomized controlled ... Vitamin B12 is the most chemically complex of all the vitamins. The structure of B12 is based on a corrin ring, which is ...
Vitamin K Vitamin K1 Vitamin K3 Myneni VD, Mezey E (November 2017). "Regulation of bone remodeling by vitamin K2". Oral ... Vitamin K2 or menaquinone (MK) (/ˌmɛnəˈkwɪnoʊn/) is one of three types of vitamin K, the other two being vitamin K1 ( ... The mechanism of action of vitamin K2 is similar to vitamin K1. K vitamins were first recognized as a factor required for ... Institute of Medicine, Panel on Micronutrients (2001). "5. Vitamin K". Dietary Reference Intakes for Vitamin A, Vitamin K, ...
... may refer to: Salicylic acid, although not a vitamin, is sometimes called "vitamin S" a song by Jamaican dancehall ... particularly when illicitly provided and/or taken This disambiguation page lists articles associated with the title Vitamin S. ...
... prenatal vitamin soft chews, vitamin chewables, and even jellied prenatal vitamins. Prenatal vitamins are available both over ... Often prenatal vitamins also have a reduced dosage of vitamins that may be detrimental to the fetus when taken in high doses ( ... Vitamins and minerals such as folic acid, calcium, and iron are in higher concentrations, while nutrients such as vitamin A are ... Prenatal vitamins, also known as prenatal supplements, are vitamin and mineral supplements intended to be taken before and ...
... is a former designation given to several distinct chemical compounds, which is not considered a true vitamin: ...
... vitamin A, vitamin B6, vitamin B12, vitamin D and vitamin E. As of 21 December 2018, 81 countries required food fortification ... Other B Vitamins (1998). "Vitamin B6". Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin ... Vitamin deficiency is the condition of a long-term lack of a vitamin. When caused by not enough vitamin intake it is classified ... Vitamin A of Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, ...
... of adults reported they consumed a vitamin C dietary supplement or a multi-vitamin/mineral supplement that included vitamin C, ... In these, vitamin C did not affect duration or severity. An earlier review stated that vitamin C did not prevent colds, did ... The instability of vitamin C during cooking and/or storage limits the number of foods suitable for this. Vitamin C helps to ... Another cause of vitamin C loss from food is leaching, which transfers vitamin C to the cooking water, which is decanted and ...
Box Set now available for pre-order! - Official Ozric Tentacles website Vitamin Enhanced box set - Backstreet Merch "Vitamin ... Vitamin Enhanced is a 6-disc box set by English psychedelic rock band Ozric Tentacles. It compiles the band's six first ... In 2013, to celebrate the band's 30th anniversary, the original six albums were remastered for the reissue of the Vitamin ...
... formed in the San Francisco Bay Area, United States, in 2004 after the dissolving of the bands City Volume and ... According to the Vitamin Party website the band has put together a live album compiled of soundboard recordings from a number ... Vitamin Party was thanked on the album. Thompson and Carey are also featured on the San Francisco natives Ex-Boyfriends new ... Vitamin Party is an American, San Francisco/Bay Area "DIY" rock-punk band, which formed in 2004. Their style shows influences ...
Since then, Vitamin Records has released over 185 albums in a variety of genres. Vitamin Records has also released an album ... from Vitamin String Quartet's tribute to Janet Jackson in July 2008, "Hallelujah" from Vitamin String Quartet's tribute to ... Vitamin Records is a Los Angeles-based record label founded in 1999 as a subsidiary of CMH Records. The label was formerly home ... Three songs from Vitamin Records have been featured on the Fox television show So You Think You Can Dance, including "Control ...
... includes two natural vitamers: vitamin K1 (phylloquinone) and vitamin K2 (menaquinone). Vitamin K2, in turn, consists ... Vitamin K3 (menadione), a synthetic form of vitamin K, was used to treat vitamin K deficiency, but because it interferes with ... Wikimedia Commons has media related to Vitamin K. Look up vitamin k in Wiktionary, the free dictionary. "Vitamin K". Drug ... Plant-sourced forms are primarily vitamin K1. Animal-sourced foods are primarily vitamin K2. Vitamin K has several roles: an ...
The Aeros Vitamin is a Ukrainian single-place, paraglider, designed and produced by Aeros of Kyiv. The Vitamin was intended as ... The Vitamin 2 offers the same sizes, with the addition of the smaller 25 for lighter pilots. The Vitamin 2 is constructed from ... Vitamin 27 Circa 2003 version with a 12.27 m (40.3 ft) span wing, an area of 26.75 m2 (287.9 sq ft), an aspect ratio of 4.81:1 ... Vitamin 2 25 Version in production in 2012, with a 10.97 m (36.0 ft) span wing, an area of 25.0 m2 (269 sq ft), with 39 cells ...
Learn about the importance of vitamin D supplementation for breastfed infants. ... Vitamin D Fact Sheet for Health Professionals - National Institutes of Health. *Vitamin D Fact Sheet for Consumers - National ... Vitamin D deficiency rickets among breastfed infants is rare, but it can occur if an infant does not receive additional vitamin ... Why are infants at risk for vitamin D deficiency?. The risk for vitamin D deficiency is increased when there is limited ...
Vitamin B12 overview for health professionals. Research health effects, dosing, sources, deficiency symptoms, side effects, and ... Wu Y, Zhang L, Li S, Zhang D. Associations of dietary vitamin B1, vitamin B2, vitamin B6, and vitamin B12 with the risk of ... Vitamin B12 Deficiency. Causes of vitamin B12 deficiency include difficulty absorbing vitamin B12 from food, lack of intrinsic ... Oral vitamin B(12) versus intramuscular vitamin B(12) for vitamin B(12) deficiency. Cochrane Database Syst Rev 2018;3:CD004655 ...
Vitamin K makes proteins for healthy bones and tissues. It also makes proteins for blood clotting. There are different types of ... You also need to be careful about taking vitamin E supplements. Vitamin E can interfere with how vitamin K works in your body. ... Vitamin K (Harvard School of Public Health) * Vitamin K deficiency bleeding of the newborn (Medical Encyclopedia) Also in ... Vitamins are substances that your body needs to grow and develop normally. Vitamin K helps your body by making proteins for ...
Vitamin D (VIDRIA_D) Data File: VIDRIA_D.xpt First Published: June 2008. Last Revised: November 2010. Note: See Revised ... Development of a standard reference material for vitamin D in serum. Am J Clin Nutr 2008 August 1;88(2):511S-512S. ... The Diasorin (formerly Incstar) 25-OH- Vitamin D assay consists of a two-step procedure. The first procedure involves an ... differences over time are due to true changes in the vitamin D status of the US population. ...
Dr David Johnson on why we should consider vitamin D supplementation beyond its benefits for bone health. ... We know that vitamin D receptors regulate an active metabolite of vitamin D highly expressed in both the small and large bowel ... We traditionally recognize vitamin D as the key vitamin for regulation of bone metabolism and homeostasis, but I want you to ... It relates to the risk reduction for vitamin D and potential for vitamin D replacement. ...
Most nutritional nervous-system disorders involve vitamin deficiency, particularly of the B group. Many of them occur in the ... Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev. 2018 Mar 15. 3: ... Folate (vitamin B9). Folate is a water-soluble essential vitamin found in green leafy vegetables and the liver. Folate is ... Niacin (vitamin B3, nicotinic acid). Niacin is a water-soluble vitamin and an essential component of nicotinamide adenine ...
Vitamin Stores Featured Opportunities Browse franchise and business opportunities that are available for purchase. ... Vitamins, minerals, supplements, sport nutrition products $529K - $977K. ... Vegan health and beauty stores/cafes/vitamin and supplement stores $96K - $459K ... Sports supplements, vitamins, herbs, smoothies $93K - $185K. ... Vitamin Stores: Franchise Information from Entrepreneur.com ...
Fat-soluble vitamins are stored in the bodys fatty tissue and liver. ... Vitamin D is a fat-soluble vitamin. Fat-soluble vitamins are stored in the bodys fatty tissue and liver. ... Very few foods naturally contain vitamin D. As a result, many foods are fortified with vitamin D. Fortified means that vitamins ... The body makes vitamin D when the skin is directly exposed to the sun. That is why it is often called the "sunshine" vitamin. ...
Since The Vitamin Bridge is donating prenatal vitamins to first-touch providers, strategic alignment with prenatal vitamin ... The Vitamin Bridge was formed in May 2019 and began donating prenatal vitamins to a single pregnancy center in September of ... The Vitamin Bridge aspires to: (1) fill nutrition gaps through providing prenatal vitamins to at-risk women at the earliest ... Prenatal vitamin and nutrition education Distribution of prenatal vitamins and nutrition education materials to underserved ...
... since I am especially low in vitamin A, vitamin B1, vitamin B2, vitamin D, vitamin E and folate, by increasing consumption of ... vitamins Essay. VITAMINS Introduction Vitamins are organic food substances found only in living things, i.e. plants and animals ... Vitamins and how they affect immunity Vitamin A Insufficient vitamin A has been found ... which is produced with the aid of vitamin D and vitamin K. The formation of hydroxyappitie, only possible with vitamin D, gives ...
Laboratory tests for vitamin D are used to determine a persons vitamin D status, and to identify persons with vitamin D ... What role does the Vitamin D Reference Method Laboratory play in vitamin D assessment? CDCs Vitamin D Reference Laboratory ... What is vitamin D? The biologically active form of vitamin D (1,25-dihydroxyvitamin D) is a hormone whose main function is to ... How is vitamin D status assessed? Blood tests for assessing a persons vitamin D status measure two forms: 25- ...
Prolonged sun exposure also does not result in vitamin D toxicity because the previtamin D3 is degraded as the skin heats up, ... and also because of the formation of various other non-functional forms of vitamin D from the thermally activated compound. ... Vitamin D toxicity can occur from high intakes of supplements containing vitamin D, but not from dietary intake. ... I wonder how can i know if I have a vitamin D toxication . I was taking a Vitamin D 3 oil.. Is there any variable in blood that ...
... but vitamin K -- found in leafy green vegetables -- may boost lung health. ... It may not get the publicity of some better-known vitamins like D, ... It may not get the publicity of some better-known vitamins like D, but vitamin K -- found in leafy green vegetables -- may ... People with markers of low vitamin K levels had lower FEV1 and lower FVC on average. Those with lower levels of vitamin K were ...
Much of the growing interest in vitamin D is powered by new data being extracted from the National Health and Nutrition ... witnessed a vigorous increase in interest in vitamin D from both the lay and biomedical worlds. ... Update in vitamin D J Clin Endocrinol Metab. 2010 Feb;95(2):471-8. doi: 10.1210/jc.2009-1773. ... The past decade, particularly the last 18 months, witnessed a vigorous increase in interest in vitamin D from both the lay and ...
Find out how vitamin E oil may help with these conditions, some of the risks involved, and how to use it safely. ... Vitamin E oil is thought to have benefits for a wide range of skin and nail conditions, including treating dry skin, preventing ... Vitamin E oil is applied topically to the skin.. Vitamin E oil is distinct from vitamin E supplements because it is applied ... Vitamin E oil is derived from vitamin E and can be applied directly to the skin, or added to lotions, creams, and gels. It is ...
Vitamin K and potassium are both essential micronutrients, but theyre not the same. This article compares the two. ... Vitamin K overview. Vitamin K is a group of fat-soluble vitamins the body needs to produce proteins for blood clotting and bone ... Vitamin K has two main forms: vitamin K1 and vitamin K2.​ This article examines the differences between the two, as well as ... Vitamin K concerns. Research shows that people with CKD have an increased risk of vitamin K deficiency (. 39. , 40. , 41. ). ...
The Vitamin D Society wants to make the public aware of a recent meta-analysis study published in BioMed Central... ... If your vitamin D test score is low, below 100 nmol/L Canada or 40 ng/ml USA, take immediate action to increase your vitamin D ... About the Vitamin D Society: The Vitamin D Society is a Canadian non-profit group organized to: increase awareness of the many ... John Cannell from the Vitamin D Council recommends sunlight, sunbed or D3 supplementation to increase your vitamin D blood ...
... is able to bind to the haemoglobin molecule and affect its ability to pick up and release oxygen. A vitamin B6 ... Severe deficiency of vitamin B6 is rare. Alcoholics are thought to be most at risk of vitamin B6 deficiency, due to low dietary ... Although vitamin B6 is a water-soluble vitamin and is excreted in the urine, prolonged ingestion of very high dose supplements ... One of the most important functions of vitamin B6 is its role in protein metabolism as the vitamin B6 coenzymes are required to ...
The evidence for taking vitamin C with iron to promote iron absorption is scant and dates back almost 50 years. ... Vitamin C is often recommended to be taken with iron to promote absorption. The evidence for this practice is scant, and dates ... Vitamin C supplementation did not lead to a difference in iron absorption, lab indices of iron deficiency, or the biological ... Li and colleagues looked at the effect of vitamin C supplementation on iron levels in women with iron deficiency anemia.9 A ...
... is a very important vitamin. Preformed vitamin A, as is found in fish liver oil, was the first vitamin ... Vitamin A, also known as beta-carotene or retinol, ... When vitamin A is deficient, vitamin C seems to be lost more ... Vitamin A, also known as beta-carotene or retinol,. is a very important vitamin. Preformed vitamin A, as is found in fish liver ... the vitamin E promotes the activity of vitamin A. One hundred thousand IUs of vitamin A may help alleviate severe acne in many ...
Shop Vitamins direct from Safeway. Browse our selection and order groceries online or in app for flexible Delivery or ... Signature Care Essence C 7 B Vitamins C Vitamin C 1000 mg Raspberry Fizzy Powder - 30 Count ... vitamins supplements nature made release nature made tablet nature made multivitamin natures truth liquid natures truth ... Nature Made Vitamin C Timed Release With Rose Hips 1000 Mg - 60 Count ...
Childrens vitamin C keeps teeth, gums, blood vessels and bones healthy, and strengthens the immune system so the body can ... Vitables, Gummy Vitamin C For Children, No Gelatin, Orange, 60 Vegetarian Gummies. ... Carlson, Kids Vitamin C Gummies, Natural Orange, 125 mg, 60 Vegetarian Gummies. ... Lifeable, Kids Vitamin C + Echinacea Gummies, Natural Citrus, 125 mg, 60 Gummies. ...
... what these factors are will be especially useful as public health experts continue to explore ways to increase vitamin D status ... vitamin D status is governed mainly by genetic factors. Conversely, non-genetic factors are most important during the summer. ... Vitamin D is somewhat of an unusual "vitamin," because it can be made in the body from sunlight and most foods do not contain ... Athletes Who Play Indoor Sports at Risk of Vitamin D Deficiency. Mar. 9, 2020 A new study assesses vitamin D status and ...
Posts about vitamin/mineral supplementation written by What Doctors Dont Tell You ... CHEMOTHERAPY: Vitamin E can reduce the worst effects. What Doctors Dont Tell You ... DONT TELL THE EU: High-dose vitamins are good for you. What Doctors Dont Tell You ...
Shop vitamin C face masks now, and pay later in 4 interest-free payments with Klarna! ... Discover the best vitamin C face masks at Sephora! ... Vitamin C Face Masks. Browse More in Vitamin C Face Masks. * ... Youth To The PeopleSuperberry Hydrate + Glow Dream Night Cream + Mask with Vitamin C. 2.5K ...
Most foods and vitamins are not absorbed into the bloodstream; our bodies no longer contain the elements necessary for ... ... With proper assimilation through enzymes you can magnify the effects of other vitamins and supplements. Any vitamin you consume ... Most foods and vitamins are not absorbed into the bloodstream; our bodies no longer contain the elements necessary for ... Perhaps you have not been getting all you expected from your vitamins; the key reason could be lack of enzymes in your stomach ...
Vitamin B2 (riboflavin) Vitamin B3 (niacin) Vitamin B5 (pantothenic acid) Vitamin B6 (pyridoxine) Vitamin B7 (biotin) Vitamin ... vitamin A and vitamins B1, B2 and B12. The bodys stores for different vitamins vary widely; vitamins A, D, and B12 are stored ... Vitamin C (ascorbic acid and ascorbates) Vitamin D (calciferols) Vitamin E (tocopherols and tocotrienols) Vitamin K ( ... Vitamin C can be synthesized by some species but not by others. Vitamin B12 is the only vitamin or nutrient not available from ...
Physical sciences/Chemistry/Chemical compounds/Biomolecules/Nutrients/Vitamins/Vitamin D * /Life sciences/Organismal biology/ ... higher for subjects with vitamin D deficiency at the start of the study than for subjects with normal vitamin D levels and 77% ... Vitamin D deficiency increases risk of losing muscle strength by 78%. Fundação de Amparo à Pesquisa do Estado de São Paulo ... Vitamin D deficiency increases risk of losing muscle strength by 78% Researchers in Brazil and the UK analyzed data for more ...
A Vitamin Eye Mask made from bio-cellulose to visibly depuff and reduce dark circles in just five minutes. ...
Buy Waitrose Vitamin C & Zinc online from Waitrose today. Free delivery - T&Cs apply ... Vitamin C & zinc food supplement, 90 tablets. Zinc and vitamin C contribute to the normal function of the immune system and the ... Waitrose Vitamin C & Zinc90s. You have 0. of this in your trolley ... Vitamin C. 49751mg. 100 mg. Vitamin C. 62189% of NRV. 125% of ...
  • Vitamin D deficiency rickets among breastfed infants is rare, but it can occur if an infant does not receive additional vitamin D from foods, a vitamin D supplement, or adequate exposure to sunlight. (cdc.gov)
  • To avoid developing a vitamin D deficiency, the Dietary Guidelines for Americans and American Academy of Pediatrics recommend breastfed and partially breastfed infants be supplemented with 400 IU per day of vitamin D beginning in the first few days of life. (cdc.gov)
  • Why are infants at risk for vitamin D deficiency? (cdc.gov)
  • The risk for vitamin D deficiency is increased when there is limited exposure to sunlight or when an infant is not consuming an adequate amount of vitamin D. Although reducing sun exposure is important for preventing cancer, it also decreases the amount of vitamin D that a person can make from sunlight. (cdc.gov)
  • The cutoff between normal vitamin B12 levels and deficiency varies by method and laboratory, but most laboratories define subnormal serum or plasma values as those lower than 200 or 250 pg/mL (148 or 185 pmol/L) [ 2 ]. (nih.gov)
  • Levels of serum methylmalonic acid (MMA), a vitamin B12-associated metabolite, are the most sensitive markers of vitamin B12 status, and an MMA level greater than 0.271 micromol/L suggests vitamin B12 deficiency [ 6-8 ]. (nih.gov)
  • a serum homocysteine level higher than 15 micromol/L, for example, suggests vitamin B12 deficiency [ 11 ]. (nih.gov)
  • Experts suggest that if a patient's serum vitamin B12 level is less than 150 pg/ml (111 pmol/L), the patient's serum MMA levels should be checked to confirm a diagnosis of vitamin B12 deficiency [ 7 , 9 ]. (nih.gov)
  • This new study supports the idea that vitamin D deficiency makes a difference. (medscape.com)
  • Vitamin D deficiency can lead to weakened bones ( osteoporosis in adults or rickets in children). (medlineplus.gov)
  • For example, vitamin A plays a crucial role in the immune system such that a deficiency in this essential vitamin is strongly associated with infectious diseases. (bartleby.com)
  • Laboratory tests for vitamin D are used to determine a person's vitamin D status, and to identify persons with vitamin D deficiency. (cdc.gov)
  • These tests must be accurate to ensure correct diagnoses and treatment of patients with vitamin D deficiency. (cdc.gov)
  • Healthcare providers often give vitamin K1 supplements to infants just after birth to prevent vitamin K deficiency bleeding (VKDB). (healthline.com)
  • Vitamin C supplementation did not lead to a difference in iron absorption, lab indices of iron deficiency, or the biological half-life of iron. (medscape.com)
  • Li and colleagues looked at the effect of vitamin C supplementation on iron levels in women with iron deficiency anemia. (medscape.com)
  • Absorption of this fat-soluble vitamin is reduced with alcohol use, with vitamin E deficiency, with cortisone medication, and with excessive iron intake or the use of mineral oil, as well as with exercise. (healthy.net)
  • Actually, analysis of the average American diet reveals that it provides only about 4,000 units of vitamin A daily, so the many problems of vitamin A deficiency, such as visual changes, skin dryness, and increased infections, are more common than most people realize. (healthy.net)
  • Vitamin A deficiency may allow irritation or inflammation of the eye tissue to occur more easily. (healthy.net)
  • Historically, when intake of vitamins from diet was lacking, the results were vitamin deficiency diseases. (wikipedia.org)
  • The ancient Egyptians knew that feeding liver to a person may help with night blindness, an illness now known to be caused by a vitamin A deficiency. (wikipedia.org)
  • The advancement of ocean voyages during the Age of Discovery resulted in prolonged periods without access to fresh fruits and vegetables, and made illnesses from vitamin deficiency common among ships' crews. (wikipedia.org)
  • Endocrine disorders such as vitamin D deficiency or insufficiency can lead to loss of bone mineral density as well as a reduction in muscle mass, strength and function," he said. (eurekalert.org)
  • The main conclusion was that individuals with vitamin D deficiency, defined as less than 30 nanomoles per liter in the blood, had a 70% higher risk of developing dynapenia by the end of the four-year study period than those with normal levels of vitamin D, defined as more than 50 nmol/L. (eurekalert.org)
  • The results proved that the risk of muscle weakness is heightened by both vitamin D deficiency and insufficiency, Alexandre said. (eurekalert.org)
  • Another conclusion to be derived from the results of the study is that it's important to take vitamin D if you have a deficiency or insufficiency," he added. (eurekalert.org)
  • There are many more days of sunlight per year in Brazil, and yet we're known to have a high incidence of vitamin D deficiency and insufficiency, especially among older people. (eurekalert.org)
  • Also, many with eating disorders have a Vitamin B2 and B6 deficiency. (healthyplace.com)
  • Unlike other B vitamins, riboflavin is not found in many foods, so the most common cause of deficiency is lack of dietary intake, especially in the elderly. (healthyplace.com)
  • Scurvy (Vitamin C deficiency) was first discovered in British sailors who were not consuming many foods that contained Vitamin C. From then on they carried Vitamin C-packed limes on their voyages. (healthcastle.com)
  • Vitamin C deficiency is rare in North America. (healthcastle.com)
  • It could help reduce vitamin A deficiency and childhood blindness in developing countries. (bbc.co.uk)
  • The World Health Organization estimates up to 500,000 children go blind each year because of vitamin A deficiency. (bbc.co.uk)
  • Not everyone believes golden rice is the best answer to Vitamin A deficiency. (bbc.co.uk)
  • The problem is that you're trying to fix vitamin A deficiency with a narrow GM solution when the problem is much more complex," said Clare Oxborrow, from the anti-GM group Friends of the Earth. (bbc.co.uk)
  • If you shun the sun, wear sunscreen, suffer from milk allergies, or adhere to a strict vegan diet, you may be at risk for vitamin D deficiency. (webmd.com)
  • Traditionally, vitamin D deficiency has been associated with rickets, a disease in which the bone tissue doesn't properly mineralize, leading to soft bones and skeletal deformities. (webmd.com)
  • Symptoms of bone pain and muscle weakness can mean you have a vitamin D deficiency. (webmd.com)
  • Because the body makes vitamin D when your skin is exposed to sunlight, you may be at risk of deficiency if you are homebound, live in northern latitudes, wear long robes or head coverings for religious reasons, or have an occupation that prevents sun exposure. (webmd.com)
  • During the winter, vitamin D deficiency can be more prevalent because there is less sunlight available. (webmd.com)
  • Some studies show that older adults with darker skin are at high risk of vitamin D deficiency. (webmd.com)
  • As people age, their kidneys are less able to convert vitamin D to its active form, thus increasing their risk of vitamin D deficiency. (webmd.com)
  • A level less than 12 ng/mL indicates vitamin D deficiency. (webmd.com)
  • Treatment for vitamin D deficiency involves getting more vitamin D -- through diet and supplements. (webmd.com)
  • Doctors may prescribe more than 4,000 IU to correct a vitamin D deficiency. (webmd.com)
  • If you don't spend much time in the sun or always are careful to cover your skin ( sunscreen inhibits vitamin D production), you should speak to your doctor about taking a vitamin D supplement, particularly if you have risk factors for vitamin D deficiency. (webmd.com)
  • Efforts to tackle obesity should thus also help to reduce levels of vitamin D deficiency in the population, says the lead investigator of the study. (sciencedaily.com)
  • While previous studies have linked vitamin D deficiency with obesity, the ICH-led paper, published in the journal PLOS Medicine , sought to establish the direction of causality, i.e. whether a lack of vitamin D triggers a weight gain, or whether obesity leads to the deficiency. (sciencedaily.com)
  • Vitamin D deficiency is a growing public health concern, and there is evidence that vitamin D metabolism, storage and action both influence and are influenced by adiposity or body fat. (sciencedaily.com)
  • Overall, the ICH results suggest that although increases in vitamin D are not likely to help with weight regulation, increased risk of vitamin D deficiency could contribute to the adverse health effects associated with obesity. (sciencedaily.com)
  • Dr Elina Hypponen, UCL Institute of Child Health and lead author of the study, says: "Vitamin D deficiency is an active health concern around the world. (sciencedaily.com)
  • While many health messages have focused on a lack of sun exposure or excessive use of suncreams, we should not forget that vitamin D deficiency is also caused by obesity. (sciencedaily.com)
  • Our study highlights the importance of monitoring and treating vitamin D deficiency in people who are overweight or obese, in order to alleviate adverse health effects caused by a lack of vitamin D. (sciencedaily.com)
  • Vitamin D deficiency occurs when the body doesn't get enough vitamin D from sunlight or diet. (healthline.com)
  • Vitamin D deficiency can cause loss of bone density, osteoporosis, and broken bones. (healthline.com)
  • It's no surprise, then, that vitamin D deficiency is one of the most common nutritional deficiencies worldwide ( 1 ). (healthline.com)
  • One research review found that almost 42% of U.S. adults have a vitamin D deficiency. (healthline.com)
  • Video: what are the symptoms of a vitamin D deficiency? (healthline.com)
  • Vitamin D deficiency can be difficult to notice because symptoms may not occur for several months or years. (healthline.com)
  • Recently, vitamin D deficiency has been linked to an increased risk of COVID-19, as well as an increased risk of experiencing severe effects from the condition. (healthline.com)
  • Feeling tired can stem from a number of causes, one of which may be vitamin D deficiency. (healthline.com)
  • Unlike more visible causes like stress, depression, and insomnia, vitamin D deficiency is often overlooked as a potential cause of fatigue. (healthline.com)
  • One study in 480 older adults linked vitamin D deficiency with fatigue symptoms ( 12 ). (healthline.com)
  • Vitamin D deficiency is a widespread problem in the U.S., and specific population groups are more likely to suffer from deficiency (e.g. (creighton.edu)
  • Deficiency or insufficiency in any of these vitamins can negatively affect immune function and can increase the susceptibility to infection. (creighton.edu)
  • [ 1 ] The current proper diagnostic term that has been adopted is "vitamin K deficiency bleeding" (VKDB), because vitamin K deficiency is not the sole cause of hemorrhagic disorders in preterm and term infants. (medscape.com)
  • Although some controversy surrounds the postnatal timing of the initial hemorrhage, vitamin K deficiency bleeding is usually classified by three distinct time periods after birth, as discussed below. (medscape.com)
  • Early-onset vitamin K deficiency bleeding usually occurs during first 24 hours after birth. (medscape.com)
  • The mechanisms by which anticonvulsant and antituberculosis medications cause vitamin K deficiency bleeding in neonates is not clearly understood, but limited studies suggest that this disorder is a result of vitamin K deficiency and can be prevented by administration of vitamin K to the mother during the last 2-4 weeks of pregnancy. (medscape.com)
  • When vitamin K supplementation is given after the birth for early-onset vitamin K deficiency bleeding, it may be too late to prevent this disease, especially if vitamin K supplementation was not provided during pregnancy. (medscape.com)
  • Numerous other maternal medications and/or exposure to toxins during pregnancy are lalso associated with vitamin K deficiency bleeding in neonates, including but not limited to vitamin K antagonists (eg, warfarin, phenprocoumon). (medscape.com)
  • Classic vitamin K deficiency bleeding usually occurs after 24 hours after birth but may present as late as the first week of life. (medscape.com)
  • however, it can occur during first month and sometimes overlaps with late-onset vitamin K deficiency bleeding. (medscape.com)
  • Classic vitamin K deficiency bleeding is observed in infants who have not received prophylactic vitamin K at birth, with an incidence ranging from 0.25 to 1.7 cases per 100 births. (medscape.com)
  • Vitamin K content is low in mature human milk, with a range of 1-4 μg/L. Industrial contaminants in breast milk have also been implicated in promoting vitamin K deficiency bleeding. (medscape.com)
  • The importance of vitamin D3 in reducing the risk of these diseases continues to increase due to the fact that an increasing portion of the population in developed countries has a significant vitamin D deficiency. (nih.gov)
  • The older population is at an especially high risk for vitamin D deficiency due to the decreased cutaneous synthesis and dietary intake of vitamin D. Recent studies have confirmed an association between cognitive impairment, dementia, and vitamin D deficiency. (nih.gov)
  • But there seem to be gaps in understanding this paradox of vitamin D deficiency amid plenty of sunshine. (org.in)
  • ABSTRACT Vitamin A deficiency (VAD) can have a negative impact on pregnancy but there have been no studies in Al-Ain on the vitamin A status of pregnant women. (who.int)
  • Despite great collaborative efforts of many whose infants had died during the first year governmental and nongovernmental agen- of life as compared with mothers whose cies, vitamin A deficiency (VAD) is still one infants had survived [ 12 ]. (who.int)
  • The results revealed that vitamin A deficiency [ 1 ]. (who.int)
  • To assess the association between vitamin D deficiency and tuberculosis disease progression, we studied vitamin D levels in a cohort of tuberculosis patients and their contacts (N = 129) in Pakistan. (cdc.gov)
  • Deficiency of vitamin D (25-hydroxycholecalciferol) has long been implicated in activation of tuberculosis (TB) ( 1 ). (cdc.gov)
  • In the present study, we explored the role of vitamin D deficiency in TB disease progression within this cohort. (cdc.gov)
  • Vitamin D is a fat-soluble vitamin used to prevent or treat vitamin D deficiency. (medscape.com)
  • Shah BR, Finberg L. Single-day therapy for nutritional vitamin D-deficiency rickets: a preferred method. (medscape.com)
  • Vitamin D supplementation: guidelines and evidence for subclinical deficiency. (medscape.com)
  • Vitamin D deficiency has been associated with several adverse health outcomes, including abnormal bone mineralization, heart disease, and premature mortality. (medscape.com)
  • Conversion of circulating 25D to 1,25D occurs primarily in the kidneys and is upregulated during states of vitamin D deficiency. (medscape.com)
  • Vitamin K deficiency may affect any age group but is encountered most often in infancy. (medscape.com)
  • Infants with vitamin K deficiency-which may be caused by the limited transplacental transfer of vitamin K, the low level of vitamin K in breast milk, limited neonatal liver vitamin K storage, and low neonatal colonic bacterial colonization-are at risk for hemorrhagic disease of newborn. (medscape.com)
  • Because of its toxicity, menadione is no longer used for treatment of vitamin K deficiency. (medscape.com)
  • If vitamin K deficiency is suspected in a patient with unexpected or excessive bleeding, PT is the main laboratory test indicated. (medscape.com)
  • Cessation of bleeding and normalization of the PT after vitamin K administration is presumptive evidence of vitamin K deficiency. (medscape.com)
  • But as the researchers' interest in the vitamin have increased, more and more diseases are linked to a vitamin D deficiency. (lu.se)
  • Johan Malm is one of the researchers at Lund University who is studying the effects of vitamin D deficiency. (lu.se)
  • Many different diseases can be linked to a vitamin D deficiency. (lu.se)
  • Vitamin B12 deficiency: a factor that induces depression? (bvsalud.org)
  • The deficiency of vitamin B12 creates a case of hyperhomocysteinemia and decline of S-adenosylmethionine, which is a risk factor for depression without adequate treatment. (bvsalud.org)
  • This project had as an objective to verify the relation between depression and the deficiency of vitamin B12, through literary revision. (bvsalud.org)
  • Nonetheless, it raises the bar for vitamin D supplementation in our patients. (medscape.com)
  • I've also used supplementation in patients with diverticulitis , which we know to occur more frequently in patients with lower vitamin D. When you get into some of the anti-inflammatory effects of vitamin D on proliferation, differentiation, barrier function, and immune response, it makes sense to start looking at this in inflammatory/infectious disease as well. (medscape.com)
  • The fat-solubility of vitamin D means that toxic effects may linger for months after the cessation of exogenous supplementation or ingestion. (news-medical.net)
  • On their own, our findings do not alter current recommendations for vitamin K intake, but they do suggest that we need more research on whether some people, such as those with lung disease, could benefit from vitamin K supplementation," Jespersen said in a journal news release. (medicinenet.com)
  • and 3) the therapeutic rationale and reliable means for vigorous supplementation of our diets with vitamin D. (nih.gov)
  • However, the research on these benefits is varied, and vitamin E supplementation is not right for everyone. (medicalnewstoday.com)
  • Dr. John Cannell from the Vitamin D Council recommends sunlight, sunbed or D3 supplementation to increase your vitamin D blood levels. (prweb.com)
  • Mar. 9, 2020 A new study assesses vitamin D status and supplementation of college athletes. (sciencedaily.com)
  • However, because we knew there are many worldwide cases of people with osteoporosis who take vitamin supplements, we needed to try to measure the effectiveness of vitamin D supplementation," said Maicon Luís Bicigo Delinocente , first author of the article. (eurekalert.org)
  • NATIONAL HARBOR, Maryland - Though evidence is mounting that low vitamin D levels may increase risk for the development and perhaps progression of multiple sclerosis, clinicians still do not have definitive safety and efficacy data or guidance on whom to supplement and when, appropriate dosage, or duration of supplementation. (medscape.com)
  • And yet it seems that vitamin D supplementation is being added to the standard MS toolbox. (medscape.com)
  • If sun exposure is more important, "vitamin D supplementation might not help MS at all," said Dr Mowry. (medscape.com)
  • Most concerning is an overdose of vitamin A through supplementation as it may lead to osteoporosis and unwanted side effects within diabetes self-management, furthering our evidence that supplements are unnecessary and potentially harmful . (dole.com)
  • Supplementation with vitamin D has been demonstrated to reduce the incidence of acute respiratory tract infections.In addition, data from around the world indicate that low vitamin D status correlates with increased incidence and severity of, and mortality from, COVID-19. (creighton.edu)
  • Supplementation to improve vitamin D status and support immunity is recommended by experts in nutrition and immunity.However, optimization of vitamin D status can take months with the currently available forms of vitamin D. (creighton.edu)
  • Fur- health and disease is well recognized and thermore, supplementation of vitamin A and has been frequently discussed [ 4-7 ]. (who.int)
  • The key to effective vitamin D supplementation lies in taking adequate doses. (rense.com)
  • Asmara 15 Nov 2019 - The Minister of Health, H.E. Ms. Amina Nurhussien today launched the national meningitis A vaccination and Vitamin A supplementation campaign in Asmara, where Zonal Administrators, Director Generals, UN delegates, and invited guests were present. (who.int)
  • The campaign team has already been dispatched to the various regions of the country which also includes Vitamin A supplementation for children aged 6 to 59 months. (who.int)
  • Patients undergoing a long-term L-dopa/dopa-decarboxylase inhibitor (DDI) regimen, especially without a concurrent catechol-O-methyl transferase (COMT) inhibitor or methyl group-donating vitamin supplementation, such as vitamins B6 and B12, exhibit an elevation in Hcy and a decline in vitamin B metabolites. (lu.se)
  • In light of these findings, we advocate for the supplementation of methyl group-donating vitamins, notably B6 and B12, in patients undergoing a high-dose L-dopa/DDI regimen, particularly those treated with L-dopa/carbidopa intestinal gel (LCIG) infusion. (lu.se)
  • VItamin D supplementation in infants, children, and adolescents. (medscape.com)
  • Context Changes in vitamin D binding protein (DBP) concentrations and catabolism of 25-hydroxyvitamin D to 24,25-dihydroxyvitamin D (24,25D) after vitamin D2 supplementation may alter concentrations and bioavailability of circulating 25-hydroxyvitamin D (25D). (medscape.com)
  • Objective Examine acute changes in vitamin D metabolism and bioavailability after vitamin D2 supplementation. (medscape.com)
  • Conclusion Changes after vitamin D2 supplementation involve acute rise in serum DBP and 24,25D, both of which may attenuate the rise in bioavailable 25D and 1,25D. (medscape.com)
  • [ 16 ] It is unknown, however, whether and to what extent vitamin D supplementation affects DBP levels following routine supplementation. (medscape.com)
  • Intake recommendations for vitamin B12 and other nutrients are provided in the Dietary Reference Intakes (DRIs) developed by the Food and Nutrition Board (FNB) at the National Academies of Sciences, Engineering, and Medicine [ 1 ]. (nih.gov)
  • Vitamin D toxicity can occur from high intakes of supplements containing vitamin D, but not from dietary intake. (news-medical.net)
  • Long term intakes of vitamin D above the upper limit recommended causes symptoms of toxicity. (news-medical.net)
  • Institute of Medicine: "Dietary Reference Intakes for Calcium and vitamin D. (webmd.com)
  • Vitamin D is an essential nutrient, with recommended dietary intakes defined by expert authorities. (creighton.edu)
  • Methylcobalamin and 5-deoxyadenosylcobalamin are the metabolically active forms of vitamin B12. (nih.gov)
  • Prolonged sun exposure also does not result in vitamin D toxicity because the previtamin D3 is degraded as the skin heats up, and also because of the formation of various other non-functional forms of vitamin D from the thermally activated compound. (news-medical.net)
  • The two forms of vitamin A come from different food sources. (healthy.net)
  • There are multiple forms of vitamin D. Vitamin D3 (also called cholecalciferol) can be obtained through the diet from a variety of sources, including fatty fish, egg yolks, and in fortified foods, such as milk. (creighton.edu)
  • Following synthesis in the skin or dietary intake, both forms of vitamin D are transported to the liver, and are hydroxylated to form 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2, respectively. (creighton.edu)
  • DSM provides reliable and high-quality forms of vitamin B3 that are suitable for even the most challenging applications. (dsm.com)
  • There are 3 forms of vitamin K. Vitamin K1 (phylloquinone) is the natural form found in green leafy vegetables, green tea, and oils such as soybean, cottonseed, canola, and olive oil. (medscape.com)
  • We traditionally recognize vitamin D as the key vitamin for regulation of bone metabolism and homeostasis, but I want you to think out of the box here. (medscape.com)
  • Thiamine is a water-soluble vitamin required for carbohydrate metabolism. (medscape.com)
  • Vitamin K plays a significant role in bone growth and metabolism. (healthline.com)
  • Vitamin D provides a hormone-like function, regulating mineral metabolism for bones and other organs. (wikipedia.org)
  • Supplemental intake of Vitamin C at very large doses (1,500 mg daily) can interfere with copper metabolism. (healthcastle.com)
  • This study used genetic markers derived from an analysis of 21 adult cohort groups (up to 42,000 participants) to explore the link between body mass index (BMI) and genes associated with the synthesis and metabolism of vitamin D. Associations between vitamin D and BMI were further confirmed using data from another genetic consortium with over 123,000 participants. (sciencedaily.com)
  • In recent years, emerging evidence has linked vitamin D not only to its known effects on calcium and bone metabolism, but also to many chronic illnesses involving neurocognitive decline. (nih.gov)
  • As Vitamin D concentrations and metabolism can vary by ethnicity, it is important to find out whether similar effects would be seen in non-Caucasian populations. (eurekalert.org)
  • Vitamin B3 contributes to normal energy-yielding metabolism. (dsm.com)
  • Vitamin A, also known as beta-carotene or retinol, is a very important vitamin. (healthy.net)
  • Several carotene pigments found in foods, mainly yellow and orange vegetables and fruits, can be converted to vitamin A in our body and thus are termed provitamin A. Beta-carotene is the most available and also the one that yields the highest amount of A. (healthy.net)
  • beta-carotene can also be converted to vitamin A in the liver. (healthy.net)
  • People with diabetes, low thyroid activity, and those who use a lot of polyunsaturated fatty acids (PUFA) without antioxidants such as vitamin E have lowered ability to convert beta-carotene to A. Assimilation of vitamin A and the carotenes is helped by the presence of bile salts and fatty acids in the intestine. (healthy.net)
  • These researchers looked at clinical trials involving the common antioxidant vitamins beta carotene, vitamin A, vitamin C (ascorbic acid), vitamin E, and selenium either singly or in combinations. (abc.net.au)
  • Vitamin E upped the risk by four per cent and beta carotene seven per cent. (abc.net.au)
  • Like many other plant-based nutrients, including Vitamin E and beta-carotene, Vitamin C is an antioxidant. (healthcastle.com)
  • The human body converts beta-carotene into vitamin A, and this strain produces around 20 times as much as previous varieties. (bbc.co.uk)
  • We often find vitamin A in the orange and yellow foods, noting the beta-carotene we commonly recognize. (dole.com)
  • According to a review of studies that included almost half a million people, antioxidant supplements (including vitamin E, beta carotene, vitamin C and selenium ) did not prolong life or protect against disease. (livescience.com)
  • Other nutrients that have been studied with regards to nutritional immunology include zinc, copper, selenium, iron, vitamins C, B6, folic acid, A and E and the essential (polyunsaturated) fatty acids. (bartleby.com)
  • Cataracts [folic acid], and Dietary and supplemental vitamin B2, along with other nutrients is important for normal vision and prevention of cataracts (damage to the lens of the eye which can lead to cloudy vision). (healthyplace.com)
  • Vitamin D helps the body absorb calcium . (medlineplus.gov)
  • If you do not consume enough calcium in your diet, or if your body does not absorb enough calcium due to low vitamin D, bone production and bone tissues may suffer. (medlineplus.gov)
  • Follow a diet that provides the proper amount of calcium and vitamin D. Your provider may recommend higher doses of vitamin D if you have risk factors for osteoporosis or a low level of this vitamin. (medlineplus.gov)
  • Too much vitamin D can make the intestines absorb too much calcium. (medlineplus.gov)
  • health, vitamin D helps regulate the use of calcium and phosphorus levels. (bartleby.com)
  • Calcium and phosphorus attach to newly formed bone matrix made of osteocalcin, which is produced with the aid of vitamin D and vitamin K. The formation of hydroxyappitie, only possible with vitamin D, gives strength and structured to bones. (bartleby.com)
  • The biologically active form of vitamin D (1,25-dihydroxyvitamin D) is a hormone whose main function is to keep serum calcium and phosphorus concentrations in blood within normal ranges. (cdc.gov)
  • Hypercalcemia due to vitamin D intoxication must be treated on an emergency basis once the serum calcium is determined to be above 14 mg/dL. (news-medical.net)
  • Vitamin K may also help inhibit the accumulation of calcium in the blood vessels, which is a notable predictor of heart disease. (healthline.com)
  • Thus, getting enough vitamin K2 in your diet may help prevent calcium buildup and benefit heart health ( 26 , 27 ). (healthline.com)
  • Vitamin D plays an important role in the regulation of calcium and phosphorus absorption by the organism. (eurekalert.org)
  • Vitamin D is essential for strong bones because it helps the body use calcium from the diet. (webmd.com)
  • Moreover, vitamin D is not the only nutrient required for adequate calcium levels, which ensure bone health. (org.in)
  • Vitamin B12 is a water-soluble vitamin that is naturally present in some foods, added to others, and available as a dietary supplement and a prescription medication. (nih.gov)
  • How many of you talk to your patients about vitamin D as a supplement? (medscape.com)
  • As a result, some people may need to take a vitamin D supplement. (medlineplus.gov)
  • It's necessary to explain to people that they risk losing muscle strength if they don't get enough vitamin D. They need to expose themselves to the sun, eat food rich in vitamin D or take a supplement, and do resistance training exercises to maintain muscle strength," he said. (eurekalert.org)
  • About half of all Australians at least occasionally take vitamins, minerals or some other supplement alone, or more commonly in multivitamin preparations. (abc.net.au)
  • Office of Dietary Supplements: "Dietary Supplement Sheet: Vitamin D. (webmd.com)
  • At present, 25-hydroxyvitamin D3 is not available as a dietary supplement in the United States.If it were available, 25-hydroxyvitamin D3 could more rapidly and effectively optimize vitamin D status and support immune function. (creighton.edu)
  • Over the years, supplement makers and some researchers predicted that vitamin E would help prevent cancer, heart disease and Alzheimer's disease, as well as help maintain eyesight and keep skin glowing. (livescience.com)
  • Fueled by hope and hype, vitamin E supplement sales soared. (livescience.com)
  • Considering taking a vitamin or supplement to treat Ovarian Cancer? (webmd.com)
  • Vitamin/Mineral Supplement Public Use Tape contains data from these questions as well as socio-demographic and health items obtained about the sample person from the NHIS core questionnaire. (cdc.gov)
  • Some experts have suggested that a few minutes of sunlight directly on the skin of your face, arms, back, or legs (without sunscreen) every day can produce the body's requirement of vitamin D. However, the amount of vitamin D produced by sunlight exposure can vary greatly from person to person. (medlineplus.gov)
  • These major circulating forms reflect the cumulative effects of exposure to sunlight and dietary intake of vitamin D (the two ways people get vitamin D), and therefore, clinicians use them to determine vitamin D status. (cdc.gov)
  • Vitamin D is somewhat of an unusual "vitamin," because it can be made in the body from sunlight and most foods do not contain vitamin D unless added by fortification. (sciencedaily.com)
  • Our body only synthesizes vitamin D when large areas of skin are exposed to sunlight, Alexandre recalled. (eurekalert.org)
  • Known as the sunshine vitamin, vitamin D is produced by the body in response to skin being exposed to sunlight. (webmd.com)
  • The pigment melanin reduces the skin's ability to make vitamin D in response to sunlight exposure. (webmd.com)
  • Vitamin D, which is essential for healthy bones as well as other functions, is made in the skin after exposure to sunlight but can also be obtained through the diet and through supplements. (sciencedaily.com)
  • It has also been suggested that obesity could result from an excessive adaptive winter response, and that the decline in vitamin D skin synthesis from less exposure to sunlight contributes to the tendency to put on weight during colder seasons. (sciencedaily.com)
  • Vitamin D is sometimes called the sunshine vitamin because your body makes it from cholesterol when your skin is exposed to sunlight ( 1 ). (healthline.com)
  • Vitamin D is a fat-soluble compound made in the skin through the action of sunlight, and is also found in foods such as oily fish. (newscientist.com)
  • When sunlight falls on the skin, it forms an essential nutrient, vitamin D. For people in India, which has an average of 300 clear sunny days in a year, this sunshine vitamin should be available in abundance. (org.in)
  • Vitamin D is made by the skin in response to sunlight. (eurekalert.org)
  • In people with a condition called hemochromatosis, which causes the body to store too much iron, high doses of Vitamin C could worsen iron overload and lead to the damage of body tissues. (healthcastle.com)
  • While experiments in rats have suggested that large doses of vitamin D2 can boost the amount of energy they burn, trials testing the effect of vitamin D supplements on weight loss in obese or overweight people have not shown any consistent findings. (sciencedaily.com)
  • In fact, a few studies suggest that high doses of vitamin E might actually be harmful. (livescience.com)
  • In 2008, the Physicians' Health Study II looked at more than 14,000 male doctors taking high doses of vitamin C or vitamin E for eight years. (livescience.com)
  • Dr. Ken Cooper is an early adopter of higher dose vitamin D. He directs The Cooper Institute, a Dallas-based nonprofit research organization, which studies vitamins and markets doses and combinations backed by science. (rense.com)
  • Scientists do have new studies to show that high doses of vitamin D -- up to 4,000 international units per day -- are not toxic to the body. (rense.com)
  • Do infants get enough vitamin D from breast milk? (cdc.gov)
  • Once a child has started eating solid foods, parents can make sure their child is getting enough vitamin D from foods or supplements. (cdc.gov)
  • If you don't have enough vitamin K, you may bleed too much. (medlineplus.gov)
  • It can be hard to get enough vitamin D from food sources alone. (medlineplus.gov)
  • People who do not live in sunny places may not make enough vitamin D within a limited time in the sun. (medlineplus.gov)
  • VKDB is a condition that occurs when there's not enough vitamin K in the body to help form blood clots ( 8 ). (healthline.com)
  • If you don't get enough Vitamin C, you come down with scurvy which is eventually fatal. (bellaonline.com)
  • Concentrations vary between manufacturers, and some users simply pop open vitamin E capsules and put the contents on their skin. (medicalnewstoday.com)
  • Preformed A (retinol) is the main animal-source vitamin A. It is found in highest concentrations in all kinds of liver and fish liver oil, which is a common source for supplements. (healthy.net)
  • Reports of greater than expected vitamin D insufficiency coupled with emerging evidence that higher circulating concentrations of this nutrient may protect against cardiovascular disease have prompted a renewed interest in teasing out how environment, genetics, and behavior work independently and coordinately to influence vitamin D status. (sciencedaily.com)
  • Researchers found that a 10 per cent rise in BMI was linked to a four per cent drop in concentrations of vitamin D in the body. (sciencedaily.com)
  • However, vitamin D is stored in fatty tissue and thus, the most likely explanation for the association found in the ICH-led study is that the larger storage capacity for vitamin D in obese people leads to lower circulating concentrations of vitamin D. (sciencedaily.com)
  • Further studies are needed to clarify the optimal concentrations [of vitamin D] for cancer prevention. (eurekalert.org)
  • A separate study out of the United Kingdom found that higher serum vitamin D concentrations are nonlinearly associated with a lower risk for all-cause, cardiovascular disease, and cancer mortality. (medscape.com)
  • Main outcome measures included concentrations of DBP, vitamin D metabolites, and bioavailable 25-hydroxyvitamin D (25D) in pre- and posttreatment serum samples. (medscape.com)
  • People who are deficient in vitamin D are at higher risk for osteoporosis. (cdc.gov)
  • People who are deficient in vitamin A are also deficient in a whole host of other vitamins and minerals. (bbc.co.uk)
  • Then in early 2012, a check-up revealed she was deficient in vitamin D. (org.in)
  • In East Asia, where polished white rice was the common staple food of the middle class, beriberi resulting from lack of vitamin B1 was endemic. (wikipedia.org)
  • Obesity can lead to a lack of vitamin D circulating in the body, a new study suggests. (sciencedaily.com)
  • Obesity can lead to a lack of vitamin D circulating in the body, according to a study led by the UCL Institute of Child Health (ICH). (sciencedaily.com)
  • Overall, the findings suggest that a higher BMI leads to lower levels of available vitamin D, while the effect of a lack of vitamin D on BMI appears to be very small. (sciencedaily.com)
  • A growing body of evidence in recent years has shown that lack of vitamin D may have lethal effects. (rense.com)
  • For a long time we have been aware of the fact that a lack of vitamin D can lead to osteoporosis in adults and rickets in children - diseases that are also most common in the north. (lu.se)
  • There are numerous possible benefits of vitamin E oil for skin, especially in people with dry or itchy skin, psoriasis, and eczema. (medicalnewstoday.com)
  • There is a need for well-designed randomized trials to assess the benefits of vitamin D and lifestyle interventions in persons with mild cognitive impairment and dementia. (nih.gov)
  • Initially, most of the known benefits of vitamin D were restricted to those to the bones. (org.in)
  • While the benefits of vitamin D on bone diseases are well known, there is growing evidence that Vitamin D may benefit other chronic diseases, including some cancers. (eurekalert.org)
  • The benefits of vitamin D seem to extend far beyond bone health, says Dr. Walter Willett of the Harvard School of Public Health. (rense.com)
  • Breast milk alone does not provide infants with an adequate amount of vitamin D. Shortly after birth, most infants will need an additional source of vitamin D. (cdc.gov)
  • This disease is most common in breastfed infants who did not receive vitamin K prophylaxis at birth. (medscape.com)
  • Infants and children have a high requirement of Vitamin A for promoting rapid growth and for combating infections. (who.int)
  • Issues in establishing vitamin D recommendations for infants and children. (medscape.com)
  • The Vitamin Bridge donates prenatal vitamins and nutrition information to these organizations as a means to reach disadvantaged, expectant mothers with life-improving nutrition at the earliest point in pregnancy. (guidestar.org)
  • The Vitamin Bridge is filling gaps in prenatal nutrition and is positively impacting maternal health and fetal development. (guidestar.org)
  • Distribution of prenatal vitamins and nutrition education materials to underserved women. (guidestar.org)
  • The Vitamin Bridge aspires to: (1) fill nutrition gaps through providing prenatal vitamins to at-risk women at the earliest stage of their pregnancy, (2) promote women's health during pregnancy through providing healthy pregnancy habits information, and (3) operate as a sustainable, best-in-class nonprofit which grows at a responsible pace. (guidestar.org)
  • The Vitamin Bridge's primary goal is to fill nutrition gaps by providing prenatal vitamins to disadvantaged women at the earliest point in their pregnancy. (guidestar.org)
  • By supplying these organizations with prenatal vitamins, their clients are able to access this supplemental nutrition as early as their initial appointment. (guidestar.org)
  • Vitamin is a type of nutrient or nutrition that is a must for the human body to survive, grow and for the development of multicellular organism. (bartleby.com)
  • Much of the growing interest in vitamin D is powered by new data being extracted from the National Health and Nutrition Examination Survey (NHANES). (nih.gov)
  • The results of the Karohl study are quite important," according to American Society for Nutrition Spokesperson Shelley McGuire, PhD. "Over the past couple decades, nutrition scientists have discovered that maintaining optimal vitamin D status is important for much more than keeping our bones strong. (sciencedaily.com)
  • The number you see on the Nutrition Facts label is a percentage calculated by dividing the amount of Vitamin C in one serving of the food by the DV. (healthcastle.com)
  • Using an example from the above chart, ½ cup of mashed papaya, which contains 70 mg of Vitamin C, would have 117% of the DV for Vitamin C. The FDA requires that the DV for Vitamin C be listed on the Nutrition Facts label. (healthcastle.com)
  • Canadian labeling laws also require that the DV for Vitamin C be listed on the Nutrition Facts label. (healthcastle.com)
  • 13 ]. The same authors reported that the easily prevented by sound nutrition, includ- maternal mortality rate among night- ing provision of vitamin A [ 3 ]. (who.int)
  • Nutrition researchers are pushing for a big increase in the daily recommended dose of vitamin D. Dozens of recent studies suggest that deficiencies of the sunshine vitamin make people more vulnerable to everything from fractures to certain cancers and diabetes. (rense.com)
  • In some fracture and bone health studies, patients see benefits with supplements of 800 international units of vitamin D. This is double the amount currently recommended by the government-sponsored Food and Nutrition Board of the National Academy of Sciences. (rense.com)
  • However, four of the more common vitamin B deficiencies-thiamine (B1), cobalamin (B12), niacin (B3), and folate (B9)-are reviewed. (medscape.com)
  • Niacin is a water-soluble vitamin and an essential component of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), coenzymes required for oxidation-reduction reactions. (medscape.com)
  • In fact, people with plenty of protein and vitamins A, B1, B2, and B3 (niacin) in their diet are less likely to develop cataracts. (healthyplace.com)
  • Niacin, or vitamin B3, is required in many cellular metabolic processes. (kcl.ac.uk)
  • Vitamin B3, also called niacin, is one of the water-soluble B vitamins. (dsm.com)
  • Vitamin K and potassium are both considered essential nutrients . (healthline.com)
  • The body cannot product potassium on its own and can only make small amounts of vitamin K. As a result, it's important to consume these nutrients through food. (healthline.com)
  • Additionally, it appears that other nutrients, including vitamin D , may influence the effectiveness of vitamin K supplements for heart health ( 17 , 28 ). (healthline.com)
  • The term vitamin does not include the three other groups of essential nutrients: minerals, essential fatty acids, and essential amino acids. (wikipedia.org)
  • Are We Getting Enough Vitamins and Nutrients? (cdc.gov)
  • The National Osteoporosis Foundation (NOF) recommends a higher dose for people age 50 and older, 800 to 1,000 IU of vitamin D daily. (medlineplus.gov)
  • Both deficient and excess intake of a vitamin can potentially cause clinically significant illness, although excess intake of water-soluble vitamins is less likely to do so. (wikipedia.org)
  • Vitamin B6 is the general term for 6 water-soluble vitamins with vitamin B6 activity. (kcl.ac.uk)
  • Most nutritional disorders with deleterious effects on the central and peripheral nervous system are secondary to vitamin deficiencies, particularly those of the B group. (medscape.com)
  • A detailed discussion of all vitamin B deficiencies is beyond the scope of this article. (medscape.com)
  • repair, and bone health, vitamins adequate consumption is important for the maintenance of several metabolic functions in the body, and inadequate intake of vitamins leads to nutritional deficiencies. (bartleby.com)
  • Deficiencies of vitamin A are still fairly common worldwide and cause many difficulties. (healthy.net)
  • This was followed in the 1950s by the mass production and marketing of vitamin supplements, including multivitamins, to prevent vitamin deficiencies in the general population. (wikipedia.org)
  • Governments have mandated the addition of some vitamins to staple foods such as flour or milk, referred to as food fortification, to prevent deficiencies. (wikipedia.org)
  • Vitamin E is a group of fat-soluble vitamins with antioxidant effects. (medicalnewstoday.com)
  • Many supporters of vitamin E oil argue that it is a potent antioxidant, but research on its benefits is mixed . (medicalnewstoday.com)
  • Vitamin E oil's potential benefits derive from two key features: its antioxidant properties, which could fight inflammation and slow the effects of free radicals, and its moisturizing properties. (medicalnewstoday.com)
  • Vitamin C is involved in the regeneration of Vitamin E, and these two vitamins appear to work together in their antioxidant effect. (healthcastle.com)
  • In addition, vitamin C is an antioxidant that helps guard against the harmful effects of environmental free radicals. (marykay.com)
  • It's been nearly a century since researchers at the University of California, Berkeley discovered vitamin E, and since then, many studies have looked at the potential health benefits of this antioxidant. (livescience.com)
  • Other large reviews also have suggested that vitamin E supplements and other antioxidant pills are associated with increased mortality. (livescience.com)
  • Vitamin D is needed to support healthy bone development and to prevent rickets, a condition that causes weak or deformed bones. (cdc.gov)
  • Vitamin K helps your body by making proteins for healthy bones and tissues. (medlineplus.gov)
  • Vitamin C also assists in the formation of collagen, a protein which is important for the health of blood vessels and gums, development of bones and teeth, and wound healing. (healthcastle.com)
  • Vitamin D has a pivotal role in the mineralisation of bones and teeth. (kcl.ac.uk)
  • This product contains the full spectrum of minerals and vitamins to promote a healthy life and has been developed by veterinarians to help build strong bones and teeth, fight infection, support the nervous system and brain function, and help joint and immune health. (popsci.com)
  • Researchers analyzed the results from 9 prospective cohort studies which compared data on vitamin D status and mortality for 24,297 adults of varying ages. (prweb.com)
  • After adjusting for all the main confounders, the risk for all-cause mortality was 19% greater for those participants with the lowest vitamin D level compared to the highest. (prweb.com)
  • When the data was stratified by age, the study reported that the all-cause mortality risk for people with lower vitamin D levels was 12% greater for those under age 65 and 25% greater for those above 65 years of age. (prweb.com)
  • The authors reported, "As far as we are aware, this is the only systematic review and meta-analysis that has specifically investigated whether the apparent association between low vitamin D status and all-cause mortality is age-dependent. (prweb.com)
  • 1. Rush L, McCartney G, Walsh D, MacKay D. Vitamin D and subsequent all-age and premature mortality: a systematic review. (prweb.com)
  • Vitamin A increased mortality risk by 16 per cent. (abc.net.au)
  • Dur- its precursors contributed effectively to re- ing pregnancy and lactation, vitamin A ducing mortality rates among pregnant plays a vital role in placental and fetal devel- women [ 14 ]. (who.int)
  • A number of studies have found that taking up to 4,000 IU of vitamin D daily may reduce the risk of respiratory tract infections ( 9 , 10 , 11 ). (healthline.com)
  • This represents a near doubling of the prevalence of vitamin D insufficiency seen just 10 yr ago in the same population. (nih.gov)
  • Folate is a water-soluble essential vitamin found in green leafy vegetables and the liver. (medscape.com)
  • Fat-soluble vitamins are stored in the body's fatty tissue and liver. (medlineplus.gov)
  • Preformed vitamin A, as is found in fish liver oil, was the first vitamin officially named and was thereby given the letter A to identify it. (healthy.net)
  • It's known for instance that in large amounts, over longer periods of time, fat-soluble vitamins including vitamins A, D, E and K can accumulate in the liver and cause toxicity. (abc.net.au)
  • In addition, B complex vitamins play an important role in maintaining muscle tone along the lining of the digestive tract and promoting the health of the nervous system, skin, hair, eyes, mouth, and liver. (healthyplace.com)
  • Research has found that vitamin E supplements there is some evidence that vitamin E may reduce liver damage caused by inflammation from aggressive nonalcoholic fatty liver disease (NAFLD), a disease associated with obesity. (livescience.com)
  • When skin is exposed to the ultraviolet (B) rays, provitamin D present in the skin gets converted into previtamin D. It is isomerised by body heat to the precursor of vitamin D3, which is then transported to the liver through blood. (org.in)
  • High levels of vitamin D may be linked to a lower risk of developing cancer, including liver cancer, concludes a large study of Japanese adults published by The BMJ today. (eurekalert.org)
  • Higher vitamin D levels were also associated with a lower (30-50%) relative risk of liver cancer, and the association was more evident in men than in women. (eurekalert.org)
  • The Nutri-Vet Multi-Vite chewable puppy vitamins are liver-flavored, meaning it can also be used as a treat while in puppy training mode. (popsci.com)
  • Your body now has to wait for the next intake of Vitamin C. You really do need to take it every day. (bellaonline.com)
  • Cloudy days, shade, and having dark-colored skin also cut down on the amount of vitamin D the skin makes. (medlineplus.gov)
  • However, the amount of vitamin K2 the gut produces varies. (healthline.com)
  • Cigarette smoke increases the amount of Vitamin C that the body needs to repair damage caused by free radicals. (healthcastle.com)
  • Sprinkle the appropriate amount of vitamin powder in your dog's food and you should see results in a few short weeks. (popsci.com)
  • However, the effects of vitamin E on psoriasis were not as good as most readily available treatments. (medicalnewstoday.com)
  • Learn about the usage, dosage, side-effects of Vitamin B2 (Riboflavin). (healthyplace.com)
  • Fatty fish (such as tuna, salmon, and mackerel) are among the best sources of vitamin D. (medlineplus.gov)
  • Regularly consuming foods that are rich sources of vitamin K and potassium can contribute to an overall healthy diet . (healthline.com)
  • Egg yolks and milk products, such as whole milk, cream, and butter, are also good sources of vitamin A. (healthy.net)
  • Vegetables and fruit are the best sources of Vitamin C. (healthcastle.com)
  • Researchers in Brazil and the UK analyzed data for more than 3,000 people aged 50 or more to prove the importance of vitamin D to muscles. (eurekalert.org)
  • But increasingly, research is revealing the importance of vitamin D in protecting against a host of health problems. (webmd.com)
  • Regarding the potential for promotion of synthesis and the bad things that upregulate cancers and inflammation, we know that vitamin D actually inhibits the response of tumor necrosis factor-alpha. (medscape.com)
  • Synthesis of vitamin D in the body requires exposure to ultraviolet light and can be influenced by genetics, skin color, and sun exposure. (sciencedaily.com)
  • they would bypass the natural physiologic controls of vitamin D synthesis. (medscape.com)
  • Because vitamin B12 contains the mineral cobalt, compounds with vitamin B12 activity are collectively called "cobalamins" [ 1 ]. (nih.gov)
  • Unlike vitamin K, potassium is not a vitamin - it's a mineral. (healthline.com)
  • The body needs the mineral zinc to help release stores of vitamin A for use. (healthy.net)
  • The American Society for Bone and Mineral Research, the Endocrine Society, and the American Association of Clinical Endocrinologists, among others, issued "Joint Guidance on Vitamin D in the Era of COVID-19. (medscape.com)
  • In 1986, the NHIS included questions about the use of vitamin and mineral supplements in the diets of American adults and young children. (cdc.gov)
  • Data from the 1986 Vitamin-Mineral NHIS Questionnaire have been organized into one file. (cdc.gov)
  • However, the contents of each record that comprises the file differs depending on a) whether the sample person reported using any vitamin and/or mineral products during the 2 week period prior to the interview, and b) the number of individual products taken. (cdc.gov)
  • Every sample person may have from one to twelve Vitamin-Mineral records. (cdc.gov)
  • There is at least one Vitamin-Mineral record for every sample child and adult that was interviewed about their use of vitamin and mineral products. (cdc.gov)
  • Like its close relative vitamin B1 (thiamine), riboflavin plays a crucial role in certain metabolic reactions, particularly the conversion of carbohydrates into sugar, which is "burned" to produce energy. (healthyplace.com)
  • Vitamins C and E function as antioxidants. (wikipedia.org)
  • This organic dog vitamin is ideal for all dog ages and contains many vitamins, minerals, prebiotics and probiotics, digestive enzymes, fatty acids, and antioxidants created with your dog's long-term health in mind. (popsci.com)
  • The VetriScience Canine Plus Senior Multivitamin does just this with a perfect mix of antioxidants, including vitamins A, C, and E, as well as selenium, all proven to help fight cell damage, boost the immune system, and keep your dog's disposition sharp. (popsci.com)
  • Vitamin B12 status is typically assessed by measurements of serum or plasma vitamin B12 levels. (nih.gov)
  • perhaps measure the patient's vitamin D levels, and monitor and target it in patients-particularly those at risk. (medscape.com)
  • The best measure of your vitamin D status is to look at blood levels of a form known as 25-hydroxyvitamin D (25(OH)D). Blood levels are described either as nanograms per milliliter (ng/mL) or nanomoles per liter (nmol/L), where 0.4 ng/mL = 1 nmol/L. (medlineplus.gov)
  • Our bodies convert both compounds to 1,25-dihydroxyvitamin D. Levels of 25-hydroxyergocalciferol and calcifediol in blood describe a person's vitamin D status. (cdc.gov)
  • However, up to 50000 IU/month has not been associated with either high serum vitamin D levels or any laboratory findings of toxicity. (news-medical.net)
  • A new, large study -- published Aug. 10 in ERJ Open Research -- suggests that people who have low levels of this vitamin also have less healthy lungs . (medicinenet.com)
  • The blood tests included a marker of low levels of vitamin K in the body. (medicinenet.com)
  • People with markers of low vitamin K levels had lower FEV1 and lower FVC on average. (medicinenet.com)
  • Those with lower levels of vitamin K were also more likely to say they had COPD , asthma or wheezing. (medicinenet.com)
  • This study suggests that people with low levels of vitamin K in their blood may have poorer lung function. (medicinenet.com)
  • Woodstock, ON (PRWEB) September 18, 2013 -- The Vitamin D Society wants to make the public aware of a recent meta-analysis study published in BioMed Central Public Health, reporting that men and women with higher vitamin D levels have a much lower risk of dying prematurely from all causes(1). (prweb.com)
  • This study confirms that people over age 65 with low vitamin D levels have a 25% higher risk of dying prematurely from all causes," said Perry Holman, Executive Director for the Vitamin D Society . (prweb.com)
  • There is an immediate need for public health programs to promote and communicate the importance of maintaining optimal vitamin D levels of between 100-150 nmol/L to seniors. (prweb.com)
  • The Vitamin D Society recommends people achieve and maintain optimal 25(OH)D blood levels between 100 - 150 nmol/L (Can) or 40-60 ng/ml (USA). (prweb.com)
  • And, while higher vitamin D levels appear to be associated with a decreased risk for MS development or progression, that association might be masking a different relationship, she said. (medscape.com)
  • After years of observational data, two studies helped cement the idea "that lower vitamin D levels preceded the onset of disease," said Dr Mowry. (medscape.com)
  • 2016;73:515-519 ) showed that women with higher vitamin D levels in pregnancy had children who were less likely to develop MS. "That's pretty interesting," said Dr Mowry, but she pointed out that it's possible other things could be at work - for instance, perhaps the offspring who did not develop MS received more ultraviolent (UV) light exposure during childhood. (medscape.com)
  • 2011:76;540-548 ) that found sun exposure seemed to reduce the risk for MS more than did higher vitamin D levels. (medscape.com)
  • She has conducted several trials looking at vitamin D status in people who already have MS. In children, "we saw striking association between higher levels of vitamin D and lower risk of subsequent relapse," she said, noting that for every 10-ng/mL increase, relapse risk decreased 34% ( Ann Neurol . (medscape.com)
  • Finally, the researchers found that high levels of nuclear CTSL and low levels of 53BP1 and nuclear vitamin D receptors are markers that identify certain triple-negative breast cancers. (vitamindcouncil.org)
  • Dietary changes alone, without additional supplements, can often bring vitamin B levels back to normal. (healthyplace.com)
  • Beta cells, which store and release the hormone insulin to help regulate blood glucose levels, have a large cell surface receptor for vitamin A. (dole.com)
  • People with a body mass index of 30 or greater often have low blood levels of vitamin D. (webmd.com)
  • Although there is no consensus on vitamin D levels required for optimal health -- and it likely differs depending on age and health conditions -- a concentration of less than 20 nanograms per milliliter is generally considered inadequate, requiring treatment. (webmd.com)
  • An estimated 1 billion people around the globe have low blood levels of the vitamin ( 4 ). (healthline.com)
  • If you often become sick, especially with colds or the flu, low vitamin D levels may be a contributing factor. (healthline.com)
  • Plus, a study in 39 children associated low vitamin D levels with poor sleep quality, shorter sleep duration, and delayed bedtimes ( 13 ). (healthline.com)
  • One observational study in female nurses also found a strong connection between low vitamin D levels and self-reported fatigue. (healthline.com)
  • She plans to resume jogging, swimming and dancing after she gets her vitamin D levels tested again in two months. (org.in)
  • At the start of the study, participants provided detailed information on their medical history, diet and lifestyle, and blood samples were taken to measure vitamin D levels. (eurekalert.org)
  • Vitamin D levels varied depending on the time of year the sample was taken, tending to be higher during the summer and autumn months than in the winter or spring. (eurekalert.org)
  • After accounting for this seasonal variation, samples were split into four groups, ranging from the lowest to highest levels of vitamin D. (eurekalert.org)
  • After adjusting for several known cancer risk factors, such as age, weight (BMI), physical activity levels, smoking, alcohol intake and dietary factors, the researchers found that a higher level of vitamin D was associated with a lower (around 20%) relative risk of overall cancer in both men and women. (eurekalert.org)
  • No association was found for lung or prostate cancer, and the authors note that none of the cancers examined showed an increased risk associated with higher vitamin D levels. (eurekalert.org)
  • We found that women who had the lowest blood levels (of vitamin D) have double the risk of cancer over those who had the highest,' Willett says. (rense.com)
  • We and many other researchers are seeing that individuals who have higher vitamin D levels have a lower risk of developing Type 2 diabetes,' says Dawson-Hughes. (rense.com)
  • The evidence for the protective effect of the 'sunshine vitamin' is so overwhelming that urgent action must be taken by public health authorities to boost blood levels, say cancer specialists. (rense.com)
  • Low vitamin D levels were associated with a 5-fold increased risk for progression to tuberculosis. (cdc.gov)
  • Serum levels of vitamin D in TB patients are lower than in healthy controls ( 2 , 3 ). (cdc.gov)
  • Paradoxically, prolonged treatment of TB also causes a decline in serum vitamin D levels ( 2 ). (cdc.gov)
  • For the present study, 129 de-identified, plasma samples preserved at -70°C from the baseline visit were shipped to Stanford University (Stanford, CA, USA) for analysis of vitamin D levels. (cdc.gov)
  • Levels of vitamin D in test samples were derived by fitting a 2-parameter logistic curve to 6 standard levels and expressed as ng/mL (1 nmol/L × 0.4 = 1 ng/mL). (cdc.gov)
  • Vitamin D levels in the cohort were classified in population-based tertiles (low, middle, high). (cdc.gov)
  • Levels of vitamin D in plasma in the Karachi, Pakistan, tuberculosis (TB) household cohort ( 7 ) by TB status at baseline (disease-free, index TB case-patient, coprevalent TB case-patient, and past. (cdc.gov)
  • Results of a study published online in the FEBS Journal showed that low plasma vitamin D levels are an independent risk factor for COVID-19 infection and hospitalization (see Infographic below). (medscape.com)
  • The study also linked low plasma vitamin D levels to an increased likelihood of hospitalization for COVID-19 infection. (medscape.com)
  • Researchers say that these findings should prompt physicians to regularly monitor patients' vitamin D levels, in order to keep them in the optimal range for overall health and to potentially aid in an immune response to COVID-19. (medscape.com)
  • The reference range of vitamin K is 0.2-3.2 ng/mL, but impaired blood clotting has been associated with levels below 0.5 ng/mL by one source. (medscape.com)
  • Our vitamin D levels vary considerably throughout the year - they are twice as high after the summer compared to after the winter in Sweden", says Klas Sjöberg. (lu.se)
  • According to Johan Malm, the relationship between vitamin D levels in the blood and the risk of developing prostate cancer seems to be complex, and the researchers are now studying whether genetic factors influence the risk of developing the disease. (lu.se)
  • LUND RESEARCHERS HAVE ALSO SEEN A CONNECTION between high levels of vitamin D in the blood and a reduced risk of diabetes, blood clots and fractures, among others. (lu.se)
  • There is still uncertainty whether in fact vitamin D levels are critical or if spending a lot of time outside exposed to light generates a positive effect. (lu.se)
  • Mushrooms provide some vitamin D. Some mushrooms you buy in the store have higher vitamin D content because they have been exposed to ultraviolet light. (medlineplus.gov)
  • A 2013 study found that mice given supplements containing vitamin E were less likely to develop skin cancer , even when exposed to large quantities of ultraviolet light. (medicalnewstoday.com)
  • According to Dr. Reinhold Vieth, a professor in Nutritional Sciences at the University of Toronto, "If your shadow is longer than your height, then that sunshine does not provide enough ultraviolet light to make vitamin D. (prweb.com)
  • For us to be able to produce our own vitamin D, our skin must be exposed to ultraviolet light of the type UV-B. Vitamin D, which is actually a hormone, is produced when a cholesterol molecule in the skin is reached by sun light. (lu.se)
  • Although it is unclear which micronutrients are most beneficial for people with burns, many studies suggest that a multivitamin including the B complex vitamins may aid in the recovery process. (healthyplace.com)
  • In addition to your multivitamin or Vitamin C tablet, there are of course natural foods to eat too! (bellaonline.com)
  • Multivitamin and B-complex vitamin infusions, tablets and capsules also contain nicotinamide. (dsm.com)
  • Vitamin D is an essential nutrient long-known for its role in maintaining bone health. (cdc.gov)
  • Guidelines from the Institute of Medicine increased the recommended dietary allowance (RDA) of vitamin D to 600 international units (IU) for everyone ages 1-70, and raised it to 800 IU for adults older than age 70 to optimize bone health. (webmd.com)
  • Vitamin D is a fat-soluble vitamin that plays critical roles in the proper functioning of your body, including bone health and immunity. (healthline.com)
  • Vitamin D is a fat-soluble vitamin that plays a critical role in several aspects of health, including bone health and immunity. (healthline.com)
  • Vitamin D is an essential, fat soluble vitamin that historically has been associated with bone health, but it also plays fundamental roles in supporting the immune system. (creighton.edu)
  • The Vitamin Bridge promotes healthy pregnancies by improving prenatal vitamin access for under-resourced moms-to-be. (guidestar.org)
  • Early prenatal care, including the consumption of prenatal vitamins, is standard for a healthy pregnancy. (guidestar.org)
  • Our results suggest that vitamin K could play a part in keeping our lungs healthy," said researcher Dr. Torkil Jespersen of Copenhagen University Hospital and the University of Copenhagen in Denmark. (medicinenet.com)
  • This vitamin is involved in laying down new bone during growth and promoting healthy teeth. (healthy.net)
  • The best way to get a healthy dose of vitamin A is through fruits and vegetables. (dole.com)
  • Carrots, mango, sweet potato, and butternut squash certainly come to mind, but do not discount kale, broccoli or spinach as they also pack a healthy punch of vitamin A as well! (dole.com)
  • Some feel that vitamin C helps to keep your eyes healthy and can prevent the formation of cataracts. (bellaonline.com)
  • Are Vitamin E Supplements Healthy or Harmful? (livescience.com)
  • Healthy men taking vitamin E actually had a higher incidence of prostate cancer than other men. (livescience.com)
  • The physiological role of vitamin A in er than that of healthy women [ 14 ]. (who.int)
  • Veterinarians recommend thee dog vitamins keep your furry best friend happy and healthy. (popsci.com)
  • Vitamin D in the healthy European paediatric population. (medscape.com)
  • Pantothenic acid (vitamin B5) belongs to the B-vitamin complex. (kcl.ac.uk)
  • Ask your health care provider for recommendations about these vitamins. (medlineplus.gov)
  • To help women in need, The Vitamin Bridge donates prenatal vitamins to first-touch providers which include pregnancy centers, free health clinics, maternity homes and organizations which serve homeless, pregnant women. (guidestar.org)
  • In patient care and public health assessments, vitamin D is defined as the sum of 25-hydroxyergocalciferol (25-hydroxyvitamin D2) and calcifediol (25-hydroxyvitamin D3). (cdc.gov)
  • Retrieved on December 03, 2023 from https://www.news-medical.net/health/Vitamin-D-Overdose.aspx. (news-medical.net)
  • It may not get the publicity of some better-known vitamins like D, but vitamin K -- found in leafy green vegetables -- may boost lung health. (medicinenet.com)
  • Vitamin E supplements may prevent coronary heart disease , support immune function, prevent inflammation , promote eye health, and lower the risk of cancer. (medicalnewstoday.com)
  • Further, scientists need to do more research to investigate how vitamin K2 produced by the gut may influence health ( 10 , 11 , 12 ). (healthline.com)
  • However, researchers need to do more studies to fully understand the relationship between vitamin K and heart health. (healthline.com)
  • The Vitamin D Society recommend that people have their 25(OH)D level tested either through their family doctor or by purchasing a home test kit through health suppliers such as GrassrootsHealth.net . (prweb.com)
  • Vitamin A also helps maintain the health of the cornea, the eye covering. (healthy.net)
  • Future studies designed to better understand what these factors are will be especially useful as public health experts continue to explore ways to increase vitamin D status in different populations living under varying environmental and dietary situations. (sciencedaily.com)
  • Nov. 9, 2020 Vitamin D status during pregnancy has multifaceted effects on maternal health. (sciencedaily.com)
  • The value of eating certain foods to maintain health was recognized long before vitamins were identified. (wikipedia.org)
  • Previous studies have shown there's a risk to health only when a person consumes large amounts of vitamin. (abc.net.au)
  • Yet, even without symptoms, too little vitamin D can pose health risks. (webmd.com)
  • This vitamin has recently garnered a lot of attention for its role in immune health, specifically regarding COVID-19. (healthline.com)
  • One of the most important roles of vitamin D is supporting immune health, which helps you ward off viruses and bacteria that cause illness. (healthline.com)
  • Early studies that found a benefit, mostly for heart disease, were observational and not always well designed: Researchers asked people if they took vitamin E supplements and then looked at their health. (livescience.com)
  • In general, there's little clinical research showing that vitamin E supplements benefit your health. (livescience.com)
  • Vitamin B12, or cobalamin, is essential for human health and survival. (kcl.ac.uk)
  • The potential roles of vitamin D are currently best described as hypotheses of emerging interest, and the conflicting nature of available evidence cannot be used to establish health benefits with any level of confidence, IOM says. (org.in)
  • Vitamin B3 has several health benefits, including performance, beauty and brain health. (dsm.com)
  • Packed with protein, vitamins, minerals, and probiotics to support your furry best friend's overall health. (popsci.com)
  • As with humans, dogs have some basic vitamin and nutrient requirements that their bodies need to process in order to be in good health. (popsci.com)
  • What is Ascorbic Acid (Vitamin C)? (iherb.com)
  • Vitamin C, also known as ascorbic acid, is a water-soluble vitamin, meaning that your body doesn't store it. (healthcastle.com)
  • The Centers for Disease Control and Prevention (CDC) improves the detection and diagnosis of bone diseases by ensuring that laboratory tests for vitamin D are accurate and reliable. (cdc.gov)
  • Dr Mowry, who has conducted a number of vitamin D studies and is the primary investigator in the ongoing VIDAMS (Vitamin D to Ameliorate MS) trial, presented an overview of the current evidence on vitamin D here at the Consortium of Multiple Sclerosis Centers (CMSC) 2016 Annual Meeting. (medscape.com)
  • Researchers believe vitamin K2 may help inhibit this buildup ( 26 , 27 ). (healthline.com)
  • To help clarify this, researchers at Emory University studied vitamin D status in twins living in different North American locations. (sciencedaily.com)
  • Some vitamin supplements can increase your risk of death, say Danish researchers. (abc.net.au)
  • But that's about to be turned on its head after a sophisticated analysis of vitamin studies done by Danish researchers and published in the latest Journal of the American Medical Association . (abc.net.au)
  • The researchers were looking for any evidence of an increase in death from any cause in those taking vitamins. (abc.net.au)
  • Most vitamin studies are funded by vitamin manufacturers who tend not to publish if there are adverse findings the researchers didn't include any unpublished studies in their review. (abc.net.au)
  • Researchers are currently studying the effectiveness of vitamin D alone or in combination with different treatments in mice with breast cancer. (vitamindcouncil.org)
  • Researchers found that when the vitamin A surface on the beta cells was blocked, there was a 30% deterioration of insulin secretion. (dole.com)
  • The researchers say their findings support the theory that vitamin D might help protect against some cancers. (eurekalert.org)
  • Lab researchers doing test-tube and animal studies have found that vitamin D reduces the rate of cell multiplication. (rense.com)
  • By extension, vitamin D affects between 200 and 1000 enzyme systems, but researchers are still not sure of how it works exactly. (lu.se)
  • In mouse models with vitamin D receptor overexpression, you actually can reduce the animal-related colitis . (medscape.com)
  • And recently, scientists have found that a genetic variation in the vitamin D receptor, which transmits signals from vitamin D to cells, is associated with risk of breast cancer. (rense.com)
  • For example, in tissue culture models of vitamin D receptor signaling, exogenous addition of DBP to culture media dramatically reduces bioavailability of both 25D and 1,25D. (medscape.com)
  • Enriched with hyaluronic acid and vitamin E, it doesn't just replenish skin's moisture, it restores vital hydration, leaving it feeling smoother and plump with moisture. (thebodyshop.com)
  • Studies carried out in developed countries show that a full body exposure to UVB radiation that results in pinkness of skin (one erythemal dose) is equal to an oral intake of 250-625μg (10,000-25,000 IU) of 25-hydroxy vitamin D. Exposing one-quarter of skin, for instance just hands, arms and face, to one erythemal dose of UVB rays can form dietary equivalent vitamin D dose of about 1,000 IU. (org.in)
  • Selenium and vitamin C didn't show any increased risk (and selenium actually seemed to lower the risk of death). (abc.net.au)
  • Trending Clinical Topic: Vitamin D - Medscape - Aug 07, 2020. (medscape.com)
  • Some research suggests that vitamin E supplements may promote wound healing. (medicalnewstoday.com)
  • This study suggests that, whereas genetic differences impact winter vitamin D status, lifestyle choices and sun exposure (factors we can control) are predominant in the summer months. (sciencedaily.com)
  • Some research information suggests that as many as 33% of those with an eating disorder could be deficient in vitamins B2 and B6. (healthyplace.com)
  • Research suggests that vitamin D could play a role in the prevention and treatment of a number of different conditions, including type1 and type 2 diabetes, hypertension, glucose intolerance, and multiple sclerosis . (webmd.com)
  • The last two are not invariable findings in vitamin D toxicity, though they are common. (news-medical.net)
  • Their findings were that oral iron supplements alone were equivalent to oral iron supplements plus vitamin C in improving hemoglobin recovery and iron absorption. (medscape.com)
  • As you'd expect, the vitamin industry has denounced the findings, arguing the review is flawed, without being too specific about why. (abc.net.au)
  • The authors say their findings support the theory that vitamin D may protect against the risk of cancer, but that there may be a ceiling effect, which may suggest that there are no additional benefits beyond a certain level of vitamin D. (eurekalert.org)
  • New findings about the role of vitamin D in various conditions, along with recent guidance from medical societies about vitamin D in the era of COVID-19, resulted in this week's top trending clinical topic. (medscape.com)
  • There are different types of vitamin K. Most people get vitamin K from plants such as green vegetables, and dark berries. (medlineplus.gov)
  • Most people meet at least some of their vitamin D needs this way. (medlineplus.gov)
  • Some people believe that vitamins can replace food, but that is incorrect. (bartleby.com)
  • Vitamin E oil might be a good option for people who want to avoid prescription remedies and who have mild psoriasis. (medicalnewstoday.com)
  • On the periodic table, the chemical symbol for potassium is the letter K. Thus, people sometimes confuse potassium with vitamin K. (healthline.com)
  • They looked only at well-designed studies ones that compared groups of people taking vitamins, single or in combinations with other vitamins and compared them to similar groups taking a placebo or taking nothing. (abc.net.au)
  • Amongst the rest, the better quality studies, they found there was a significantly increased risk of death in people taking some vitamins - alone or in combinations. (abc.net.au)
  • Besides which, they argue, some people in the studies were already ill, so why blame the vitamins? (abc.net.au)
  • In fact the analysis showed that vitamins raised the death risk in people already ill). (abc.net.au)
  • At least 20% of people with anorexia admitted to a hospital for treatment are deficient in vitamins B2 and B6 (pyridoxine). (healthyplace.com)
  • People who smoke and those who are exposed to secondhand smoke need 35 mg more Vitamin C per day than nonsmokers. (healthcastle.com)
  • People who get little or no Vitamin C for many weeks can develop scurvy. (healthcastle.com)
  • TimeWise Vitamin C Activating Squares ® won People en Español ® magazine's beauty award under "New Textures" category. (marykay.com)
  • A recent study of over 190,000 people in the United States confirms that low vitamin D status strongly correlates with increased rates of infection with SARS-CoV-2, the virus that causes COVID-19.This finding was consistent regardless of age, gender, race/ethnicity, or latitude. (creighton.edu)
  • However, reports show as many as 80 per cent people in urban India and 70 per cent in rural India are deficient in the vitamin. (org.in)
  • There are many lines of evidence that people need more vitamin D. (rense.com)
  • Vitamins are substances that your body needs to grow and develop normally. (medlineplus.gov)
  • VITAMINS Introduction Vitamins are organic food substances found only in living things, i.e. plants and animals. (bartleby.com)
  • Results S1 reported on 16 studies concerning vitamin E and vitamin E components: two case-control, six prospective and four intervention studies found no effect. (bartleby.com)
  • There are total 13 types of vitamin found and recognized right now, all the function and benefit are essential for human body to develop if consume in the right way. (bartleby.com)
  • Vitamin also is an organic and essential substance that can found in food stuffs, therefore the smart choice of selecting food is best to base on the nutrient that have in the food itself. (bartleby.com)
  • In addition to leafy greens, vitamin K is found in vegetable oils and cereal grains. (medicinenet.com)
  • Vitamin E is found in many moisturizers, and the oil may be used as a moisturizer to prevent or treat dry, flaking skin. (medicalnewstoday.com)
  • However, studies on humans have not found any skin cancer prevention benefits associated with vitamin E. (medicalnewstoday.com)
  • One study found that oral vitamin E supplements could produce significant improvements in eczema symptoms. (medicalnewstoday.com)
  • Vitamin K1 - also known as phylloquinone - is the type usually found in leafy green vegetables. (healthline.com)
  • The association between obesity and vitamin D status found here was consistent between genders, being apparent both in men and in women, and in younger and older age groups. (sciencedaily.com)
  • Vitamin D2 (also called ergocalciferol) is found primarily in mushrooms, plants, and yeast [3]. (creighton.edu)
  • 25-hydroxyvitamin D is the predominant circulating form of vitamin D found in the bloodstream, and is the form measured by medical professionals to determine a person's vitamin D status. (creighton.edu)
  • This study was followed by an analysis of many studies in 2010 that found vitamin E supplements increase the risk of hemorrhagic strokes by 22 percent. (livescience.com)
  • Earlier research had found no benefit or harm from vitamin E. This large study of 35,533 men over a period of three years came up with a surprising result. (livescience.com)
  • A daily dose of vitamin D could cut the risk of cancers of the breast, colon and ovary by up to a half, a 40-year review of research has found. (rense.com)
  • Encouragingly, the study found that vitamin D use was linked to a 65% decreased odds of developing ICI colitis. (medscape.com)