Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
External envelope protein of the human immunodeficiency virus which is encoded by the HIV env gene. It has a molecular weight of 120 kDa and contains numerous glycosylation sites. Gp120 binds to cells expressing CD4 cell-surface antigens, most notably T4-lymphocytes and monocytes/macrophages. Gp120 has been shown to interfere with the normal function of CD4 and is at least partly responsible for the cytopathic effect of HIV.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by translocation of the whole virus across the cell membrane.
Retroviral proteins, often glycosylated, coded by the envelope (env) gene. They are usually synthesized as protein precursors (POLYPROTEINS) and later cleaved into the final viral envelope glycoproteins by a viral protease.
The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes.
Established cell cultures that have the potential to propagate indefinitely.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE).
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
"Ducks" is not a recognized medical term or condition in human health; it may refer to various anatomical structures in animals, such as the ducks of the heart valves, but it does not have a standalone medical definition.
Transmembrane envelope protein of the HUMAN IMMUNODEFICIENCY VIRUS which is encoded by the HIV env gene. It has a molecular weight of 41,000 and is glycosylated. The N-terminal part of gp41 is thought to be involved in CELL FUSION with the CD4 ANTIGENS of T4 LYMPHOCYTES, leading to syncytial formation. Gp41 is one of the most common HIV antigens detected by IMMUNOBLOTTING.
Specific hemagglutinin subtypes encoded by VIRUSES.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Proteins found in any species of virus.
55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. CD4 antigens are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. CD4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Immunoglobulins produced in response to VIRAL ANTIGENS.
An envelope protein of the human immunodeficiency virus that is encoded by the HIV env gene. It has a molecular weight of 160,000 kDa and contains numerous glycosylation sites. It serves as a precursor for both the HIV ENVELOPE PROTEIN GP120 and the HIV ENVELOPE PROTEIN GP41.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
Proteins encoded by the ENV GENE of the HUMAN IMMUNODEFICIENCY VIRUS.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
Antibodies reactive with HIV ANTIGENS.
A species of the genus FLAVIVIRUS which causes an acute febrile and sometimes hemorrhagic disease in man. Dengue is mosquito-borne and four serotypes are known.
DNA sequences that form the coding region for the viral envelope (env) proteins in retroviruses. The env genes contain a cis-acting RNA target sequence for the rev protein (= GENE PRODUCTS, REV), termed the rev-responsive element (RRE).
A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children.
Multinucleated masses produced by the fusion of many cells; often associated with viral infections. In AIDS, they are induced when the envelope glycoprotein of the HIV virus binds to the CD4 antigen of uninfected neighboring T4 cells. The resulting syncytium leads to cell death and thus may account for the cytopathic effect of the virus.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Retroviral proteins that have the ability to transform cells. They can induce sarcomas, leukemias, lymphomas, and mammary carcinomas. Not all retroviral proteins are oncogenic.
Sites on an antigen that interact with specific antibodies.
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice.
A species of DNA virus, in the genus WHISPOVIRUS, infecting PENAEID SHRIMP.
A subgroup of the genus FLAVIVIRUS that causes encephalitis and hemorrhagic fevers and is found in eastern and western Europe and the former Soviet Union. It is transmitted by TICKS and there is an associated milk-borne transmission from viremic cattle, goats, and sheep.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Cellular receptors that bind the human immunodeficiency virus that causes AIDS. Included are CD4 ANTIGENS, found on T4 lymphocytes, and monocytes/macrophages, which bind to the HIV ENVELOPE PROTEIN GP120.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
CCR receptors with specificity for CHEMOKINE CCL3; CHEMOKINE CCL4; and CHEMOKINE CCL5. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; MACROPHAGES; MAST CELLS; and NK CELLS. The CCR5 receptor is used by the HUMAN IMMUNODEFICIENCY VIRUS to infect cells.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Substances elaborated by viruses that have antigenic activity.
Semi-synthetic complex derived from nucleic-acid free viral particles. They are essentially reconstituted viral coats, where the infectious nucleocapsid is replaced by a compound of choice. Virosomes retain their fusogenic activity and thus deliver the incorporated compound (antigens, drugs, genes) inside the target cell. They can be used for vaccines (VACCINES, VIROSOME), drug delivery, or gene transfer.
Antibodies produced by a single clone of cells.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
Tetraspanin proteins that are involved in a variety of cellular functions including BASEMENT MEMBRANE assembly, and in the formation of a molecular complexes on the surface of LYMPHOCYTES.
Virus diseases caused by the RETROVIRIDAE.
Vaccines or candidate vaccines containing inactivated HIV or some of its component antigens and designed to prevent or treat AIDS. Some vaccines containing antigens are recombinantly produced.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum.
Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES).
CXCR receptors with specificity for CXCL12 CHEMOKINE. The receptors may play a role in HEMATOPOIESIS regulation and can also function as coreceptors for the HUMAN IMMUNODEFICIENCY VIRUS.
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS.
A species of GAMMARETROVIRUS causing leukemia, lymphosarcoma, immune deficiency, or other degenerative diseases in cats. Several cellular oncogenes confer on FeLV the ability to induce sarcomas (see also SARCOMA VIRUSES, FELINE).
The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice.
A species of GAMMARETROVIRUS causing leukemia in the gibbon ape. Natural transmission is by contact.
The type species of the FLAVIVIRUS genus. Principal vector transmission to humans is by AEDES spp. mosquitoes.
Glycoproteins found on the membrane or surface of cells.
Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2.
The functional hereditary units of VIRUSES.
Inhibitors of the fusion of HIV to host cells, preventing viral entry. This includes compounds that block attachment of HIV ENVELOPE PROTEIN GP120 to CD4 RECEPTORS.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
Proteins prepared by recombinant DNA technology.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.
A genus of FLAVIVIRIDAE containing several subgroups and many species. Most are arboviruses transmitted by mosquitoes or ticks. The type species is YELLOW FEVER VIRUS.
A genus of IRIDOVIRIDAE which infects fish, amphibians and reptiles. It is non-pathogenic for its natural host, Rana pipiens, but is lethal for other frogs, toads, turtles and salamanders. Frog virus 3 is the type species.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The specificity of a virus for infecting a particular type of cell or tissue.
Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A DNA virus that closely resembles human hepatitis B virus. It has been recovered from naturally infected ducks.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE). It can infect birds and mammals. In humans, it is seen most frequently in Africa, Asia, and Europe presenting as a silent infection or undifferentiated fever (WEST NILE FEVER). The virus appeared in North America for the first time in 1999. It is transmitted mainly by CULEX spp mosquitoes which feed primarily on birds, but it can also be carried by the Asian Tiger mosquito, AEDES albopictus, which feeds mainly on mammals.
Inactivation of viruses by non-immune related techniques. They include extremes of pH, HEAT treatment, ultraviolet radiation, IONIZING RADIATION; DESICCATION; ANTISEPTICS; DISINFECTANTS; organic solvents, and DETERGENTS.
Deoxyribonucleic acid that makes up the genetic material of viruses.
Those hepatitis B antigens found on the surface of the Dane particle and on the 20 nm spherical and tubular particles. Several subspecificities of the surface antigen are known. These were formerly called the Australia antigen.
Nuclear matrix proteins that are structural components of the NUCLEAR LAMINA. They are found in most multicellular organisms.
A genus of FLAVIVIRIDAE causing parenterally-transmitted HEPATITIS C which is associated with transfusions and drug abuse. Hepatitis C virus is the type species.
Retroviruses that have integrated into the germline (PROVIRUSES) that have lost infectious capability but retained the capability to transpose.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
A protein-nucleic acid complex which forms part or all of a virion. It consists of a CAPSID plus enclosed nucleic acid. Depending on the virus, the nucleocapsid may correspond to a naked core or be surrounded by a membranous envelope.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen.
Ribonucleic acid that makes up the genetic material of viruses.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE), which is the etiological agent of Japanese encephalitis found in Asia, southeast Asia, and the Indian subcontinent.
A genus of RETROVIRIDAE comprising endogenous sequences in mammals, related RETICULOENDOTHELIOSIS VIRUSES, AVIAN, and a reptilian virus. Many species contain oncogenes and cause leukemias and sarcomas.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
An HIV species related to HIV-1 but carrying different antigenic components and with differing nucleic acid composition. It shares serologic reactivity and sequence homology with the simian Lentivirus SIMIAN IMMUNODEFICIENCY VIRUS and infects only T4-lymphocytes expressing the CD4 phenotypic marker.
An acute febrile disease transmitted by the bite of AEDES mosquitoes infected with DENGUE VIRUS. It is self-limiting and characterized by fever, myalgia, headache, and rash. SEVERE DENGUE is a more virulent form of dengue.
A BETARETROVIRUS that causes pulmonary adenomatosis in sheep (PULMONARY ADENOMATOSIS, OVINE).
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A family of low molcular-weight proteins that contain PROLINE-RICH PROTEIN DOMAINS. Members of this family play a role in the formation of an insoluble cornified envelope beneath the plasma membrane of stratified squamous epithelial cells.
The sum of the weight of all the atoms in a molecule.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl.
Proteins from the family Retroviridae. The most frequently encountered member of this family is the Rous sarcoma virus protein.
Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.
A genus of the family PARAMYXOVIRIDAE (subfamily PARAMYXOVIRINAE) where all the virions have both HEMAGGLUTININ and NEURAMINIDASE activities and encode a non-structural C protein. SENDAI VIRUS is the type species.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A family of CRUSTACEA, order DECAPODA, comprising the penaeid shrimp. Species of the genus Penaeus are the most important commercial shrimp throughout the world.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The directional growth of an organism in response to an external stimulus such as light, touch, or gravity. Growth towards the stimulus is a positive tropism; growth away from the stimulus is a negative tropism. (From Concise Dictionary of Biology, 1990)
A species of VARICELLOVIRUS producing a respiratory infection (PSEUDORABIES) in swine, its natural host. It also produces an usually fatal ENCEPHALOMYELITIS in cattle, sheep, dogs, cats, foxes, and mink.
A genus of the family BACULOVIRIDAE, subfamily Eubaculovirinae, characterized by the formation of crystalline, polyhedral occlusion bodies in the host cell nucleus. The type species is Autographa californica nucleopolyhedrovirus.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.
A genus of the family RETROVIRIDAE with type C morphology, that causes malignant and other diseases in wild birds and domestic fowl.
Antigens associated with specific proteins of the human adult T-cell immunodeficiency virus (HIV); also called HTLV-III-associated and lymphadenopathy-associated virus (LAV) antigens.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
A subclass of developmentally regulated lamins having a neutral isoelectric point. They are found to disassociate from nuclear membranes during mitosis.
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A family of large icosahedral DNA viruses infecting insects and poikilothermic vertebrates. Genera include IRIDOVIRUS; RANAVIRUS; Chloriridovirus; Megalocytivirus; and Lymphocystivirus.
A defective virus, containing particles of RNA nucleoprotein in virion-like form, present in patients with acute hepatitis B and chronic hepatitis. It requires the presence of a hepadnavirus for full replication. This is the lone species in the genus Deltavirus.
Glycoprotein from Sendai, para-influenza, Newcastle Disease, and other viruses that participates in binding the virus to cell-surface receptors. The HN protein possesses both hemagglutinin and neuraminidase activity.
A genus of owlet moths of the family Noctuidae. These insects are used in molecular biology studies during all stages of their life cycle.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
Strains of MURINE LEUKEMIA VIRUS that are replication-defective and rapidly transforming. The envelope gene plays an essential role in initiating erythroleukemia (LEUKEMIA, ERYTHROBLASTIC, ACUTE), manifested by splenic foci, SPLENOMEGALY, and POLYCYTHEMIA. Spleen focus-forming viruses are generated by recombination with endogenous retroviral sequences.
A strain of MURINE LEUKEMIA VIRUS associated with mouse tumors similar to those caused by the FRIEND MURINE LEUKEMIA VIRUS. It is a replication-competent murine leukemia virus. It can act as a helper virus when complexing with a defective transforming component, RAUSCHER SPLEEN FOCUS-FORMING VIRUS.
An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies.
Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues.
Proteins encoded by the CHLOROPLAST GENOME or proteins encoded by the nuclear genome that are imported to and resident in the CHOROPLASTS.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The relationships of groups of organisms as reflected by their genetic makeup.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993.
The type species of the genus ARTERIVIRUS and the etiologic agent of an important equine respiratory disease causing abortion, pneumonia, or other infections.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
An acute infectious disease primarily of the tropics, caused by a virus and transmitted to man by mosquitoes of the genera Aedes and Haemagogus. The severe form is characterized by fever, HEMOLYTIC JAUNDICE, and renal damage.
A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans.
Vaccines or candidate vaccines used to prevent infection with WEST NILE VIRUS.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
Proteins found in any species of bacterium.
A subclass of ubiquitously-expressed lamins having an acidic isoelectric point. They are found to remain bound to nuclear membranes during mitosis.
Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.
The rate dynamics in chemical or physical systems.
An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992)
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
The type species of RESPIROVIRUS in the subfamily PARAMYXOVIRINAE. It is the murine version of HUMAN PARAINFLUENZA VIRUS 1, distinguished by host range.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate.
Viral proteins found in either the NUCLEOCAPSID or the viral core (VIRAL CORE PROTEINS).
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen.
A species of the CORONAVIRUS genus causing hepatitis in mice. Four strains have been identified as MHV 1, MHV 2, MHV 3, and MHV 4 (also known as MHV-JHM, which is neurotropic and causes disseminated encephalomyelitis with demyelination as well as focal liver necrosis).
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions.
A family of hepatotropic DNA viruses which contains double-stranded DNA genomes and causes hepatitis in humans and animals. There are two genera: AVIHEPADNAVIRUS and ORTHOHEPADNAVIRUS. Hepadnaviruses include HEPATITIS B VIRUS, duck hepatitis B virus (HEPATITIS B VIRUS, DUCK), heron hepatitis B virus, ground squirrel hepatitis virus, and woodchuck hepatitis B virus (HEPATITIS B VIRUS, WOODCHUCK).
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
The interactions between a host and a pathogen, usually resulting in disease.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Deletion of sequences of nucleic acids from the genetic material of an individual.
A tomographic technique for obtaining 3-dimensional images with transmission electron microscopy.
The largest order of CRUSTACEA, comprising over 10,000 species. They are characterized by three pairs of thoracic appendages modified as maxillipeds, and five pairs of thoracic legs. The order includes the familiar shrimps, crayfish (ASTACOIDEA), true crabs (BRACHYURA), and lobsters (NEPHROPIDAE and PALINURIDAE), among others.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Sensitive assay using radiolabeled ANTIGENS to detect specific ANTIBODIES in SERUM. The antigens are allowed to react with the serum and then precipitated using a special reagent such as PROTEIN A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis.
Family of INSECT VIRUSES containing two subfamilies: Eubaculovirinae (occluded baculoviruses) and Nudibaculovirinae (nonoccluded baculoviruses). The Eubaculovirinae, which contain polyhedron-shaped inclusion bodies, have two genera: NUCLEOPOLYHEDROVIRUS and GRANULOVIRUS. Baculovirus vectors are used for expression of foreign genes in insects.

A soluble form of the avian hepatitis B virus receptor. Biochemical characterization and functional analysis of the receptor ligand complex. (1/8277)

Avian hepatitis B virus infection is initiated by the specific interaction of the extracellular preS part of the large viral envelope protein with carboxypeptidase D (gp180), the primary cellular receptor. To functionally and biochemically characterize this interaction, we purified a soluble form of duck carboxypeptidase D from a baculovirus expression system, confirmed its receptor function, and investigated the contribution of different preS sequence elements to receptor binding by surface plasmon resonance analysis. We found that preS binds duck carboxypeptidase D with a 1:1 stoichiometry, thereby inducing conformational changes but not oligomerization. The association constant of the complex was determined to be 2.2 x 10(7) M-1 at 37 degreesC, pH 7.4, with an association rate of 4.0 x 10(4) M-1 s-1 and a dissociation rate of 1.9 x 10(-3) s-1, substantiating high affinity interaction of avihepadnaviruses with their receptor carboxypeptidase D. The separately expressed receptor-binding domain, comprising about 50% of preS as defined by mutational analysis, exhibits similar constants. The domain consists of an essential element, probably responsible for the initial receptor contact and a part that contributes to complex stabilization in a conformation sensitive manner. Together with previous results from cell biological studies these data provide new insights into the initial step of hepadnaviral infection.  (+info)

Development of a Western blot assay for detection of bovine immunodeficiency-like virus using capsid and transmembrane envelope proteins expressed from recombinant baculovirus. (2/8277)

A 120-amino-acid polypeptide selected from the transmembrane protein region (tTM) and the major capsid protein p26 of bovine immunodeficiency-like virus (BIV) were expressed as fusion proteins from recombinant baculoviruses. The antigenic reactivity of both recombinant fusion proteins was confirmed by Western blot with bovine and rabbit antisera to BIV. BIV-negative bovine sera and animal sera positive for bovine syncytial virus and bovine leukemia virus failed to recognize the recombinant fusion proteins, thereby showing the specificity of the BIV Western blot. One hundred and five bovine serum samples were tested for the presence of anti-BIV antibodies by the recombinant protein-based Western blot and a reference Western blot assay using cell culture-derived virions as test antigens. There was a 100% concordance when the p26 fusion protein was used in the Western blot. However, the Western blot using the tTM fusion protein as its test antigen identified four BIV-positive bovine sera which had tested negative in both the p26 recombinant-protein-based and the reference Western blot assays. This resulted in the lower concordance of 96.2% between the tTM-protein-based and reference Western blot assays. The results of this study showed that the recombinant p26 and tTM proteins can be used as test antigens for the serodetection of BIV-infection in animals.  (+info)

Trimming and readdition of glucose to N-linked oligosaccharides determines calnexin association of a substrate glycoprotein in living cells. (3/8277)

To analyze the role of glucose trimming and reglucosylation in the binding of substrate proteins to calnexin in the endoplasmic reticulum (ER) of living cells, we made use of the thermosensitive vesicular stomatitis virus tsO45 glycoprotein (G protein). At nonpermissive temperature the G protein failed to fold completely and remained bound to calnexin. When the cells were shifted to permissive temperature, complete folding occurred accompanied by glucosidase-mediated elimination of calnexin-G protein complexes. If release from calnexin was blocked during the temperature shift by inhibiting the glucosidases, folding occurred, albeit at a reduced rate. In contrast, when unfolded by a shift from permissive to nonpermissive temperature, the G protein was reglucosylated rapidly and became capable of rebinding to calnexin. The rate at which calnexin binding occurred showed a 20-min delay that was explained by accumulation of the G protein in calnexin-free exit sites of the ER. These contained the glucosyltransferase responsible for reglucosylation of misfolded glycoproteins but had little or no calnexin. After unfolding and reglucosylation, the G proteins moved slowly from these structures back to the ER where they reassociated with the chaperone. Taken together, these results in live cells fully supported the lectin-only model of calnexin function. The ER exit sites emerged as a potentially important location for components of the quality control system.  (+info)

Specific binding of recombinant foamy virus envelope protein to host cells correlates with susceptibility to infection. (4/8277)

The interaction of simian foamy viruses (FVs) with their putative cellular receptor(s) was studied with two types of recombinant envelope protein (Env). Transient expression of full-length Env in BHK-21 cells induced syncytia formation. However, selected stable transfectants fused with naive cells but not with each other. A soluble fusion protein of the Env surface domain with the Fc fragment of a human IgG1 heavy chain (EnvSU-Ig) was produced in the baculovirus expression system, purified to homogeneity, and used for binding and competition analyses. EnvSU-Ig but not unrelated Ig fusion proteins bound to cells specifically. Neutralizing serum blocked binding of EnvSU-Ig and, vice versa, serum-mediated neutralization was abrogated by the chimeric protein. Concomitant reduction of EnvSU-Ig binding and FV susceptibility was seen in Env-expressing target cells. Although EnvSU-Ig did not inhibit FV infection, very likely due to its displacement by multivalent virus-cell interactions, this divalent ligand should help to characterize functionally and to identify the ubiquitous FV receptor.  (+info)

DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. (5/8277)

Seoul virus (SEOV) is one of four known hantaviruses causing hemorrhagic fever with renal syndrome (HFRS). Candidate naked DNA vaccines for HFRS were constructed by subcloning cDNA representing the medium (M; encoding the G1 and G2 glycoproteins) or small (S; encoding the nucleocapsid protein) genome segment of SEOV into the DNA expression vector pWRG7077. We vaccinated BALB/c mice with three doses of the M or S DNA vaccine at 4-week intervals by either gene gun inoculation of the epidermis or needle inoculation into the gastrocnemius muscle. Both routes of vaccination resulted in antibody responses as measured by ELISA; however, gene gun inoculation elicited a higher frequency of seroconversion and higher levels of antibodies in individual mice. We vaccinated Syrian hamsters with the M or S construct using the gene gun and found hantavirus-specific antibodies in five of five and four of five hamsters, respectively. Animals vaccinated with the M construct developed a neutralizing antibody response that was greatly enhanced in the presence of guinea pig complement. Immunized hamsters were challenged with SEOV and, after 28 days, were monitored for evidence of infection. Hamsters vaccinated with M were protected from infection, but hamsters vaccinated with S were not protected.  (+info)

Qualitative and quantitative requirements for CD4+ T cell-mediated antiviral protection. (6/8277)

CD4+ Th cells deliver the cognate and cytokine signals that promote the production of protective virus-neutralizing IgG by specific B cells and are also able to mediate direct antiviral effector functions. To quantitatively and qualitatively analyze the antiviral functions of CD4+ Th cells, we generated transgenic mice (tg7) expressing an MHC class II (I-Ab)-restricted TCR specific for a peptide derived from the glycoprotein (G) of vesicular stomatitis virus (VSV). The elevated precursor frequency of naive VSV-specific Th cells in tg7 mice led to a markedly accelerated and enhanced class switching to virus-neutralizing IgG after immunization with inactivated VSV. Furthermore, in contrast to nontransgenic controls, tg7 mice rapidly cleared a recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G) from peripheral organs. By adoptive transfer of naive tg7 CD4+ T cells into T cell-deficient recipients, we found that 105 transferred CD4+ T cells were sufficient to induce isotype switching after challenge with a suboptimal dose of inactivated VSV. In contrast, naive transgenic CD4+ T cells were unable to adoptively confer protection against peripheral infection with Vacc-IND-G. However, tg7 CD4+ T cells that had been primed in vitro with VSV-G peptide were able to adoptively transfer protection against Vacc-IND-G. These results demonstrate that the antiviral properties of CD4+ T cells are governed by the differentiation status of the CD4+ T cell and by the type of effector response required for virus elimination.  (+info)

IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. (7/8277)

IL-12 has been shown to enhance cellular immunity in vitro and in vivo. Recent reports have suggested that combining DNA vaccine approach with immune stimulatory molecules delivered as genes may significantly enhance Ag-specific immune responses in vivo. In particular, IL-12 molecules could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of IL-12 cDNA as an adjuvant for a herpes simplex virus-2 (HSV-2) DNA vaccine in a mouse challenge model. Direct i.m. injection of IL-12 cDNA induced activation of resting immune cells in vivo. Furthermore, coinjection with IL-12 cDNA and gD DNA vaccine inhibited both systemic gD-specific Ab and local Ab levels compared with gD plasmid vaccination alone. In contrast, Th cell proliferative responses and secretion of cytokines (IL-2 and IFN-gamma) and chemokines (RANTES and macrophage inflammatory protein-1alpha) were significantly increased by IL-12 coinjection. However, the production of cytokines (IL-4 and IL-10) and chemokine (MCP-1) was inhibited by IL-12 coinjection. IL-12 coinjection with a gD DNA vaccine showed significantly better protection from lethal HSV-2 challenge compared with gD DNA vaccination alone in both inbred and outbred mice. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vivo CD4+ T cell deletion. Thus, IL-12 cDNA as a DNA vaccine adjuvant drives Ag-specific Th1 type CD4+ T cell responses that result in reduced HSV-2-derived morbidity as well as mortality.  (+info)

Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein. (8/8277)

An expression cassette designed for high-level production of rabies virus glycoprotein (RG) could not be rescued into a replication-defective, adenovirus-based vector using standard procedures. To overcome this difficulty, a 293-based cell line, designated 293LAP13, was constructed that contained and expressed a derivative of the lac repressor protein. The lac operator sequence, to which the repressor binds, was incorporated into an expression cassette, containing a promoter and intron, designed for high-level production of RG. Insertion of a single operator sequence immediately downstream of the transcription start site and the use of the 293LAP13 cell line allowed recombinant viruses that could not be isolated with 293 cells to be rescued efficiently. The operator-containing virus reached higher titres in 293LAP13 than in parental 293 cells and also produced plaques more efficiently in 293LAP13 cells. Moreover, in non-complementing human and canine cell lines, adenovirus vectors with a promoter-intron expression cassette expressed RG at much higher levels than vectors lacking the intron. These observations, together with the demonstration that expression of RG by operator-containing vectors was repressed markedly in 293LAP13 cells and that this inhibition was relieved at least partly by IPTG, suggest that the 293LAP13 cell line may be useful for the rescue and propagation of many vectors in which high expression of the desired protein prevents vector rescue in 293 cells.  (+info)

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

HIV Envelope Protein gp120 is a glycoprotein that is a major component of the outer envelope of the Human Immunodeficiency Virus (HIV). It plays a crucial role in the viral infection process. The "gp" stands for glycoprotein.

The gp120 protein is responsible for binding to CD4 receptors on the surface of human immune cells, particularly T-helper cells or CD4+ cells. This binding initiates the fusion process that allows the virus to enter and infect the cell.

After attachment, a series of conformational changes occur in the gp120 and another envelope protein, gp41, leading to the formation of a bridge between the viral and cell membranes, which ultimately results in the virus entering the host cell.

The gp120 protein is also one of the primary targets for HIV vaccine design due to its critical role in the infection process and its surface location, making it accessible to the immune system. However, its high variability and ability to evade the immune response have posed significant challenges in developing an effective HIV vaccine.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Virus internalization, also known as viral entry, is the process by which a virus enters a host cell to infect it and replicate its genetic material. This process typically involves several steps:

1. Attachment: The viral envelope proteins bind to specific receptors on the surface of the host cell.
2. Entry: The virus then enters the host cell through endocytosis or membrane fusion, depending on the type of virus.
3. Uncoating: Once inside the host cell, the viral capsid is removed, releasing the viral genome into the cytoplasm.
4. Replication: The viral genome then uses the host cell's machinery to replicate itself and produce new viral particles.

It's important to note that the specific mechanisms of virus internalization can vary widely between different types of viruses, and are an active area of research in virology and infectious disease.

A gene product is the biochemical material, such as a protein or RNA, that is produced by the expression of a gene. Env, short for "envelope," refers to a type of gene product that is commonly found in enveloped viruses. The env gene encodes the viral envelope proteins, which are crucial for the virus's ability to attach to and enter host cells during infection. These envelope proteins typically form a coat around the exterior of the virus and interact with receptors on the surface of the host cell, triggering the fusion or endocytosis processes that allow the viral genome to enter the host cell.

Therefore, in medical terms, 'Gene Products, env' specifically refers to the proteins or RNA produced by the env gene in enveloped viruses, which play a critical role in the virus's infectivity and pathogenesis.

Membrane fusion is a fundamental biological process that involves the merging of two initially separate lipid bilayers, such as those surrounding cells or organelles, to form a single continuous membrane. This process plays a crucial role in various physiological events including neurotransmitter release, hormone secretion, fertilization, viral infection, and intracellular trafficking of proteins and lipids. Membrane fusion is tightly regulated and requires the participation of specific proteins called SNAREs (Soluble NSF Attachment Protein REceptors) and other accessory factors that facilitate the recognition, approximation, and merger of the membranes. The energy required to overcome the repulsive forces between the negatively charged lipid headgroups is provided by these proteins, which undergo conformational changes during the fusion process. Membrane fusion is a highly specific and coordinated event, ensuring that the correct membranes fuse at the right time and place within the cell.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

The nuclear envelope is a complex and double-membrane structure that surrounds the eukaryotic cell's nucleus. It consists of two distinct membranes: the outer nuclear membrane, which is continuous with the endoplasmic reticulum (ER) membrane, and the inner nuclear membrane, which is closely associated with the chromatin and nuclear lamina.

The nuclear envelope serves as a selective barrier between the nucleus and the cytoplasm, controlling the exchange of materials and information between these two cellular compartments. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope at sites where the inner and outer membranes fuse, forming aqueous channels that allow for the passive or active transport of molecules, such as ions, metabolites, and RNA-protein complexes.

The nuclear envelope plays essential roles in various cellular processes, including DNA replication, transcription, RNA processing, and chromosome organization. Additionally, it is dynamically regulated during the cell cycle, undergoing disassembly and reformation during mitosis to facilitate equal distribution of genetic material between daughter cells.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

"Ducks" is not a medical term. It is a common name used to refer to a group of birds that belong to the family Anatidae, which also includes swans and geese. Some ducks are hunted for their meat, feathers, or down, but they do not have any specific medical relevance. If you have any questions about a specific medical term or concept, I would be happy to help if you could provide more information!

HIV Envelope Protein gp41 is a transmembrane protein that forms a part of the HIV envelope complex. It plays a crucial role in the viral fusion process, where it helps the virus to enter and infect the host cell. The "gp" stands for glycoprotein, indicating that the protein contains carbohydrate chains. The number 41 refers to its molecular weight, which is approximately 41 kilodaltons.

The gp41 protein exists as a trimer on the surface of the viral envelope and interacts with the host cell membrane during viral entry. It contains several functional domains, including an N-terminal fusion peptide, two heptad repeat regions (HR1 and HR2), a transmembrane domain, and a cytoplasmic tail. During viral fusion, the gp41 protein undergoes significant conformational changes, allowing the fusion peptide to insert into the host cell membrane. The HR1 and HR2 regions then interact to form a six-helix bundle structure, which brings the viral and host cell membranes together, facilitating membrane fusion and viral entry.

The gp41 protein is an important target for HIV vaccine development and antiretroviral therapy. Neutralizing antibodies that recognize and bind to specific epitopes on the gp41 protein can prevent viral entry and infection, while small molecule inhibitors that interfere with the formation of the six-helix bundle structure can also block viral fusion and replication.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

CD4 antigens, also known as CD4 proteins or CD4 molecules, are a type of cell surface receptor found on certain immune cells, including T-helper cells and monocytes. They play a critical role in the immune response by binding to class II major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells and helping to activate T-cells. CD4 antigens are also the primary target of the human immunodeficiency virus (HIV), which causes AIDS, leading to the destruction of CD4-positive T-cells and a weakened immune system.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

HIV Envelope Protein gp160 is a precursor protein that is cleaved to form the two envelope glycoproteins, gp120 and gp41, on the surface of the Human Immunodeficiency Virus (HIV). The gp160 protein plays a crucial role in the viral life cycle as it mediates the attachment and fusion of the virus to the host cell membrane during infection.

The gp160 protein is composed of an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains several important regions that are involved in receptor binding and fusion activation. After the virus infects a host cell, the gp160 protein is cleaved by a protease enzyme into two separate proteins: gp120 and gp41.

The gp120 protein remains on the surface of the viral envelope and functions as the primary binding site for the CD4 receptor on the host cell surface, while gp41 spans the viral membrane and mediates the fusion of the viral and host cell membranes. Together, these proteins facilitate the entry of the viral genome into the host cell, which is a critical step in the HIV replication cycle.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

The "env" gene in the Human Immunodeficiency Virus (HIV) encodes for the envelope proteins gp120 and gp41, which are located on the surface of the viral particle. These proteins play a crucial role in the virus's ability to infect human cells.

The gp120 protein is responsible for binding to CD4 receptors and co-receptors (CCR5 or CXCR4) on the surface of host cells, primarily CD4+ T cells, dendritic cells, and macrophages. This interaction allows the virus to attach to and enter the host cell, initiating infection.

The gp41 protein then facilitates the fusion of the viral and host cell membranes, enabling the viral genetic material to be released into the host cell's cytoplasm. Once inside the host cell, HIV can integrate its genome into the host cell's DNA, leading to the production of new virus particles and the continued spread of infection.

Understanding the function of the env gene products is essential for developing effective HIV treatments and vaccines, as targeting these proteins can prevent viral entry and subsequent infection of host cells.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Viral fusion proteins are specialized surface proteins found on the envelope of enveloped viruses. These proteins play a crucial role in the viral infection process by mediating the fusion of the viral membrane with the target cell membrane, allowing the viral genetic material to enter the host cell and initiate replication.

The fusion protein is often synthesized as an inactive precursor, which undergoes a series of conformational changes upon interaction with specific receptors on the host cell surface. This results in the exposure of hydrophobic fusion peptides or domains that insert into the target cell membrane, bringing the two membranes into close proximity and facilitating their merger.

A well-known example of a viral fusion protein is the gp120/gp41 complex found on the Human Immunodeficiency Virus (HIV). The gp120 subunit binds to CD4 receptors and chemokine coreceptors on the host cell surface, triggering conformational changes in the gp41 subunit that expose the fusion peptide and enable membrane fusion. Understanding the structure and function of viral fusion proteins is important for developing antiviral strategies and vaccines.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Cell fusion is the process by which two or more cells combine to form a single cell with a single nucleus, containing the genetic material from all of the original cells. This can occur naturally in certain biological processes, such as fertilization (when a sperm and egg cell fuse to form a zygote), muscle development (where multiple muscle precursor cells fuse together to create multinucleated muscle fibers), and during the formation of bone (where osteoclasts, the cells responsible for breaking down bone tissue, are multinucleated).

Cell fusion can also be induced artificially in laboratory settings through various methods, including chemical treatments, electrical stimulation, or viral vectors. Induced cell fusion is often used in research to create hybrid cells with unique properties, such as cybrid cells (cytoplasmic hybrids) and heterokaryons (nuclear hybrids). These hybrid cells can help scientists study various aspects of cell biology, genetics, and disease mechanisms.

In summary, cell fusion is the merging of two or more cells into one, resulting in a single cell with combined genetic material. This process occurs naturally during certain biological processes and can be induced artificially for research purposes.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

HIV antibodies are proteins produced by the immune system in response to the presence of HIV (Human Immunodeficiency Virus) in the body. These antibodies are designed to recognize and bind to specific parts of the virus, known as antigens, in order to neutralize or eliminate it.

There are several types of HIV antibodies that can be produced, including:

1. Anti-HIV-1 and anti-HIV-2 antibodies: These are antibodies that specifically target the HIV-1 and HIV-2 viruses, respectively.
2. Antibodies to HIV envelope proteins: These antibodies recognize and bind to the outer envelope of the virus, which is covered in glycoprotein spikes that allow the virus to attach to and enter host cells.
3. Antibodies to HIV core proteins: These antibodies recognize and bind to the interior of the viral particle, where the genetic material of the virus is housed.

The presence of HIV antibodies in the blood can be detected through a variety of tests, including enzyme-linked immunosorbent assay (ELISA) and Western blot. A positive test result for HIV antibodies indicates that an individual has been infected with the virus, although it may take several weeks or months after infection for the antibodies to become detectable.

Dengue virus (DENV) is a single-stranded, positive-sense RNA virus that belongs to the genus Flavivirus in the family Flaviviridae. It is primarily transmitted to humans through the bites of infected female mosquitoes, mainly Aedes aegypti and Aedes albopictus.

The DENV genome contains approximately 11,000 nucleotides and encodes three structural proteins (capsid, pre-membrane/membrane, and envelope) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). There are four distinct serotypes of DENV (DENV-1, DENV-2, DENV-3, and DENV-4), each of which can cause dengue fever, a mosquito-borne viral disease.

Infection with one serotype provides lifelong immunity against that particular serotype but only temporary and partial protection against the other three serotypes. Subsequent infections with different serotypes can increase the risk of developing severe dengue, such as dengue hemorrhagic fever or dengue shock syndrome, due to antibody-dependent enhancement (ADE) and original antigenic sin phenomena.

DENV is a significant public health concern in tropical and subtropical regions worldwide, with an estimated 390 million annual infections and approximately 100-400 million clinical cases. Preventive measures include vector control strategies to reduce mosquito populations and the development of effective vaccines against all four serotypes.

"Genes x Environment" (GxE) is a term used in the field of genetics to describe the interaction between genetic factors and environmental influences on the development, expression, and phenotypic outcome of various traits, disorders, or diseases. This concept recognizes that both genes and environment play crucial roles in shaping an individual's health and characteristics, and that these factors do not act independently but rather interact with each other in complex ways.

GxE interactions can help explain why some individuals with a genetic predisposition for a particular disorder may never develop the condition, while others without such a predisposition might. The environmental factors involved in GxE interactions can include lifestyle choices (such as diet and exercise), exposure to toxins or pollutants, social experiences, and other external conditions that can influence gene expression and overall health outcomes.

Understanding GxE interactions is essential for developing personalized prevention and treatment strategies, as it allows healthcare providers to consider both genetic and environmental factors when assessing an individual's risk for various disorders or diseases.

Parainfluenza Virus 1, Human (HPIV-1) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory infections in children, immunocompromised individuals, and the elderly.

HPIV-1 primarily infects the upper respiratory tract, causing symptoms such as cough, runny nose, sore throat, and fever. However, it can also cause lower respiratory tract infections, including bronchitis, bronchiolitis, and pneumonia, particularly in young children and infants.

HPIV-1 is transmitted through respiratory droplets or direct contact with infected individuals. The incubation period for HPIV-1 infection ranges from 2 to 7 days, after which symptoms can last for up to 10 days. There is no specific antiviral treatment available for HPIV-1 infections, and management typically involves supportive care such as hydration, fever reduction, and respiratory support if necessary.

Prevention measures include good hand hygiene, avoiding close contact with infected individuals, and practicing cough etiquette. Vaccines are not currently available for HPIV-1 infections, but research is ongoing to develop effective vaccines against these viruses.

Giant cells are large, multinucleated cells that result from the fusion of monocytes or macrophages. They can be found in various types of inflammatory and degenerative lesions, including granulomas, which are a hallmark of certain diseases such as tuberculosis and sarcoidosis. There are several types of giant cells, including:

1. Langhans giant cells: These have a horseshoe-shaped or crescentic arrangement of nuclei around the periphery of the cell. They are typically found in granulomas associated with infectious diseases such as tuberculosis and histoplasmosis.
2. Foreign body giant cells: These form in response to the presence of foreign material, such as a splinter or suture, in tissue. The nuclei are usually scattered throughout the cell cytoplasm.
3. Touton giant cells: These are found in certain inflammatory conditions, such as xanthomatosis and granulomatous slack skin. They have a central core of lipid-laden histiocytes surrounded by a ring of nuclei.
4. Osteoclast giant cells: These are multinucleated cells responsible for bone resorption. They can be found in conditions such as giant cell tumors of bone and Paget's disease.

It is important to note that the presence of giant cells alone does not necessarily indicate a specific diagnosis, and their significance must be interpreted within the context of the overall clinical and pathological findings.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Retroviridae proteins, oncogenic, refer to the proteins expressed by retroviruses that have the ability to transform normal cells into cancerous ones. These oncogenic proteins are typically encoded by viral genes known as "oncogenes," which are acquired through the process of transduction from the host cell's DNA during retroviral replication.

The most well-known example of an oncogenic retrovirus is the Human T-cell Leukemia Virus Type 1 (HTLV-1), which encodes the Tax and HBZ oncoproteins. These proteins manipulate various cellular signaling pathways, leading to uncontrolled cell growth and malignant transformation.

It is important to note that not all retroviruses are oncogenic, and only a small subset of them have been associated with cancer development in humans or animals.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Medical Definition:

Murine leukemia virus (MLV) is a type of retrovirus that primarily infects and causes various types of malignancies such as leukemias and lymphomas in mice. It is a complex genus of viruses, with many strains showing different pathogenic properties.

MLV contains two identical single-stranded RNA genomes and has the ability to reverse transcribe its RNA into DNA upon infection, integrating this proviral DNA into the host cell's genome. This is facilitated by an enzyme called reverse transcriptase, which MLV carries within its viral particle.

The virus can be horizontally transmitted between mice through close contact with infected saliva, urine, or milk. Vertical transmission from mother to offspring can also occur either in-utero or through the ingestion of infected breast milk.

MLV has been extensively studied as a model system for retroviral pathogenesis and tumorigenesis, contributing significantly to our understanding of oncogenes and their role in cancer development. It's important to note that Murine Leukemia Virus does not infect humans.

White Spot Syndrome Virus 1 (WSSV-1) is not typically recognized as a human or mammalian pathogen. It is primarily known to affect crustaceans, particularly penaeid shrimps. WSSV-1 is a large double-stranded DNA virus from the family Nimaviridae and genus Whispovirus. The virus is highly virulent and can cause rapid death in infected animals, resulting in significant economic losses in aquaculture industries.

The name "White Spot Syndrome Virus" refers to the characteristic white spots that appear on the exoskeleton of infected shrimps before their death. It's essential to clarify that WSSV-1 is not a human health concern, and its medical definition is primarily relevant in the context of veterinary medicine and aquaculture.

Tick-borne encephalitis (TBE) viruses are a group of related viruses that are primarily transmitted to humans through the bite of infected ticks. The main strains of TBE viruses include:

1. European tick-borne encephalitis virus (TBEV-Eu): This strain is found mainly in Europe and causes the majority of human cases of TBE. It is transmitted by the tick species Ixodes ricinus.
2. Siberian tick-borne encephalitis virus (TBEV-Sib): This strain is prevalent in Russia, Mongolia, and China, and is transmitted by the tick species Ixodes persulcatus.
3. Far Eastern tick-borne encephalitis virus (TBEV-FE): Also known as Russian spring-summer encephalitis (RSSE) virus, this strain is found in Russia, China, and Japan, and is transmitted by the tick species Ixodes persulcatus.
4. Louping ill virus (LIV): This strain is primarily found in the United Kingdom, Ireland, Portugal, and Spain, and is transmitted by the tick species Ixodes ricinus. It mainly affects sheep but can also infect humans.
5. Turkish sheep encephalitis virus (TSEV): This strain is found in Turkey and Greece and is primarily associated with ovine encephalitis, although it can occasionally cause human disease.
6. Negishi virus (NGS): This strain has been identified in Japan and Russia, but its role in human disease remains unclear.

TBE viruses are members of the Flaviviridae family and are closely related to other mosquito-borne flaviviruses such as West Nile virus, dengue virus, and Zika virus. The incubation period for TBE is usually 7-14 days after a tick bite, but it can range from 2 to 28 days. Symptoms of TBE include fever, headache, muscle pain, fatigue, and vomiting, followed by neurological symptoms such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) or encephalitis (inflammation of the brain). Severe cases can lead to long-term complications or even death. No specific antiviral treatment is available for TBE, and management typically involves supportive care. Prevention measures include avoiding tick-infested areas, using insect repellents, wearing protective clothing, and promptly removing attached ticks. Vaccination is also recommended for individuals at high risk of exposure to TBE viruses.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

HIV receptors are specific molecules found on the surface of certain human cells that the Human Immunodeficiency Virus (HIV) uses to enter and infect those cells. The two primary HIV receptors are CD4 and CCR5 or CXCR4 co-receptors.

1. CD4 Receptor: This is a glycoprotein found on the surface of helper T cells, macrophages, and dendritic cells. HIV first binds to the CD4 receptor via its envelope protein gp120. However, this binding alone is not sufficient for virus entry. The interaction between gp120 and CD4 triggers conformational changes in the viral envelope that expose the binding site for a co-receptor.

2. CCR5 or CXCR4 Co-receptors: These are chemokine receptors also found on the surface of certain cells, including helper T cells and macrophages. After HIV binds to the CD4 receptor, it interacts with either the CCR5 or CXCR4 co-receptor, which facilitates the fusion of the viral and cell membranes and the release of the viral genetic material into the host cell.

The specificity of HIV for these receptors plays a crucial role in its pathogenesis, as it determines which cells are susceptible to infection. Additionally, variations in the genes encoding these receptors can influence an individual's susceptibility to HIV infection and the rate of disease progression.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

CCR5 (C-C chemokine receptor type 5) is a type of protein found on the surface of certain white blood cells, including T-cells, macrophages, and dendritic cells. It belongs to the family of G protein-coupled receptors, which are involved in various cellular responses.

CCR5 acts as a co-receptor for HIV (Human Immunodeficiency Virus) entry into host cells, along with CD4. The virus binds to both CCR5 and CD4, leading to fusion of the viral and cell membranes and subsequent infection of the cell.

Individuals who have a genetic mutation that prevents CCR5 from functioning are resistant to HIV infection, highlighting its importance in the viral life cycle. Additionally, CCR5 antagonists have been developed as potential therapeutic agents for the treatment of HIV infection.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Virosomes are artificially created structures that consist of viral envelopes, which have been stripped of their genetic material, combined with liposomes. They maintain the ability to fuse with cell membranes and can be used as delivery systems for vaccines or drugs, as they can carry foreign proteins or nucleic acids into cells. This makes them useful in the development of novel vaccine strategies and targeted therapy.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

CD81 is a type of protein that is found on the surface of certain cells in the human body. It is a member of the tetraspanin family of proteins, which are involved in various cellular processes including cell adhesion, motility, and activation. CD81 has been shown to be important in the function of the immune system, particularly in the regulation of T cells.

CD81 is also known as a potential antigen, which means that it can stimulate an immune response when introduced into the body. Specifically, CD81 can bind to another protein called CD19, and this interaction has been shown to be important for the activation and survival of B cells, which are a type of white blood cell involved in the production of antibodies.

In some cases, CD81 may be targeted by the immune system in certain autoimmune diseases or during rejection of transplanted organs. Additionally, CD81 has been identified as a potential target for cancer immunotherapy, as it is overexpressed on some types of cancer cells and can help to inhibit the anti-tumor immune response.

Retroviridae infections refer to diseases caused by retroviruses, which are a type of virus that integrates its genetic material into the DNA of the host cell. This allows the virus to co-opt the cell's own machinery to produce new viral particles and infect other cells.

Some well-known retroviruses include human immunodeficiency virus (HIV), which causes AIDS, and human T-lymphotropic virus (HTLV), which can cause certain types of cancer and neurological disorders.

Retroviral infections can have a range of clinical manifestations depending on the specific virus and the host's immune response. HIV infection, for example, is characterized by progressive immunodeficiency that makes the infected individual susceptible to a wide range of opportunistic infections and cancers. HTLV infection, on the other hand, can cause adult T-cell leukemia/lymphoma or tropical spastic paraparesis, a neurological disorder.

Prevention and treatment strategies for retroviral infections depend on the specific virus but may include antiretroviral therapy (ART), vaccination, and behavioral modifications to reduce transmission risk.

An AIDS vaccine is a type of preventive vaccine that aims to stimulate the immune system to produce an effective response against the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS). The goal of an AIDS vaccine is to induce the production of immune cells and proteins that can recognize and eliminate HIV-infected cells, thereby preventing the establishment of a persistent infection.

Despite decades of research, there is still no licensed AIDS vaccine available. This is due in part to the unique challenges posed by HIV, which has a high mutation rate and can rapidly evolve to evade the immune system's defenses. However, several promising vaccine candidates are currently being tested in clinical trials around the world, and researchers continue to explore new approaches and strategies for developing an effective AIDS vaccine.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Hepatitis B virus (HBV) is a DNA virus that belongs to the Hepadnaviridae family and causes the infectious disease known as hepatitis B. This virus primarily targets the liver, where it can lead to inflammation and damage of the liver tissue. The infection can range from acute to chronic, with chronic hepatitis B increasing the risk of developing serious liver complications such as cirrhosis and liver cancer.

The Hepatitis B virus has a complex life cycle, involving both nuclear and cytoplasmic phases. It enters hepatocytes (liver cells) via binding to specific receptors and is taken up by endocytosis. The viral DNA is released into the nucleus, where it is converted into a covalently closed circular DNA (cccDNA) form, which serves as the template for viral transcription.

HBV transcribes several RNAs, including pregenomic RNA (pgRNA), which is used as a template for reverse transcription during virion assembly. The pgRNA is encapsidated into core particles along with the viral polymerase and undergoes reverse transcription to generate new viral DNA. This process occurs within the cytoplasm of the hepatocyte, resulting in the formation of immature virions containing partially double-stranded DNA.

These immature virions are then enveloped by host cell membranes containing HBV envelope proteins (known as surface antigens) to form mature virions that can be secreted from the hepatocyte and infect other cells. The virus can also integrate into the host genome, which may contribute to the development of hepatocellular carcinoma in chronic cases.

Hepatitis B is primarily transmitted through exposure to infected blood or bodily fluids containing the virus, such as through sexual contact, sharing needles, or from mother to child during childbirth. Prevention strategies include vaccination, safe sex practices, and avoiding needle-sharing behaviors. Treatment for hepatitis B typically involves antiviral medications that can help suppress viral replication and reduce the risk of liver damage.

Retroviridae is a family of viruses that includes human immunodeficiency virus (HIV) and other viruses that primarily use RNA as their genetic material. The name "retrovirus" comes from the fact that these viruses reverse transcribe their RNA genome into DNA, which then becomes integrated into the host cell's genome. This is a unique characteristic of retroviruses, as most other viruses use DNA as their genetic material.

Retroviruses can cause a variety of diseases in animals and humans, including cancer, neurological disorders, and immunodeficiency syndromes like AIDS. They have a lipid membrane envelope that contains glycoprotein spikes, which allow them to attach to and enter host cells. Once inside the host cell, the viral RNA is reverse transcribed into DNA by the enzyme reverse transcriptase, which is then integrated into the host genome by the enzyme integrase.

Retroviruses can remain dormant in the host genome for extended periods of time, and may be reactivated under certain conditions to produce new viral particles. This ability to integrate into the host genome has also made retroviruses useful tools in molecular biology, where they are used as vectors for gene therapy and other genetic manipulations.

C-X-C chemokine receptor type 4 (CXCR4) is a type of protein found on the surface of some cells, including white blood cells, and is a type of G protein-coupled receptor (GPCR). CXCR4 binds specifically to the chemokine ligand CXCL12 (also known as stromal cell-derived factor 1, or SDF-1), which plays a crucial role in the trafficking and homing of immune cells, particularly hematopoietic stem cells and lymphocytes. The binding of CXCL12 to CXCR4 triggers various intracellular signaling pathways that regulate cell migration, proliferation, survival, and differentiation.

In addition to its role in the immune system, CXCR4 has been implicated in several physiological and pathological processes, such as embryonic development, neurogenesis, angiogenesis, cancer metastasis, and HIV infection. In cancer, the overexpression of CXCR4 or increased levels of its ligand CXCL12 have been associated with poor prognosis, tumor growth, and metastasis in various types of malignancies, including breast, lung, prostate, colon, and ovarian cancers. In HIV infection, the CXCR4 coreceptor, together with CD4, facilitates viral entry into host cells, particularly during the later stages of the disease when the virus shifts its preference from CCR5 to CXCR4 as a coreceptor.

In summary, CXCR4 is a cell-surface receptor that binds specifically to the chemokine ligand CXCL12 and plays essential roles in immune cell trafficking, hematopoiesis, cancer metastasis, and HIV infection.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

Vaccinia virus is a large, complex DNA virus that belongs to the Poxviridae family. It is the virus used in the production of the smallpox vaccine. The vaccinia virus is not identical to the variola virus, which causes smallpox, but it is closely related and provides cross-protection against smallpox infection.

The vaccinia virus has a unique replication cycle that occurs entirely in the cytoplasm of infected cells, rather than in the nucleus like many other DNA viruses. This allows the virus to evade host cell defenses and efficiently produce new virions. The virus causes the formation of pocks or lesions on the skin, which contain large numbers of virus particles that can be transmitted to others through close contact.

Vaccinia virus has also been used as a vector for the delivery of genes encoding therapeutic proteins, vaccines against other infectious diseases, and cancer therapies. However, the use of vaccinia virus as a vector is limited by its potential to cause adverse reactions in some individuals, particularly those with weakened immune systems or certain skin conditions.

Feline Leukemia Virus (FeLV) is a retrovirus that primarily infects cats, causing a variety of diseases and disorders. It is the causative agent of feline leukemia, a name given to a syndrome characterized by a variety of symptoms such as lymphoma (cancer of the lymphatic system), anemia, immunosuppression, and reproductive disorders. FeLV is typically transmitted through close contact with infected cats, such as through saliva, nasal secretions, urine, and milk. It can also be spread through shared litter boxes and feeding dishes.

FeLV infects cells of the immune system, leading to a weakened immune response and making the cat more susceptible to other infections. The virus can also integrate its genetic material into the host's DNA, potentially causing cancerous changes in infected cells. FeLV is a significant health concern for cats, particularly those that are exposed to outdoor environments or come into contact with other cats. Vaccination and regular veterinary care can help protect cats from this virus.

Sindbis virus is an alphavirus that belongs to the Togaviridae family. It's named after the location where it was first isolated, in Sindbis, Egypt, in 1952. This virus is primarily transmitted by mosquitoes and can infect a wide range of animals, including birds and humans. In humans, Sindbis virus infection often causes a mild flu-like illness characterized by fever, rash, and joint pain. However, some people may develop more severe symptoms, such as neurological disorders, although this is relatively rare. There is no specific treatment for Sindbis virus infection, and management typically involves supportive care to alleviate symptoms.

The Moloney murine leukemia virus (Mo-MLV) is a type of retrovirus, specifically a gammaretrovirus, that is commonly found in mice. It was first discovered and isolated by John Moloney in 1960. Mo-MLV is known to cause various types of cancerous conditions, particularly leukemia, in susceptible mouse strains.

Mo-MLV has a single-stranded RNA genome that is reverse transcribed into double-stranded DNA upon infection of the host cell. This viral DNA then integrates into the host's genome and utilizes the host's cellular machinery to produce new virus particles. The Mo-MLV genome encodes for several viral proteins, including gag (group-specific antigen), pol (polymerase), and env (envelope) proteins, which are essential for the replication cycle of the virus.

Mo-MLV is widely used in laboratory research as a model retrovirus to study various aspects of viral replication, gene therapy, and oncogenesis. It has also been engineered as a vector for gene delivery applications due to its ability to efficiently integrate into the host genome and deliver large DNA sequences. However, it is important to note that Mo-MLV and other retroviruses have the potential to cause insertional mutagenesis, which can lead to unintended genetic alterations and adverse effects in some cases.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Friend murine leukemia virus (F-MuLV) is a type of retrovirus that specifically infects mice. It was first discovered by Charlotte Friend in the 1950s and has since been widely used as a model system to study retroviral pathogenesis, oncogenesis, and immune responses.

F-MuLV is a complex retrovirus that contains several accessory genes, including gag, pol, env, and others. The virus can cause leukemia and other malignancies in susceptible mice, particularly when it is transmitted from mother to offspring through the milk.

The virus is also known to induce immunosuppression, which makes infected mice more susceptible to other infections and diseases. F-MuLV has been used extensively in laboratory research to investigate various aspects of retroviral biology, including viral entry, replication, gene expression, and host immune responses.

It is important to note that Friend murine leukemia virus only infects mice and is not known to cause any disease in humans or other animals.

Gibbon Ape Leukemia Virus (GaLV) is not exactly a "leukemia virus" in the sense that it directly causes leukemia in humans. Instead, GaLV is a type of retrovirus that primarily infects gibbons and some other non-human primates. It's important to note that GaLV is not known to infect or cause disease in healthy human beings.

GaLV has four subtypes (A, B, C, and D), with A and B being the most well-studied. These viruses have a close genetic relationship with certain human retroviruses, such as Human T-cell Leukemia Virus types I and II (HTLV-I/II). Although GaLV is not known to cause leukemia or any other diseases in humans directly, it has served as an important model for understanding the biology and pathogenesis of retroviruses, including those that can cause leukemia and other malignancies in humans.

The term "leukemia virus" is often used to describe retroviruses that can cause leukemia or lymphoma, such as HTLV-I/II and Human Immunodeficiency Virus (HIV). GaLV does not fit into this category for humans, but it's essential to understand its role in the context of retroviral research and comparative primatology.

Yellow fever virus (YFV) is an single-stranded RNA virus belonging to the Flaviviridae family, genus Flavivirus. It is primarily transmitted to humans through the bite of infected mosquitoes, most commonly Aedes and Haemagogus species. The virus is named for the jaundice that can occur in some patients, giving their skin and eyes a yellowish color.

Yellow fever is endemic in tropical regions of Africa and South America, with outbreaks occurring when large numbers of people are infected. After an incubation period of 3 to 6 days, symptoms typically begin with fever, chills, headache, back pain, and muscle aches. In more severe cases, the infection can progress to cause bleeding, organ failure, and death.

Prevention measures include vaccination, mosquito control, and personal protective measures such as wearing long sleeves and using insect repellent in areas where yellow fever is endemic or outbreaks are occurring.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

HIV (Human Immunodeficiency Virus) is a species of lentivirus (a subgroup of retrovirus) that causes HIV infection and over time, HIV infection can lead to AIDS (Acquired Immunodeficiency Syndrome). This virus attacks the immune system, specifically the CD4 cells, also known as T cells, which are a type of white blood cell that helps coordinate the body's immune response. As HIV destroys these cells, the body becomes more vulnerable to other infections and diseases. It is primarily spread through bodily fluids like blood, semen, vaginal fluids, and breast milk.

It's important to note that while there is no cure for HIV, with proper medical care, HIV can be controlled. Treatment for HIV is called antiretroviral therapy (ART). If taken as prescribed, this medicine reduces the amount of HIV in the body to a very low level, which keeps the immune system working and prevents illness. This treatment also greatly reduces the risk of transmission.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

HIV Fusion Inhibitors are a type of antiretroviral medication used in the treatment and management of HIV infection. They work by preventing the virus from entering and infecting CD4 cells, which are a type of white blood cell that plays a crucial role in the body's immune response.

Fusion inhibitors bind to the gp41 protein on the surface of the HIV envelope, preventing it from undergoing conformational changes necessary for fusion with the host cell membrane. This inhibits the virus from entering and infecting the CD4 cells, thereby reducing the viral load in the body and slowing down the progression of the disease.

Examples of HIV Fusion Inhibitors include enfuvirtide (T-20) and ibalizumab (TMB-355). These medications are usually used in combination with other antiretroviral drugs as part of a highly active antiretroviral therapy (HAART) regimen. It's important to note that HIV fusion inhibitors must be administered parenterally, typically by injection, due to their large size and poor oral bioavailability.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

Flavivirus is a genus of viruses in the family Flaviviridae. They are enveloped, single-stranded, positive-sense RNA viruses that are primarily transmitted by arthropod vectors such as mosquitoes and ticks. Many flaviviruses cause significant disease in humans, including dengue fever, yellow fever, Japanese encephalitis, West Nile fever, and Zika fever. The name "flavivirus" is derived from the Latin word for "yellow," referring to the yellow fever virus, which was one of the first members of this genus to be discovered.

Ranavirus is a genus of double-stranded DNA viruses that infect amphibians, reptiles, and fish. It belongs to the family Iridoviridae and subfamily Ranavirinae. This virus can cause a disease known as ranaviral disease, which is characterized by hemorrhagic lesions, liver necrosis, and high mortality in infected animals. The virus can be transmitted through water, direct contact with infected animals, or consumption of infected prey. It is a significant concern for wildlife conservation and aquaculture.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Viral tropism is the preference or susceptibility of certain cells, tissues, or organs for viral infection. It refers to the ability of a specific virus to infect and multiply in particular types of host cells, which is determined by the interaction between viral envelope proteins and specific receptors on the surface of the host cell. Understanding viral tropism is crucial in understanding the pathogenesis of viral infections and developing effective antiviral therapies and vaccines.

Immunoelectron microscopy (IEM) is a specialized type of electron microscopy that combines the principles of immunochemistry and electron microscopy to detect and localize specific antigens within cells or tissues at the ultrastructural level. This technique allows for the visualization and identification of specific proteins, viruses, or other antigenic structures with a high degree of resolution and specificity.

In IEM, samples are first fixed, embedded, and sectioned to prepare them for electron microscopy. The sections are then treated with specific antibodies that have been labeled with electron-dense markers, such as gold particles or ferritin. These labeled antibodies bind to the target antigens in the sample, allowing for their visualization under an electron microscope.

There are several different methods of IEM, including pre-embedding and post-embedding techniques. Pre-embedding involves labeling the antigens before embedding the sample in resin, while post-embedding involves labeling the antigens after embedding. Post-embedding techniques are generally more commonly used because they allow for better preservation of ultrastructure and higher resolution.

IEM is a valuable tool in many areas of research, including virology, bacteriology, immunology, and cell biology. It can be used to study the structure and function of viruses, bacteria, and other microorganisms, as well as the distribution and localization of specific proteins and antigens within cells and tissues.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Duck hepatitis B virus (DHBV) is not a medical definition related to human health, but it is a species of hepatitis B virus that primarily infects various species of ducks and other Anseriformes (waterfowl). It is closely related to the human hepatitis B virus (HBV), but it is not known to infect humans or other mammals.

DHBV, like HBV, is a DNA virus that targets the liver and can cause both acute and chronic infections. The virus is transmitted through the fecal-oral route and primarily affects young ducklings. Infection with DHBV can lead to liver damage and death in infected birds.

Researchers study DHBV as a model system for understanding HBV infection and pathogenesis, due to their similarities in viral structure, replication strategy, and host-virus interactions. However, it is important to note that DHBV is not a human health concern and does not pose a risk of infection to humans or other mammals.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

Virus inactivation is the process of reducing or eliminating the infectivity of a virus, making it no longer capable of replicating and causing infection. This can be achieved through various physical or chemical methods such as heat, radiation, chemicals (like disinfectants), or enzymes that damage the viral genome or disrupt the viral particle's structure.

It is important to note that virus inactivation does not necessarily mean complete destruction of the viral particles; it only implies that they are no longer infectious. The effectiveness of virus inactivation depends on factors such as the type and concentration of the virus, the inactivation method used, and the duration of exposure to the inactivating agent.

Virus inactivation is crucial in various settings, including healthcare, laboratory research, water treatment, food processing, and waste disposal, to prevent the spread of viral infections and ensure safety.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

Hepatitis B Surface Antigens (HBsAg) are proteins found on the surface of the Hepatitis B virus. They are present in the blood of individuals infected with the Hepatitis B virus and are used as a marker for the presence of a current Hepatitis B infection. The detection of HBsAg in the blood indicates that an individual is infectious and can transmit the virus to others. It is typically used in diagnostic tests to detect and diagnose Hepatitis B infections, monitor treatment response, and assess the risk of transmission.

Lamins are type V intermediate filament proteins that play a structural role in the nuclear envelope. They are the main components of the nuclear lamina, a mesh-like structure located inside the inner membrane of the nuclear envelope. Lamins are organized into homo- and heterodimers, which assemble into higher-order polymers to form the nuclear lamina. This structure provides mechanical support to the nucleus, helps maintain the shape and integrity of the nucleus, and plays a role in various nuclear processes such as DNA replication, transcription, and chromatin organization. Mutations in the genes encoding lamins have been associated with various human diseases, collectively known as laminopathies, which include muscular dystrophies, neuropathies, cardiomyopathies, and premature aging disorders.

Hepacivirus is a genus of viruses in the family Flaviviridae. The most well-known member of this genus is Hepatitis C virus (HCV), which is a major cause of liver disease worldwide. HCV infection can lead to chronic hepatitis, cirrhosis, and liver cancer.

Hepaciviruses are enveloped viruses with a single-stranded, positive-sense RNA genome. They have a small icosahedral capsid and infect a variety of hosts, including humans, non-human primates, horses, and birds. The virus enters the host cell by binding to specific receptors on the cell surface and is then internalized through endocytosis.

HCV has a high degree of genetic diversity and is classified into seven major genotypes and numerous subtypes based on differences in its RNA sequence. This genetic variability can affect the virus's ability to evade the host immune response, making treatment more challenging.

In addition to HCV, other hepaciviruses have been identified in various animal species, including equine hepacivirus (EHCV), rodent hepacivirus (RHV), and bat hepacivirus (BtHepCV). These viruses are being studied to better understand the biology of hepaciviruses and their potential impact on human health.

Endogenous retroviruses (ERVs) are DNA sequences that have integrated into the genome of germ cells and are therefore passed down from parent to offspring through generations. These sequences are the remnants of ancient retroviral infections, where the retrovirus has become a permanent part of the host's genetic material.

Retroviruses are RNA viruses that replicate by reverse transcribing their RNA genome into DNA and integrating it into the host cell's genome. When this integration occurs in the germ cells, the retroviral DNA becomes a permanent part of the host organism's genome and is passed down to future generations.

Over time, many ERVs have accumulated mutations that render them unable to produce infectious viral particles. However, some ERVs remain capable of producing functional viral proteins and RNA, and may even be able to produce infectious viral particles under certain conditions. These active ERVs can play a role in various biological processes, both beneficial and detrimental, such as regulating gene expression, contributing to genome instability, and potentially causing disease.

It is estimated that up to 8% of the human genome consists of endogenous retroviral sequences, making them an important component of our genetic makeup.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

A nucleocapsid is a protein structure that encloses the genetic material (nucleic acid) of certain viruses. It is composed of proteins encoded by the virus itself, which are synthesized inside the host cell and then assemble around the viral genome to form a stable complex.

The nucleocapsid plays an important role in the viral life cycle. It protects the viral genome from degradation by host enzymes and helps to facilitate the packaging of the genome into new virus particles during assembly. Additionally, the nucleocapsid can also play a role in the regulation of viral gene expression and replication.

In some viruses, such as coronaviruses, the nucleocapsid is encased within an envelope derived from the host cell membrane, while in others, it exists as a naked capsid. The structure and composition of the nucleocapsid can vary significantly between different virus families.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

An epitope is a specific region on an antigen (a substance that triggers an immune response) that is recognized and bound by an antibody or a B-lymphocyte (a type of white blood cell that produces antibodies). Epitopes are also sometimes referred to as antigenic determinants.

B-lymphocytes, or B cells, are a type of immune cell that plays a key role in the humoral immune response. They produce and secrete antibodies, which are proteins that recognize and bind to specific epitopes on antigens. When a B cell encounters an antigen, it binds to the antigen at its surface receptor, which recognizes a specific epitope on the antigen. This binding activates the B cell, causing it to divide and differentiate into plasma cells, which produce and secrete large amounts of antibody that is specific for the epitope on the antigen.

The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor. The variable region is made up of several loops of amino acids, called complementarity-determining regions (CDRs), that form a binding site for the antigen. The CDRs are highly variable in sequence and length, allowing them to recognize and bind to a wide variety of different epitopes.

In summary, an epitope is a specific region on an antigen that is recognized and bound by an antibody or a B-lymphocyte. The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Japanese Encephalitis Virus (JEV) is a type of flavivirus that is the causative agent of Japanese encephalitis, a mosquito-borne viral infection of the brain. The virus is primarily transmitted to humans through the bite of infected Culex species mosquitoes, particularly Culex tritaeniorhynchus and Culex gelidus.

JEV is endemic in many parts of Asia, including China, Japan, Korea, India, Nepal, Thailand, and Vietnam. It is estimated to cause around 68,000 clinical cases and 13,000-20,000 deaths each year. The virus is maintained in a transmission cycle between mosquitoes and vertebrate hosts, primarily pigs and wading birds.

Most JEV infections are asymptomatic or result in mild symptoms such as fever, headache, and muscle aches. However, in some cases, the infection can progress to severe encephalitis, which is characterized by inflammation of the brain, leading to neurological symptoms such as seizures, tremors, paralysis, and coma. The case fatality rate for Japanese encephalitis is estimated to be 20-30%, and around half of those who survive have significant long-term neurological sequelae.

Prevention of JEV infection includes the use of insect repellent, wearing protective clothing, and avoiding outdoor activities during peak mosquito feeding times. Vaccination is also an effective means of preventing Japanese encephalitis, and vaccines are available for travelers to endemic areas as well as for residents of those areas.

A gammaretrovirus is a type of retrovirus, which is a virus that contains RNA as its genetic material and uses the reverse transcriptase enzyme to produce DNA from its RNA genome. Gammaretroviruses are enveloped viruses, meaning they have a lipid membrane derived from the host cell. They are also classified as simple retroviruses because their genome only contains the genes gag, pol, and env.

Gammaretroviruses are known to cause diseases in animals, including leukemias and immunodeficiencies. One example of a gammaretrovirus is the feline leukemia virus (FeLV), which can cause a variety of symptoms in cats, including anemia, lymphoma, and immune suppression.

Gammaretroviruses have also been implicated in some human diseases, although they are not thought to be major causes of human disease. For example, the human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that is closely related to gammaretroviruses and can cause adult T-cell leukemia/lymphoma and tropical spastic paraparesis/ HTLV-associated myelopathy (TSP/HAM).

It's important to note that the classification of retroviruses has evolved over time, and some viruses that were once classified as gammaretroviruses are now considered to be part of other retrovirus genera.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Viral matrix proteins are structural proteins that play a crucial role in the morphogenesis and life cycle of many viruses. They are often located between the viral envelope and the viral genome, serving as a scaffold for virus assembly and budding. These proteins also interact with other viral components, such as the viral genome, capsid proteins, and envelope proteins, to form an infectious virion. Additionally, matrix proteins can have regulatory functions, influencing viral transcription, replication, and host cell responses. The specific functions of viral matrix proteins vary among different virus families.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

HIV-2 (Human Immunodeficiency Virus type 2) is a retrovirus that infects humans and can lead to the development of AIDS (Acquired Immunodeficiency Syndrome). It is closely related to HIV-1, which is the virus more commonly associated with AIDS worldwide. However, HIV-2 is primarily found in West Africa and is less efficiently transmitted than HIV-1, meaning it generally takes longer for the infection to progress to AIDS.

Like HIV-1, HIV-2 infects CD4+ T cells, a type of white blood cell that plays a central role in the immune response. Over time, the progressive loss of these cells weakens the immune system and leaves the individual susceptible to opportunistic infections and cancers.

While there are similarities between HIV-1 and HIV-2, there are also differences. For example, HIV-2 is less pathogenic than HIV-1, meaning it generally progresses more slowly and causes less severe disease. Additionally, HIV-2 is less responsive to some antiretroviral drugs used to treat HIV-1 infection.

It's important to note that both HIV-1 and HIV-2 can be transmitted through sexual contact, sharing of needles, and from mother to child during pregnancy, childbirth, or breastfeeding. Accurate diagnosis and appropriate medical care are crucial for managing either type of HIV infection and preventing its transmission to others.

Dengue is a mosquito-borne viral infection that is primarily transmitted by the Aedes aegypti and Aedes albopictus species of mosquitoes. It is caused by one of four closely related dengue viruses (DENV 1, DENV 2, DENV 3, or DENV 4). The infection can cause a wide range of symptoms, ranging from mild fever and headache to severe flu-like illness, which is often characterized by the sudden onset of high fever, severe headache, muscle and joint pain, nausea, vomiting, and skin rash. In some cases, dengue can progress to more severe forms, such as dengue hemorrhagic fever or dengue shock syndrome, which can be life-threatening if not treated promptly and appropriately.

Dengue is prevalent in many tropical and subtropical regions around the world, particularly in urban and semi-urban areas with poor sanitation and inadequate mosquito control. There is no specific treatment for dengue, and prevention efforts focus on reducing mosquito populations and avoiding mosquito bites. Vaccines are available in some countries to prevent dengue infection, but they are not widely used due to limitations in their effectiveness and safety.

Jaagsiekte Sheep Retrovirus (JSRV) is a type of retrovirus that primarily affects the respiratory system of sheep and goats. The term "jaagsiekte" comes from the Afrikaans language, meaning "chasing disease," which refers to the labored breathing and increased respiratory rate observed in infected animals.

JSRV is responsible for causing a contagious and fatal lung disease known as ovine pulmonary adenocarcinoma (OPA), also known as jaagsiekte. The virus infects the cells of the lungs, leading to the formation of tumors, which can ultimately result in respiratory failure and death.

JSRV is unique among retroviruses because it encodes an oncogene called env, which plays a crucial role in transforming infected lung cells into cancerous ones. This virally encoded oncogene interacts with host cell receptors, leading to the activation of signaling pathways that promote uncontrolled cell growth and tumor formation.

The virus is primarily transmitted through the respiratory route, either through direct contact with infected animals or by inhaling contaminated aerosols. In addition to its oncogenic properties, JSRV has also been implicated in other respiratory disorders, such as chronic interstitial pneumonia and bronchopneumonia.

Jaagsiekte Sheep Retrovirus is an important model for understanding the mechanisms of retroviral-induced oncogenesis and holds potential implications for the development of novel cancer therapies.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Semliki Forest Virus (SFV) is an alphavirus in the Togaviridae family, which is primarily transmitted to vertebrates through mosquito vectors. The virus was initially isolated from mosquitoes in the Semliki Forest of Uganda and has since been found in various parts of Africa and Asia. SFV infection in humans can cause a mild febrile illness characterized by fever, headache, muscle pain, and rash. However, it is more commonly known for causing severe disease in animals, particularly non-human primates and cattle, where it can lead to encephalitis or hemorrhagic fever. SFV has also been used as a model organism in laboratory studies of virus replication and pathogenesis.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Cornified envelope (CE) proline-rich proteins are a group of structural proteins that play an essential role in the formation and integrity of the cornified envelope, which is a tough, protective layer that surrounds the outermost layer of the skin (the stratum corneum). These proteins are rich in the amino acid proline and help to provide mechanical strength and resistance to friction and chemical stressors. They are important for maintaining the barrier function of the skin and preventing water loss. Some examples of CE proline-rich proteins include involucrin, loricrin, and hornerin.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

Avian leukosis virus (ALV) is a type of retrovirus that primarily affects chickens and other birds. It is responsible for a group of diseases known as avian leukosis, which includes various types of tumors and immunosuppressive conditions. The virus is transmitted horizontally through the shedder's dander, feathers, and vertical transmission through infected eggs.

There are several subgroups of ALV (A, B, C, D, E, and J), each with different host ranges and pathogenicity. Some strains can cause rapid death in young chickens, while others may take years to develop clinical signs. The most common form of the disease is neoplastic, characterized by the development of various types of tumors such as lymphomas, myelomas, and sarcomas.

Avian leukosis virus infection can have significant economic impacts on the poultry industry due to decreased growth rates, increased mortality, and condemnation of infected birds at processing. Control measures include eradication programs, biosecurity practices, vaccination, and breeding for genetic resistance.

Retroviridae is a family of viruses that includes HIV (Human Immunodeficiency Virus). Retroviridae proteins refer to the various structural and functional proteins that are encoded by the retroviral genome. These proteins can be categorized into three main groups:

1. Group-specific antigen (Gag) proteins: These proteins make up the viral matrix, capsid, and nucleocapsid. They are involved in the assembly of new virus particles.

2. Polymerase (Pol) proteins: These proteins include the reverse transcriptase, integrase, and protease enzymes. Reverse transcriptase is responsible for converting the viral RNA genome into DNA, which can then be integrated into the host cell's genome by the integrase enzyme. The protease enzyme is involved in processing the polyprotein precursors of Gag and Pol into their mature forms.

3. Envelope (Env) proteins: These proteins are responsible for the attachment and fusion of the virus to the host cell membrane. They are synthesized as a precursor protein, which is then cleaved by a host cell protease to form two distinct proteins - the surface unit (SU) and the transmembrane unit (TM). The SU protein contains the receptor-binding domain, while the TM protein forms the transmembrane anchor.

Retroviral proteins play crucial roles in various stages of the viral life cycle, including entry, reverse transcription, integration, transcription, translation, assembly, and release. Understanding the functions of these proteins is essential for developing effective antiretroviral therapies and vaccines against retroviral infections.

Chloroplasts are specialized organelles found in the cells of green plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy from the sun into chemical energy in the form of organic compounds, such as glucose.

Chloroplasts contain the pigment chlorophyll, which absorbs light energy from the sun. They also contain a system of membranes and enzymes that convert carbon dioxide and water into glucose and oxygen through a series of chemical reactions known as the Calvin cycle. This process not only provides energy for the organism but also releases oxygen as a byproduct, which is essential for the survival of most life forms on Earth.

Chloroplasts are believed to have originated from ancient cyanobacteria that were engulfed by early eukaryotic cells and eventually became integrated into their host's cellular machinery through a process called endosymbiosis. Over time, chloroplasts evolved to become an essential component of plant and algal cells, contributing to their ability to carry out photosynthesis and thrive in a wide range of environments.

Respirovirus is not typically used as a formal medical term in modern taxonomy. However, historically, it was used to refer to a genus of viruses within the family Paramyxoviridae, order Mononegavirales. This genus included several important human and animal pathogens that cause respiratory infections.

Human respiroviruses include:
1. Human parainfluenza virus (HPIV) types 1, 2, and 3: These viruses are a common cause of upper and lower respiratory tract infections, such as croup, bronchitis, and pneumonia, particularly in young children.
2. Sendai virus (also known as murine respirovirus): This virus primarily infects rodents but can occasionally cause mild respiratory illness in humans, especially those who work closely with these animals.

The term "respirovirus" is not officially recognized by the International Committee on Taxonomy of Viruses (ICTV) anymore, and these viruses are now classified under different genera within the subfamily Pneumovirinae: Human parainfluenza viruses 1 and 3 belong to the genus Orthorubulavirus, while Human parainfluenza virus 2 is placed in the genus Metapneumovirus.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

I apologize for any confusion, but "Penaeidae" is not a medical term. It is actually the scientific name of a family of crustaceans, specifically marine decapods, commonly known as prawns or shrimps. If you have any questions about medical terminology or concepts, I would be happy to help with those instead.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Tropism, in the context of medicine and biology, refers to the growth or turning movement of an organism or its parts (like cells, roots, etc.) in response to an external stimulus such as light, gravity, touch, or chemical substances. This phenomenon is most commonly observed in plants, but it can also occur in certain types of animal cells. In a medical context, the term "tropism" is sometimes used to describe the preference of a virus or other infectious agent to attach to and invade specific types of cells in the body.

Herpesvirus 1, Suid (Suid Herpesvirus 1 or SHV-1), also known as Pseudorabies Virus (PrV), is a species of the genus Varicellovirus in the subfamily Alphaherpesvirinae of the family Herpesviridae. It is a double-stranded DNA virus that primarily infects members of the Suidae family, including domestic pigs and wild boars. The virus can cause a range of symptoms known as Aujeszky's disease in these animals, which may include respiratory distress, neurological issues, and reproductive failures.

SHV-1 is highly contagious and can be transmitted through direct contact with infected animals or their secretions, as well as through aerosol transmission. Although it does not typically infect humans, there have been rare cases of human infection, usually resulting from exposure to infected pigs or their tissues. In these instances, the virus may cause mild flu-like symptoms or more severe neurological issues.

SHV-1 is an important pathogen in the swine industry and has significant economic implications due to its impact on animal health and production. Vaccination programs are widely used to control the spread of the virus and protect susceptible pig populations.

A nucleopolyhedrovirus (NPV) is a type of large, complex DNA virus that infects insects, particularly members of the order Lepidoptera (moths and butterflies). NPVs are characterized by their ability to produce multiple virions within a single polyhedral occlusion body, which provides protection for the virions in the environment and facilitates their transmission between hosts.

NPVs replicate in the nucleus of infected cells, where they induce the production of large quantities of viral proteins that ultimately lead to the lysis of the host cell. The virions are then released and can infect other cells or be transmitted to other insects. NPVs are important pathogens of many agricultural pests, and some species have been developed as biological control agents for use in integrated pest management programs.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

Genetic transduction is a process in molecular biology that describes the transfer of genetic material from one bacterium to another by a viral vector called a bacteriophage (or phage). In this process, the phage infects one bacterium and incorporates a portion of the bacterial DNA into its own genetic material. When the phage then infects a second bacterium, it can transfer the incorporated bacterial DNA to the new host. This can result in the horizontal gene transfer (HGT) of traits such as antibiotic resistance or virulence factors between bacteria.

There are two main types of transduction: generalized and specialized. In generalized transduction, any portion of the bacterial genome can be packaged into the phage particle, leading to a random assortment of genetic material being transferred. In specialized transduction, only specific genes near the site where the phage integrates into the bacterial chromosome are consistently transferred.

It's important to note that genetic transduction is not to be confused with transformation or conjugation, which are other mechanisms of HGT in bacteria.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Synthetic vaccines are artificially produced, designed to stimulate an immune response and provide protection against specific diseases. Unlike traditional vaccines that are derived from weakened or killed pathogens, synthetic vaccines are created using synthetic components, such as synthesized viral proteins, DNA, or RNA. These components mimic the disease-causing agent and trigger an immune response without causing the actual disease. The use of synthetic vaccines offers advantages in terms of safety, consistency, and scalability in production, making them valuable tools for preventing infectious diseases.

An alpharetrovirus is a type of retrovirus, which is a group of viruses that integrate their genetic material into the DNA of the host cell. Alpharetroviruses are characterized by their ability to cause persistent infections and are associated with various diseases in animals. One well-known example of an alpharetrovirus is the Rous sarcoma virus (RSV), which was the first retrovirus to be discovered and is known to cause cancer in chickens.

Alpharetroviruses have a complex structure, consisting of an outer envelope that contains glycoprotein spikes, and an inner core that contains the viral RNA genome and associated enzymes. The viral RNA genome contains three main genes: gag, pol, and env, which encode for the structural proteins, enzymes, and envelope proteins of the virus, respectively.

Alpharetroviruses are transmitted through various routes, including horizontal transmission (from host to host) and vertical transmission (from parent to offspring). They can cause a range of diseases, depending on the specific virus and the host species. In addition to RSV, other examples of alpharetroviruses include the avian leukosis virus, which causes tumors and immunosuppression in birds, and the Jaagsiekte sheep retrovirus, which causes a wasting disease in sheep.

It's worth noting that while alpharetroviruses are associated with diseases in animals, there are no known alpharetroviruses that infect humans. However, understanding the biology and behavior of these viruses in animal hosts can provide valuable insights into retroviral replication and pathogenesis, which may have implications for human health.

HIV antigens refer to the proteins present on the surface or within the human immunodeficiency virus (HIV), which can stimulate an immune response in the infected individual. These antigens are recognized by the host's immune system, specifically by CD4+ T cells and antibodies, leading to their activation and production. Two significant HIV antigens are the HIV-1 p24 antigen and the gp120/gp41 envelope proteins. The p24 antigen is a capsid protein found within the viral particle, while the gp120/gp41 complex forms the viral envelope and facilitates viral entry into host cells. Detection of HIV antigens in clinical settings, such as in the ELISA or Western blot tests, helps diagnose HIV infection and monitor disease progression.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

Lamin Type A, also known as LMNA, is a gene that provides instructions for making proteins called lamins. These proteins are part of the nuclear lamina, a network of fibers that lies just inside the nuclear envelope, which is the membrane that surrounds the cell's nucleus. The nuclear lamina helps maintain the shape and stability of the nucleus and plays a role in regulating gene expression and DNA replication.

Mutations in the LMNA gene can lead to various diseases collectively known as laminopathies, which affect different tissues and organs in the body. These conditions include Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, dilated cardiomyopathy with conduction system disease, and a type of premature aging disorder called Hutchinson-Gilford progeria syndrome. The specific symptoms and severity of these disorders depend on the particular LMNA mutation and the tissues affected.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Iridoviridae is a family of double-stranded DNA viruses that infect a wide range of hosts, including insects, fish, amphibians, and reptiles. The name "iridovirus" comes from the Greek word "iris," meaning rainbow, due to the characteristic iridescent coloration of infected insects' cuticles.

Iridoviruses are large, icosahedral virions with a diameter of approximately 120-300 nanometers. They have a complex internal structure, including a lipid membrane and several protein layers. The genome of iridoviruses is a circular, double-stranded DNA molecule that ranges in size from about 100 to 200 kilobases.

Iridoviruses can cause a variety of diseases in their hosts, including hemorrhagic septicemia, hepatopancreatic necrosis, and developmental abnormalities. Infection typically occurs through ingestion or injection of viral particles, and the virus replicates in the host's nuclei.

There are several genera within the family Iridoviridae, including Ranavirus, Lymphocystivirus, Megalocyivirus, and Iridovirus. Each genus has a specific host range and causes distinct clinical symptoms. For example, ranaviruses infect amphibians, reptiles, and fish, while lymphocystiviruses primarily infect teleost fish.

Iridoviruses are of interest to medical researchers because they have potential as biological control agents for pests and vectors of human diseases, such as mosquitoes and ticks. However, their use as biocontrol agents is still being studied, and there are concerns about the potential ecological impacts of releasing iridoviruses into the environment.

Hepatitis Delta Virus (HDV) is not a traditional virus but rather a defective RNA particle that requires the assistance of the hepatitis B virus (HBV) to replicate. It's also known as delta agent or hepatitis D. HDV is a unique pathogen that only infects individuals who are already infected with HBV.

The virus causes a more severe form of viral hepatitis than HBV alone, leading to a higher risk of fulminant hepatitis (acute liver failure) and chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. HDV is primarily transmitted through percutaneous or sexual contact with infected blood or body fluids.

Prevention strategies include vaccination against HBV, which also prevents HDV infection, and avoiding high-risk behaviors such as intravenous drug use and unprotected sex with multiple partners. There is no specific treatment for HDV; however, antiviral therapy for HBV can help manage the infection.

I'm sorry for any confusion, but "HN protein" is not a widely recognized or established medical term. HN is an abbreviation commonly used in virology to refer to the hemagglutinin-neuraminidase protein found on the surface of certain viruses, such as the paramyxoviridae family which includes viruses like parainfluenza and Hendra virus.

The HN protein plays a crucial role in the virus's ability to infect host cells. It helps the virus attach to and enter the host cell, and also assists in the release of new virus particles from infected cells. However, without more specific context, it's difficult to provide a more precise definition of "HN protein." If you have more details about the context in which this term was used, I'd be happy to try to provide a more specific answer.

"Spodoptera" is not a medical term, but a genus name in the insect family Noctuidae. It includes several species of moths commonly known as armyworms or cutworms due to their habit of consuming leaves and roots of various plants, causing significant damage to crops.

Some well-known species in this genus are Spodoptera frugiperda (fall armyworm), Spodoptera litura (tobacco cutworm), and Spodoptera exigua (beet armyworm). These pests can be a concern for medical entomology when they transmit pathogens or cause allergic reactions. For instance, their frass (feces) and shed skins may trigger asthma symptoms in susceptible individuals. However, the insects themselves are not typically considered medical issues unless they directly affect human health.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

"Spleen Focus-Forming Virus" (SFFV) is not a widely used medical term, but it is a term from the field of virology. SFFV is a type of retrovirus that primarily infects mice and causes erythroleukemia, a cancer of the blood-forming organs. The virus is called "Spleen Focus-Forming" because when it infects mice, it initially replicates in the spleen and forms distinct foci or clusters of infected cells.

The virus contains an oncogene called v-abl, which is a cancer-causing gene that contributes to the development of leukemia in infected animals. SFFV is closely related to another retrovirus called Friend Virus (FV), and together they are referred to as the FV complex. These viruses have been extensively studied as models for retroviral-induced leukemogenesis and have provided valuable insights into the mechanisms of cancer development.

I'm sorry for any confusion, but there seems to be no established medical definition or recognition of a "Rauscher Virus" in human or veterinary medicine. It is possible that you may have misspelled or misremembered the name of a specific virus or medical term. If you have more information or context about where this term was used, I'd be happy to help you further research the topic.

Inclusion bodies, viral are typically described as intracellular inclusions that appear as a result of viral infections. These inclusion bodies consist of aggregates of virus-specific proteins, viral particles, or both, which accumulate inside the host cell's cytoplasm or nucleus during the replication cycle of certain viruses.

The presence of inclusion bodies can sometimes be observed through histological or cytological examination using various staining techniques. Different types of viruses may exhibit distinct morphologies and locations of these inclusion bodies, which can aid in the identification and diagnosis of specific viral infections. However, it is important to note that not all viral infections result in the formation of inclusion bodies, and their presence does not necessarily indicate active viral replication or infection.

Experimental leukemia refers to the stage of research or clinical trials where new therapies, treatments, or diagnostic methods are being studied for leukemia. Leukemia is a type of cancer that affects the blood and bone marrow, leading to an overproduction of abnormal white blood cells.

In the experimental stage, researchers investigate various aspects of leukemia, such as its causes, progression, and potential treatments. They may conduct laboratory studies using cell cultures or animal models to understand the disease better and test new therapeutic approaches. Additionally, clinical trials may be conducted to evaluate the safety and efficacy of novel treatments in human patients with leukemia.

Experimental research in leukemia is crucial for advancing our understanding of the disease and developing more effective treatment strategies. It involves a rigorous and systematic process that adheres to ethical guidelines and scientific standards to ensure the validity and reliability of the findings.

Chloroplasts are organelles found in the cells of plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy into chemical energy. Chloroplast proteins are the various proteins that are located within the chloroplasts and play a crucial role in the process of photosynthesis.

Chloroplasts contain several types of proteins, including:

1. Structural proteins: These proteins help to maintain the structure and integrity of the chloroplast.
2. Photosynthetic proteins: These are involved in capturing light energy and converting it into chemical energy during photosynthesis. They include proteins such as photosystem I, photosystem II, cytochrome b6f complex, and ATP synthase.
3. Regulatory proteins: These proteins help to regulate the various processes that occur within the chloroplast, including gene expression, protein synthesis, and energy metabolism.
4. Metabolic proteins: These proteins are involved in various metabolic pathways within the chloroplast, such as carbon fixation, amino acid synthesis, and lipid metabolism.
5. Protective proteins: These proteins help to protect the chloroplast from damage caused by reactive oxygen species (ROS) that are produced during photosynthesis.

Overall, chloroplast proteins play a critical role in maintaining the health and function of chloroplasts, and by extension, the overall health and survival of plants and other organisms that contain them.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Acquired Immunodeficiency Syndrome (AIDS) is a chronic, life-threatening condition caused by the Human Immunodeficiency Virus (HIV). AIDS is the most advanced stage of HIV infection, characterized by the significant weakening of the immune system, making the person more susceptible to various opportunistic infections and cancers.

The medical definition of AIDS includes specific criteria based on CD4+ T-cell count or the presence of certain opportunistic infections and diseases. According to the Centers for Disease Control and Prevention (CDC), a person with HIV is diagnosed with AIDS when:

1. The CD4+ T-cell count falls below 200 cells per cubic millimeter of blood (mm3) - a normal range is typically between 500 and 1,600 cells/mm3.
2. They develop one or more opportunistic infections or cancers that are indicative of advanced HIV disease, regardless of their CD4+ T-cell count.

Some examples of these opportunistic infections and cancers include:

* Pneumocystis pneumonia (PCP)
* Candidiasis (thrush) affecting the esophagus, trachea, or lungs
* Cryptococcal meningitis
* Toxoplasmosis of the brain
* Cytomegalovirus disease
* Kaposi's sarcoma
* Non-Hodgkin's lymphoma
* Invasive cervical cancer

It is important to note that with appropriate antiretroviral therapy (ART), people living with HIV can maintain their CD4+ T-cell counts, suppress viral replication, and prevent the progression to AIDS. Early diagnosis and consistent treatment are crucial for managing HIV and improving life expectancy and quality of life.

I'm sorry for any confusion, but there seems to be a mistake in your question. "Arteritis Virus, Equine" is not a recognized medical term or virus in humans or animals. There is a condition called "Equine Viral Arteritis (EVA)," which is a viral disease that affects horses and other equine species. However, it does not affect humans.

Equine Viral Arteritis (EVA) is caused by the Equine Arteritis Virus (EAV). This virus primarily affects the respiratory system and can cause symptoms such as fever, lethargy, loss of appetite, and a runny nose in infected horses. In some cases, it may also lead to inflammation of the lining of blood vessels (vasculitis), which can result in abortion in pregnant mares or infertility in stallions.

It's essential to maintain proper biosecurity measures when dealing with horses, especially those that have been exposed to EVA, to prevent its spread and protect the health of other equine populations.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

Yellow fever is an acute viral hemorrhagic disease that's transmitted to humans through the bite of infected mosquitoes. The "yellow" in the name refers to the jaundice that can occur in some patients, resulting from liver damage caused by the virus. The disease is endemic in tropical regions of Africa and Central and South America.

The yellow fever virus is a single-stranded RNA virus that belongs to the Flaviviridae family, genus Flavivirus. It's closely related to other mosquito-borne viruses like dengue and Zika. The virus has three distinct geographical variants (West African, East African, and South American), each with different epidemiological patterns and clinical features.

The incubation period for yellow fever is typically 3 to 6 days after infection. The initial symptoms include fever, chills, headache, back pain, myalgia, and fatigue. Most patients recover after this initial phase, but around 15% of those infected enter a more severe phase characterized by high fever, jaundice, abdominal pain, vomiting, bleeding, and often rapid death within 7 to 10 days.

There is no specific treatment for yellow fever, and management is focused on supportive care, including fluid replacement, blood transfusions, and addressing any complications that arise. Prevention relies on vaccination and mosquito control measures. The yellow fever vaccine is safe and highly effective, providing immunity in 95% of those who receive it. A single dose offers lifelong protection in most individuals. Mosquito control efforts, such as reducing breeding sites and using insecticide-treated materials, can help prevent the spread of the virus in affected areas.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

West Nile Virus (WNV) vaccines are immunizations that are designed to protect against the West Nile virus, which is a single-stranded RNA virus that belongs to the family Flaviviridae. The virus is primarily transmitted to humans through the bite of infected mosquitoes, particularly those of the Culex species.

There are currently no licensed WNV vaccines available for human use in the United States or Europe. However, there are several veterinary vaccines that have been developed and approved for use in horses and other animals, such as birds and geese. These vaccines work by stimulating the immune system to produce antibodies against the virus, which can help prevent infection and reduce the severity of symptoms in animals that do become infected.

Human WNV vaccine candidates are in various stages of development and testing. Some of these vaccines use inactivated or weakened forms of the virus, while others use only a portion of the viral protein to stimulate an immune response. While these vaccines have shown promise in clinical trials, further research is needed to determine their safety and effectiveness in larger populations before they can be approved for widespread use.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

I'm sorry for any confusion, but "Lamin Type B" is not a recognized medical term or concept in human physiology or pathology. The term "lamin" refers to proteins that are part of the nuclear lamina, a filamentous network found inside the nucleus of cells. There are three types of lamin proteins: A, B, and C.

Lamin A and Lamin C are produced from the LMNA gene, while Lamin B1 and Lamin B2 are produced from the LMNB1 and LMNB2 genes, respectively. Therefore, "Lamin Type B" is not a specific designation, but rather encompasses two distinct proteins: Lamin B1 and Lamin B2.

If you have any questions about lamins or another medical topic, please provide more context or clarify your question so I can give you a more accurate answer.

A "cell line, transformed" is a type of cell culture that has undergone a stable genetic alteration, which confers the ability to grow indefinitely in vitro, outside of the organism from which it was derived. These cells have typically been immortalized through exposure to chemical or viral carcinogens, or by introducing specific oncogenes that disrupt normal cell growth regulation pathways.

Transformed cell lines are widely used in scientific research because they offer a consistent and renewable source of biological material for experimentation. They can be used to study various aspects of cell biology, including signal transduction, gene expression, drug discovery, and toxicity testing. However, it is important to note that transformed cells may not always behave identically to their normal counterparts, and results obtained using these cells should be validated in more physiologically relevant systems when possible.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Sendai virus, also known as murine parainfluenza virus or pneumonia virus of mice, is a species of paramyxovirus that primarily infects rodents. It is an enveloped, negative-sense, single-stranded RNA virus with a nonsegmented genome. The virus is named after the city of Sendai in Japan where it was first isolated in 1952.

Sendai virus is highly contagious and can cause respiratory illness in mice, rats, and other small rodents. It replicates in the respiratory epithelium, leading to inflammation and necrosis of the airways. The virus can also suppress the host's immune response, making infected animals more susceptible to secondary bacterial infections.

In laboratory settings, Sendai virus is sometimes used as a tool for studying viral pathogenesis, immunology, and gene therapy. It has been used as a vector for delivering genes into mammalian cells, including human cells, due to its ability to efficiently infect and transduce a wide range of cell types.

It's important to note that Sendai virus is not known to infect humans or cause disease in humans, and it is not considered a significant public health concern.

1-Deoxynojirimycin (DNJ) is an antagonist of the enzyme alpha-glucosidase, which is involved in the digestion of carbohydrates. DNJ is a naturally occurring compound found in some plants, including mulberry leaves and the roots of the African plant Moringa oleifera. It works by binding to the active site of alpha-glucosidase and inhibiting its activity, which can help to slow down the digestion and absorption of carbohydrates in the small intestine. This can help to reduce postprandial glucose levels (the spike in blood sugar that occurs after a meal) and may have potential benefits for the management of diabetes and other metabolic disorders. DNJ is also being studied for its potential anti-cancer effects.

Medical Definition:

Mammary tumor virus, mouse (MMTV) is a type of retrovirus that specifically infects mice and is associated with the development of mammary tumors or breast cancer in these animals. The virus is primarily transmitted through mother's milk, leading to a high incidence of mammary tumors in female offspring.

MMTV contains an oncogene, which can integrate into the host's genome and induce uncontrolled cell growth and division, ultimately resulting in the formation of tumors. While MMTV is not known to infect humans, it has been a valuable model for studying retroviral pathogenesis and cancer biology.

Nucleocapsid proteins are structural proteins that are associated with the viral genome in many viruses. They play a crucial role in the formation and stability of the viral particle, also known as the virion. In particular, nucleocapsid proteins bind to the viral RNA or DNA genome and help to protect it from degradation by host cell enzymes. They also participate in the assembly and disassembly of the virion during the viral replication cycle.

In some viruses, such as coronaviruses, the nucleocapsid protein is also involved in regulating the transcription and replication of the viral genome. The nucleocapsid protein of SARS-CoV-2, for example, has been shown to interact with host cell proteins that are involved in the regulation of gene expression, which may contribute to the virus's ability to manipulate the host cell environment and evade the immune response.

Overall, nucleocapsid proteins are important components of many viruses and are often targeted by antiviral therapies due to their essential role in the viral replication cycle.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

"Gene products, GAG" refer to the proteins that are produced by the GAG (Group-specific Antigen) gene found in retroviruses, such as HIV (Human Immunodeficiency Virus). These proteins play a crucial role in the structure and function of the viral particle or virion.

The GAG gene encodes for a polyprotein that is cleaved by a protease into several individual proteins, including matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. These proteins are involved in the formation of the viral core, which encloses the viral RNA genome and associated enzymes required for replication.

The MA protein is responsible for binding to the host cell membrane during viral entry, while the CA protein forms the capsid shell that surrounds the viral RNA and NC protein. The NC protein binds to the viral RNA and helps to package it into the virion during assembly. Overall, GAG gene products are essential for the life cycle of retroviruses and are important targets for antiretroviral therapy in HIV-infected individuals.

Murine hepatitis virus (MHV) is a type of coronavirus that primarily infects laboratory mice. It is not related to the human hepatitis viruses A, B, C, D, or E. MHV causes a range of diseases in mice, including hepatitis (liver inflammation), encephalomyelitis (inflammation of the brain and spinal cord), and enteritis (inflammation of the intestine). The virus is transmitted through fecal-oral route and respiratory droplets. It's widely used in research to understand the pathogenesis, immunity, and molecular biology of coronaviruses.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Medical Definition of "Herpesvirus 1, Human" (also known as Human Herpesvirus 1 or HHV-1):

Herpesvirus 1, Human is a type of herpesvirus that primarily causes infection in humans. It is also commonly referred to as human herpesvirus 1 (HHV-1) or oral herpes. This virus is highly contagious and can be transmitted through direct contact with infected saliva, skin, or mucous membranes.

After initial infection, the virus typically remains dormant in the body's nerve cells and may reactivate later, causing recurrent symptoms. The most common manifestation of HHV-1 infection is oral herpes, characterized by cold sores or fever blisters around the mouth and lips. In some cases, HHV-1 can also cause other conditions such as encephalitis (inflammation of the brain) and keratitis (inflammation of the eye's cornea).

There is no cure for HHV-1 infection, but antiviral medications can help manage symptoms and reduce the severity and frequency of recurrent outbreaks.

Hepadnaviridae is a family of small, enveloped viruses that primarily infect the liver cells (hepatocytes) of various species, including humans. The name "Hepadnaviridae" is derived from "hepa" for hepatotrophic (liver-tropic) and "DNA" for the DNA genome of the viruses.

The most well-known member of this family is the human hepatitis B virus (HBV), which causes acute and chronic liver infections, leading to various clinical manifestations such as hepatitis, cirrhosis, and hepatocellular carcinoma.

Hepadnaviruses have a unique replication strategy that involves reverse transcription of an RNA intermediate, making them distinct from other DNA viruses. Their genome is partially double-stranded, with the minus strand being complete and the plus strand incomplete or absent. The genome encodes for four overlapping open reading frames (ORFs) that give rise to several viral proteins, including the surface antigen (HBsAg), core protein (HBcAg), polymerase, and X protein (HBx).

The family Hepadnaviridae includes several other members that infect animals, such as woodchuck hepatitis virus (WHV), ground squirrel hepatitis virus (GSHV), and duck hepatitis B virus (DHBV). These viruses serve as valuable models for understanding the biology and pathogenesis of HBV in humans.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

Electron microscope tomography (EMT) is a 3D imaging technique used in electron microscopy. It involves collecting a series of images of a sample at different tilt angles, and then using computational algorithms to reconstruct the 3D structure of the sample from these images.

In EMT, a sample is prepared and placed in an electron microscope, where it is exposed to a beam of electrons. The electrons interact with the atoms in the sample, producing contrast that allows the features of the sample to be visualized. By tilting the sample and collecting images at multiple angles, a range of perspectives can be obtained, which are then used to create a 3D reconstruction of the sample.

EMT is a powerful tool for studying the ultrastructure of cells and tissues, as it allows researchers to visualize structures that may not be visible using other imaging techniques. It has been used to study a wide range of biological systems, including viruses, bacteria, organelles, and cells.

EMT is a complex technique that requires specialized equipment and expertise to perform. However, it can provide valuable insights into the structure and function of biological systems, making it an important tool in the field of biology and medicine.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

A Radioimmunoprecipitation Assay (RIA) is a highly sensitive laboratory technique used to measure the presence and concentration of specific antigens or antibodies in a sample. This technique combines the use of radioisotopes, immunochemistry, and precipitation reactions.

In an RIA, a known quantity of a radioactively labeled antigen (or hapten) is incubated with a sample containing an unknown amount of antibody (or vice versa). If the specific antigen-antibody pair is present in the sample, they will bind together to form an immune complex. This complex can then be selectively precipitated from the solution using a second antibody that recognizes and binds to the first antibody, thus forming an insoluble immune precipitate.

The amount of radioactivity present in the precipitate is directly proportional to the concentration of antigen or antibody in the sample. By comparing this value to a standard curve generated with known concentrations of antigen or antibody, the unknown concentration can be accurately determined. RIAs have been widely used in research and clinical settings for the quantification of various hormones, drugs, vitamins, and other biomolecules. However, due to safety concerns and regulatory restrictions associated with radioisotopes, non-radioactive alternatives like Enzyme-Linked Immunosorbent Assays (ELISAs) have become more popular in recent years.

Baculoviridae is a family of large, double-stranded DNA viruses that infect arthropods, particularly insects. The virions (virus particles) are enclosed in a rod-shaped or occlusion body called a polyhedron, which provides protection and stability in the environment. Baculoviruses have a wide host range within the order Lepidoptera (moths and butterflies), Hymenoptera (sawflies, bees, wasps, and ants), and Diptera (flies). They are important pathogens in agriculture and forestry, causing significant damage to insect pests.

The Baculoviridae family is divided into four genera: Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus. The two most well-studied and economically important genera are Alphabaculovirus (nuclear polyhedrosis viruses or NPVs) and Betabaculovirus (granulosis viruses or GVs).

Baculoviruses have a biphasic replication cycle, consisting of a budded phase and an occluded phase. During the budded phase, the virus infects host cells and produces enveloped virions that can spread to other cells within the insect. In the occluded phase, large numbers of non-enveloped virions are produced and encapsidated in a protein matrix called a polyhedron. These polyhedra accumulate in the infected insect's tissues, providing protection from environmental degradation and facilitating transmission to new hosts through oral ingestion or other means.

Baculoviruses have been extensively studied as models for understanding viral replication, gene expression, and host-pathogen interactions. They also have potential applications in biotechnology and pest control, including the production of recombinant proteins, gene therapy vectors, and environmentally friendly insecticides.

A chimera, in the context of medicine and biology, is a single organism that is composed of cells with different genetics. This can occur naturally in some situations, such as when fraternal twins do not fully separate in utero and end up sharing some organs or tissues. The term "chimera" can also refer to an organism that contains cells from two different species, which can happen in certain types of genetic research or medical treatments. For example, a patient's cells might be genetically modified in a lab and then introduced into their body to treat a disease; if some of these modified cells mix with the patient's original cells, the result could be a chimera.

It's worth noting that the term "chimera" comes from Greek mythology, where it referred to a fire-breathing monster that was part lion, part goat, and part snake. In modern scientific usage, the term has a specific technical meaning related to genetics and organisms, but it may still evoke images of fantastical creatures for some people.

Glucosamine is a natural compound found in the body, primarily in the fluid around joints. It is a building block of cartilage, which is the tissue that cushions bones and allows for smooth joint movement. Glucosamine can also be produced in a laboratory and is commonly sold as a dietary supplement.

Medical definitions of glucosamine describe it as a type of amino sugar that plays a crucial role in the formation and maintenance of cartilage, ligaments, tendons, and other connective tissues. It is often used as a supplement to help manage osteoarthritis symptoms, such as pain, stiffness, and swelling in the joints, by potentially reducing inflammation and promoting cartilage repair.

There are different forms of glucosamine available, including glucosamine sulfate, glucosamine hydrochloride, and N-acetyl glucosamine. Glucosamine sulfate is the most commonly used form in supplements and has been studied more extensively than other forms. While some research suggests that glucosamine may provide modest benefits for osteoarthritis symptoms, its effectiveness remains a topic of ongoing debate among medical professionals.

Liposomes are artificially prepared, small, spherical vesicles composed of one or more lipid bilayers that enclose an aqueous compartment. They can encapsulate both hydrophilic and hydrophobic drugs, making them useful for drug delivery applications in the medical field. The lipid bilayer structure of liposomes is similar to that of biological membranes, which allows them to merge with and deliver their contents into cells. This property makes liposomes a valuable tool in delivering drugs directly to targeted sites within the body, improving drug efficacy while minimizing side effects.

A spike glycoprotein in coronaviruses is a type of protein that extends from the surface of the virus and gives it its characteristic crown-like appearance (hence the name "corona," which is Latin for "crown"). This protein plays a crucial role in the infection process of the virus. It allows the virus to attach to and enter specific cells in the host organism, typically through binding to a receptor on the cell surface. In the case of SARS-CoV-2, the coronavirus responsible for COVID-19, the spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor found on cells in various tissues, including the lungs, heart, and gastrointestinal tract.

The spike protein is composed of two subunits: S1 and S2. The S1 subunit contains the receptor-binding domain (RBD), which recognizes and binds to the host cell receptor. After binding, the S2 subunit mediates the fusion of the viral membrane with the host cell membrane, allowing the viral genome to enter the host cell and initiate infection.

The spike protein is also a primary target for neutralizing antibodies generated by the host immune system during infection or following vaccination. Neutralizing antibodies bind to specific regions of the spike protein, preventing it from interacting with host cell receptors and thus inhibiting viral entry into cells.

In summary, a spike glycoprotein in coronaviruses is a crucial structural and functional component that facilitates viral attachment, fusion, and entry into host cells. Its importance in the infection process makes it an essential target for vaccine development and therapeutic interventions.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Dengue vaccines are designed to protect against dengue fever, a mosquito-borne viral disease that can cause severe flu-like symptoms and potentially life-threatening complications. Dengue is caused by four distinct serotypes of the virus (DENV-1, DENV-2, DENV-3, and DENV-4), and infection with one serotype does not provide immunity against the others.

The first licensed dengue vaccine, Dengvaxia (CYD-TDV), is a chimeric yellow fever-dengue tetravalent vaccine developed by Sanofi Pasteur. It is approved for use in several countries and has demonstrated efficacy against dengue fever caused by all four serotypes in clinical trials. However, the vaccine has raised concerns about the risk of severe disease in individuals who have not been previously exposed to dengue. As a result, it is recommended primarily for people with a documented past dengue infection or living in areas with high dengue prevalence and where the benefits outweigh the risks.

Another dengue vaccine candidate, Takeda's TAK-003 (also known as TDV), is a live attenuated tetravalent dengue vaccine that has shown efficacy against all four serotypes in clinical trials. It was granted approval by the European Medicines Agency (EMA) and several other countries for use in individuals aged 4-16 years old, living in endemic areas.

Research and development of additional dengue vaccine candidates are ongoing to address concerns about safety, efficacy, and accessibility, particularly for at-risk populations in low- and middle-income countries where dengue is most prevalent.

Cryo-electron microscopy (Cryo-EM) is a type of electron microscopy where the sample is studied at cryogenic temperatures, typically liquid nitrogen temperatures. This technique is used to investigate the structure and shape of biological molecules and complexes, viruses, and other nanoscale particles.

In Cryo-EM, the sample is rapidly frozen to preserve its natural structure and then imaged using a beam of electrons. The images are collected at different angles and then computationally combined to generate a 3D reconstruction of the sample. This technique allows researchers to visualize biological structures in their native environment with near-atomic resolution, providing valuable insights into their function and behavior.

Cryo-EM has become an increasingly popular tool in structural biology due to its ability to image large and complex structures that are difficult or impossible to crystallize for X-ray crystallography. It has been used to determine the structures of many important biological molecules, including membrane proteins, ribosomes, viruses, and protein complexes involved in various cellular processes.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Arenavirus is a type of virus that belongs to the family Arenaviridae. These viruses are enveloped and have a single-stranded, bi-segmented RNA genome. They are named after the Latin word "arena" which means "sand" because their virions contain ribosomes which resemble sand granules when viewed under an electron microscope.

Arenaviruses are primarily associated with rodents and can cause chronic infection in their natural hosts. Some arenaviruses can also infect humans and other animals, causing severe hemorrhagic fevers. Examples of human diseases caused by arenaviruses include Lassa fever, Argentine hemorrhagic fever, Bolivian hemorrhagic fever, and Venezuelan hemorrhagic fever.

These viruses are typically transmitted to humans through contact with infected rodents or their excreta, but some can also be spread from person to person through close contact with an infected individual's blood or other bodily fluids. There are currently no vaccines available for most arenaviruses, and treatment is primarily supportive, focusing on managing symptoms and complications.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

I'm sorry for any confusion, but "peas" is not a term typically used in medical definitions. Peas are a type of legume that is commonly consumed as a vegetable. They are rich in nutrients such as protein, fiber, vitamin C, and vitamin K. If you have any questions about the health benefits or potential risks of consuming peas, I would be happy to try to help with that.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Isopycnic centrifugation is a type of centrifugation technique used in medical and scientific research. The term "isopycnic" refers to the process of separating particles based on their density, where the density of the particles is equal to that of the surrounding medium. In this technique, a sample containing particles of different densities is placed in a gradient medium within a centrifuge tube and then subjected to high-speed centrifugation.

During centrifugation, the particles move through the gradient medium until they reach a layer where their density matches that of the surrounding medium. Once the particles reach this point, they will no longer continue to move, even if the centrifugation continues for an extended period. This results in the separation of particles based on their densities, with denser particles settling at lower levels and less dense particles settling at higher levels.

Isopycnic centrifugation is a useful technique for separating and purifying various types of biological particles, such as viruses, organelles, and subcellular structures. It can also be used to study the properties of these particles, including their density, size, and shape.

Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape. This method involves the use of a centrifuge and a density gradient medium, such as sucrose or cesium chloride, to create a stable density gradient within a column or tube.

The sample is carefully layered onto the top of the gradient and then subjected to high-speed centrifugation. During centrifugation, the particles in the sample move through the gradient based on their size, density, and shape, with heavier particles migrating faster and further than lighter ones. This results in the separation of different components of the mixture into distinct bands or zones within the gradient.

This technique is commonly used to purify and concentrate various types of biological materials, such as viruses, organelles, ribosomes, and subcellular fractions, from complex mixtures. It allows for the isolation of pure and intact particles, which can then be collected and analyzed for further study or use in downstream applications.

In summary, Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape using a centrifuge and a density gradient medium.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Human T-lymphotropic virus 1 (HTLV-1) is a complex retrovirus that infects CD4+ T lymphocytes and can cause adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus is primarily transmitted through breastfeeding, sexual contact, or contaminated blood products. After infection, the virus integrates into the host's genome and can remain latent for years or even decades before leading to disease. HTLV-1 is endemic in certain regions of the world, including Japan, the Caribbean, Central and South America, and parts of Africa.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Mononuclear leukocytes are a type of white blood cells (leukocytes) that have a single, large nucleus. They include lymphocytes (B-cells, T-cells, and natural killer cells), monocytes, and dendritic cells. These cells play important roles in the body's immune system, including defending against infection and disease, and participating in immune responses and surveillance. Mononuclear leukocytes can be found in the bloodstream as well as in tissues throughout the body. They are involved in both innate and adaptive immunity, providing specific and nonspecific defense mechanisms to protect the body from harmful pathogens and other threats.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

Intracellular membranes refer to the membrane structures that exist within a eukaryotic cell (excluding bacteria and archaea, which are prokaryotic and do not have intracellular membranes). These membranes compartmentalize the cell, creating distinct organelles or functional regions with specific roles in various cellular processes.

Major types of intracellular membranes include:

1. Nuclear membrane (nuclear envelope): A double-membraned structure that surrounds and protects the genetic material within the nucleus. It consists of an outer and inner membrane, perforated by nuclear pores that regulate the transport of molecules between the nucleus and cytoplasm.
2. Endoplasmic reticulum (ER): An extensive network of interconnected tubules and sacs that serve as a major site for protein folding, modification, and lipid synthesis. The ER has two types: rough ER (with ribosomes on its surface) and smooth ER (without ribosomes).
3. Golgi apparatus/Golgi complex: A series of stacked membrane-bound compartments that process, sort, and modify proteins and lipids before they are transported to their final destinations within the cell or secreted out of the cell.
4. Lysosomes: Membrane-bound organelles containing hydrolytic enzymes for breaking down various biomolecules (proteins, carbohydrates, lipids, and nucleic acids) in the process called autophagy or from outside the cell via endocytosis.
5. Peroxisomes: Single-membrane organelles involved in various metabolic processes, such as fatty acid oxidation and detoxification of harmful substances like hydrogen peroxide.
6. Vacuoles: Membrane-bound compartments that store and transport various molecules, including nutrients, waste products, and enzymes. Plant cells have a large central vacuole for maintaining turgor pressure and storing metabolites.
7. Mitochondria: Double-membraned organelles responsible for generating energy (ATP) through oxidative phosphorylation and other metabolic processes, such as the citric acid cycle and fatty acid synthesis.
8. Chloroplasts: Double-membraned organelles found in plant cells that convert light energy into chemical energy during photosynthesis, producing oxygen and organic compounds (glucose) from carbon dioxide and water.
9. Endoplasmic reticulum (ER): A network of interconnected membrane-bound tubules involved in protein folding, modification, and transport; it is divided into two types: rough ER (with ribosomes on the surface) and smooth ER (without ribosomes).
10. Nucleus: Double-membraned organelle containing genetic material (DNA) and associated proteins involved in replication, transcription, RNA processing, and DNA repair. The nuclear membrane separates the nucleoplasm from the cytoplasm and contains nuclear pores for transporting molecules between the two compartments.

Measles virus is a single-stranded, negative-sense RNA virus belonging to the genus Morbillivirus in the family Paramyxoviridae. It is the causative agent of measles, a highly contagious infectious disease characterized by fever, cough, runny nose, and a red, blotchy rash. The virus primarily infects the respiratory tract and then spreads throughout the body via the bloodstream.

The genome of the measles virus is approximately 16 kilobases in length and encodes for eight proteins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H), large protein (L), and two non-structural proteins, V and C. The H protein is responsible for binding to the host cell receptor CD150 (SLAM) and mediating viral entry, while the F protein facilitates fusion of the viral and host cell membranes.

Measles virus is transmitted through respiratory droplets and direct contact with infected individuals. The virus can remain airborne for up to two hours in a closed space, making it highly contagious. Measles is preventable through vaccination, which has led to significant reductions in the incidence of the disease worldwide.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

A peptide library is a collection of a large number of peptides, which are short chains of amino acids. Each peptide in the library is typically composed of a defined length and sequence, and may contain a variety of different amino acids. Peptide libraries can be synthesized using automated techniques and are often used in scientific research to identify potential ligands (molecules that bind to specific targets) or to study the interactions between peptides and other molecules.

In a peptide library, each peptide is usually attached to a solid support, such as a resin bead, and the entire library can be created using split-and-pool synthesis techniques. This allows for the rapid and efficient synthesis of a large number of unique peptides, which can then be screened for specific activities or properties.

Peptide libraries are used in various fields such as drug discovery, proteomics, and molecular biology to identify potential therapeutic targets, understand protein-protein interactions, and develop new diagnostic tools.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Japanese encephalitis is a viral inflammation of the brain (encephalitis) caused by the Japanese encephalitis virus (JEV). It is transmitted to humans through the bite of infected Culex mosquitoes, particularly in rural and agricultural areas. The majority of JE cases occur in children under the age of 15. Most people infected with JEV do not develop symptoms, but some may experience mild symptoms such as fever, headache, and vomiting. In severe cases, JEV can cause high fever, neck stiffness, seizures, confusion, and coma. There is no specific treatment for Japanese encephalitis, and care is focused on managing symptoms and supporting the patient's overall health. Prevention measures include vaccination and avoiding mosquito bites in endemic areas.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

A lentivirus is a type of slow-acting retrovirus that can cause chronic diseases and cancers. The term "lentivirus" comes from the Latin word "lentus," which means slow. Lentiviruses are characterized by their ability to establish a persistent infection, during which they continuously produce new viral particles.

Lentiviruses have a complex genome that includes several accessory genes, in addition to the typical gag, pol, and env genes found in all retroviruses. These accessory genes play important roles in regulating the virus's replication cycle and evading the host's immune response.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes AIDS. Other examples include the feline immunodeficiency virus (FIV) and the simian immunodeficiency virus (SIV). Lentiviruses have also been used as vectors for gene therapy, as they can efficiently introduce new genes into both dividing and non-dividing cells.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Equine Infectious Anemia (EIA) is a viral disease that affects horses and other equine animals. The causative agent of this disease is the Equine Infectious Anemia Virus (EIAV), which belongs to the family Retroviridae and genus Lentivirus. This virus is primarily transmitted through the transfer of infected blood, most commonly through biting insects such as horseflies and deerflies.

The EIAV attacks the immune system of the infected animal, causing a variety of symptoms including fever, weakness, weight loss, anemia, and edema. The virus has a unique ability to integrate its genetic material into the host's DNA, which can lead to a lifelong infection. Some animals may become chronic carriers of the virus, showing no signs of disease but remaining infectious to others.

There is currently no cure for EIA, and infected animals must be isolated to prevent the spread of the disease. Vaccines are available in some countries, but they do not provide complete protection against infection and may only help reduce the severity of the disease. Regular testing and monitoring of equine populations are essential to control the spread of this virus.

An antigen-antibody reaction is a specific immune response that occurs when an antigen (a foreign substance, such as a protein or polysaccharide on the surface of a bacterium or virus) comes into contact with a corresponding antibody (a protective protein produced by the immune system in response to the antigen). The antigen and antibody bind together, forming an antigen-antibody complex. This interaction can neutralize the harmful effects of the antigen, mark it for destruction by other immune cells, or activate complement proteins to help eliminate the antigen from the body. Antigen-antibody reactions are a crucial part of the adaptive immune response and play a key role in the body's defense against infection and disease.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Surface Plasmon Resonance (SPR) is a physical phenomenon that occurs at the interface between a metal and a dielectric material, when electromagnetic radiation (usually light) is shone on it. It involves the collective oscillation of free electrons in the metal, known as surface plasmons, which are excited by the incident light. The resonance condition is met when the momentum and energy of the photons match those of the surface plasmons, leading to a strong absorption of light and an evanescent wave that extends into the dielectric material.

In the context of medical diagnostics and research, SPR is often used as a sensitive and label-free detection technique for biomolecular interactions. By immobilizing one binding partner (e.g., a receptor or antibody) onto the metal surface and flowing the other partner (e.g., a ligand or antigen) over it, changes in the refractive index at the interface can be measured in real-time as the plasmons are disturbed by the presence of bound molecules. This allows for the quantification of binding affinities, kinetics, and specificity with high sensitivity and selectivity.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Multiple necessary viral proteins are located within the envelope. DNA and proteins enter the host cell nucleus and turn-off ... Envelope fusion with the plasma membrane of the host cell causes separation of the nucleocapsid from viral DNA and proteins. ... gB, gD, gH, and gL proteins allow for fusion of the cell and envelope, and are necessary for survival. Entrance to host cells ... L genes are transcribed "after the synthesis of DNA and viral protein onset." Virion DNA maturation occurs as the nucleocapids ...
"Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein". VirusDisease. 26 (4): 243-254 ... The envelope of the dengue virus makes it so that the viral entry in the host cell is facilitated. Nimbin work against this ... that are known to have biological properties such as anti-viral properties. For the dengue virus (also called DENV NS2B-NS3) ... envelope by blocking the virus from entering. It has shown that it is effective on all four types of dengue viruses (dengue 1-4 ...
The trypsin performs the maturation cleavage of the viral envelope proteins efficiently. Focus Biomolecules Catalog # 10-2290 ...
Gp120 surface envelope protein SU, encoded by the viral gene env. 120000 Da (Daltons). Gp41 transmembrane envelope protein TM, ... Protein size 14000 Da. Gene regulatory proteins: Tat: main trans-activator Rev: important for synthesis of major viral proteins ... P24 capsid protein CA, encoded by the viral gene gag. 24000 Da. P17 matrix protein MA, also encoded by gag. 17000 Da. P7/P9 ... The envelope proteins SU and TM are glycosylated in at least some lentiviruses (HIV, SIV), if not all of them. Glycosylation ...
Not all viruses have envelopes. A viral envelope protein or E protein is a protein in the envelope, which may be acquired by ... Envelope proteins, membrane proteins, and spike proteins (E, M, and S). The viral envelope then fuses with the host's membrane ... it is essential to comprehend how antibodies interact with viral envelope proteins, particularly with the fusion protein, and ... either of the fusion protein or of a companion protein, is necessary for the majority of viral fusion proteins. The priming ...
The two viral envelope proteins, E and M, are inserted into the membrane. The RNA genome is bound to capsid (C) proteins, which ... The capsid proteins are one of the first proteins created in an infected cell; the capsid protein is a structural protein whose ... The protein shell is made of two structural proteins: the glycoprotein E and the small membrane protein M. Protein E has ... precursor membrane proteins, and envelope proteins, respectively. The structural proteins are located at the 5′ end of the ...
Through this process the new capsid obtains the required six viral envelope proteins. The new virions then go into the ... ORF2a, 3, 4, 5, encode glycoprotein 2,2a, 3, 4, and 5. ORF2b encodes the envelope protein. There is a newly discovered protein ... ORF6 encodes the membrane protein. The nucleocapsid (N) protein is encoded by ORF7. The N protein is composed of 123 amino ... It has been suggested that despite the normal anti-viral role Protein Kinase R (PKR) plays in cells, type 2 PRRSV uses PKR as a ...
Env is a viral gene that encodes the protein forming the viral envelope. The expression of the env gene enables retroviruses to ... The protein is called syncytin in mammals. Viral structural protein Gene+Products,+env at the U.S. National Library of Medicine ... The mature product of the env gene is the viral spike protein, which has two main parts: the surface protein (SU) and the ... Protein pages needing a picture, Viral structural proteins). ... Exposed on the surface of the viral envelope, the glycoprotein ...
In these cells the viral genes that encode envelope proteins have restricted expression. As a result, infectious particles like ... CSF examination usually reveals normal pressure, cell count, and total protein content; however, CSF globulin is almost always ... Viral encephalitis, Measles, Neurodegenerative disorders, Unsolved problems in neuroscience, Slow virus diseases, Rare ... "Defective translation of measles virus matrix protein in a subacute sclerosing panencephalitis cell line". Nature. 305 (5930): ...
The vaccine contains one of the viral envelope proteins, Hepatitis B surface antigen (HBsAg). It is produced by yeast cells, ... as these excess surface proteins lacked infectious viral DNA. The immune system, recognizing the surface proteins as foreign, ... This allows the yeast to produce only the noninfectious surface protein, without any danger of introducing actual viral DNA ... In 1968, this protein was found to be part of the virus that causes "serum hepatitis" (hepatitis B) by virologist Alfred Prince ...
Viral matrix proteins are structural proteins linking the viral envelope with the virus core. They play a crucial role in virus ... Retroviral matrix protein Viral tegument (Protein pages needing a picture, Virology, Viral structural proteins). ... Viral matrix proteins, like many other viral proteins, can exert different functions during the course of the infection. For ... In herpesviruses, the viral matrix is usually called viral tegument and contains many proteins involved in viral entry, early ...
During this interaction, the glycosylated viral envelope protein inserts itself into the cell membrane. In order to ... "Budding" through the cell envelope-in effect, borrowing from the cell membrane to create the virus' own viral envelope- into ... An example is the use of recycling viral particle receptors in the enveloped varicella-zoster virus. A human with a viral ... the nucleocapsid of the virus must form a connection with the cytoplasmic tails of envelope proteins. Though budding does not ...
Narayanan K, Makino S (2001). "Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging ... As part of the viral life cycle, within the infected cell, the viral genome becomes associated with viral proteins and ... It interacts with the viral proteins (M and N) and ensures the selective packaging of viral RNA into virions. This RNA element ... Within the viral genome the packaging signal is located in the nonstructural protein 15 (nsp15) and encodes a polypeptide which ...
... is the process of producing viruses or viral vectors in combination with foreign viral envelope proteins. The ... With this method, the foreign viral envelope proteins can be used to alter host tropism or increase or decrease the stability ... In some cases, the inability to produce viral envelope proteins renders the pseudovirus replication incompetent. In this way, ... Pseudotyped particles do not carry the genetic material to produce additional viral envelope proteins, so the phenotypic ...
However, there is no known protein functionally similarly to the viral capsid or envelope proteins. They share their many ... They contain genes with homology to viral proteins and which are often found in eukaryotic genomes, like polymerase and ... Polintons, 15-20 kb long, encode up to 10 individual proteins. For replication, they utilize a protein-primed DNA polymerase B ... The initiation protein then remains attached to the 5' Phosphate on the nicked strand, exposing the 3' hydroxyl of the ...
However, priming the adaptive immune system to recognize the viral envelope proteins did not prevent HIV acquisition. Many ... Most initial approaches have focused on the HIV envelope protein. At least thirteen different gp120 and gp160 envelope ... The epitopes of the viral envelope are more variable than those of many other viruses. Furthermore, the functionally important ... Env is a protein on the HIV surface that enables to infect cells. Env extends from the surface of the HIV virus particle. The ...
H/HN/G - the cell attachment proteins span the viral envelope and project from the surface as spikes. They bind to proteins on ... Fusion proteins and attachment proteins appear as spikes on the virion surface. Matrix proteins inside the envelope stabilise ... the fusion protein projects from the envelope surface as a trimer, and mediates cell entry by inducing fusion between the viral ... M - the matrix protein assembles between the envelope and the nucleocapsid core, it organizes and maintains virion structure F ...
The structure of the envelope is characterized by the spike-like projections of two viral proteins, the fusion protein (F) and ... The M protein interacts with the Hn and F proteins, helping to incorporate these proteins into viral particles for release. It ... The fusion protein (F) is an integral membrane protein, sharing many features similar to other viral fusion proteins and is ... form the inner layer of the envelope and interacts with the F and Hn proteins on the outside of the viral envelope during viral ...
The H protein mediates receptor attachment and the F protein causes fusion of viral envelope and cellular membrane. ... The RNA genome of the virus codes 6 main proteins Nucleoprotein (N), Phosphoprotein (P), Matrix protein (M), Fusion protein (F ... The measles virus has two envelope glycoproteins on the viral surface - hemagglutinin (H) and membrane fusion protein (F). ... producing all viral proteins. The viruses are then assembled from their proteins and negative sense ssRNA, and the cell will ...
These proteins line the inner surface of viral envelopes and are associated with viral membranes. Matrix proteins are produced ... This article incorporates text from the public domain Pfam and InterPro: IPR000840 (Protein families, Viral protein class, ... Gag-derived proteins govern the entire assembly and release of the virus particles, with matrix proteins playing key roles in ... Retroviral matrix proteins are components of envelope-associated capsids of retroviruses. ...
The viral envelope protein (E) attaches to the host cell receptors and is taken into the cell via endocytosis. The envelope ... The envelope protein and the endosomal membrane fuse, and the virus is released into the cytoplasm.[citation needed] The viral ... The structural proteins include capsid (C), premembrane/membrane (prM), and envelope (E). The non-structural proteins include ... NS1 is important in the viral replication process. NS2A interacts with NS3 and NS5, helps in viral assembly and recruits the ...
... the N protein holds the RNA genome, and the S, E, and M proteins together create the viral envelope. Coronavirus S proteins are ... Like other coronaviruses, SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N ( ... Virus infections start when viral particles bind to host surface cellular receptors. Protein modeling experiments on the spike ... "SARS-CoV-2 related protein structures". Protein Data Bank. Portals: COVID-19 Medicine Viruses SARS-CoV-2 at Wikipedia's sister ...
"Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell ... Bloom's research focuses on the molecular evolution of viruses and viral proteins, particularly of rapidly-evolving RNA viruses ... His lab uses a combination of computational and experimental techniques to understand how changes in viral proteins result in ... development of deep mutational scanning techniques for measuring the effects of large numbers of mutations in viral proteins in ...
It is an RNA virus categorized into subtypes based on the type of two proteins on the surface of the viral envelope:[citation ... They are all made up of a viral envelope containing two main types of proteins, wrapped around a central core. The two large ... The host cell membrane has patches of viral transmembrane proteins (HA, NA, and M2) and an underlying layer of the M1 protein ... The central core of a virion contains the viral genome and other viral proteins that package and protect the genetic material. ...
They have spherical virions with club-shaped surface projections formed by trimers of the spike protein, and a viral envelope. ... Two large, overlapping ORFs at the 5'-end of the genome encode the major non-structural proteins expressed as a fusion protein ... This ancestor gradually evolved into FCoV I and CCoV I. An S protein from an unknown virus was recombined into the ancestor and ... This genus, like other coronaviruses, has a spike protein with a type I fusion machine (S2) and a receptor-binding domain (S1 ...
The helical nucleocapsid is surrounded by a lipid envelope and contains other viral proteins, with VP3 being the most abundant ... The TTV1 virion contains four virus-encoded proteins, TP1-4. The proteins do not display any sequence similarity to structural ... Nucleocapsid protein TP1 has apparently evolved from a Cas4 endonuclease, a conserved component of the adaptive CRISPR-Cas ... The structure revealed that nucleocapsid is formed from two major capsid proteins (MCP1 and MCP2). MCP1 and MCP2 form a ...
In env, it is derived from the surface and transmembrane for the viral envelope protein. There is a fourth coding domain which ... HPV instead degrades p53: the HPV protein E6 binds to a cellular protein called the E6-associated protein (E6-AP, also known as ... The virion protein and progeny RNA assemble in the cytoplasm and leave the cell, whereas the other copies send translated viral ... DNA oncoviruses typically impair two families of tumor suppressor proteins: tumor proteins p53 and the retinoblastoma proteins ...
In molecular biology, a phage major coat protein is an alpha-helical protein that forms a viral envelope of filamentous ... with a helical shell of protein subunits surrounding a DNA core. The approximately 50-residue subunit of the major coat protein ... The protein shell can be considered in three sections: the outer surface, occupied by the N-terminal region of the subunit and ... where protein subunits interact, mainly with each other; and the inner surface (occupied by the C-terminal region of the ...
There are prominent "spikes" (projections) of 6 nm composed of the viral envelope proteins E1 and E2 embedded in the membrane. ... At the neutral pH outside of the cell the E2 envelope protein covers the E1 protein. The dropping pH inside the endosome frees ... "Viral Zone". ExPASy. Retrieved 15 June 2015. Chen MH, Icenogle JP (April 2004). "Rubella virus capsid protein modulates viral ... Inside the lipid envelope is a capsid of 40 nm in diameter. The capsid protein (CP) has different functions. Its main tasks are ...
Entry into the host cell is achieved by attachment of the viral envelope protein E2 to host receptors, which mediates clathrin- ... of the viral genome recruits viral and cellular translation factors to initiate viral protein translation. Viral proteins are ... The bovine viral diarrhea virus (BVDV) is what causes bovine viral diarrhea (BVD). Bovine viral diarrhea virus type 1 (BVDV-1 ... is the first protein generated from the N-terminus of the viral polyprotein. BVDV Npro is a hydrophilic outer membrane protein ...
... and the major envelope glycoprotein VP-3 (25 to 42 kDa), encoded by open reading frame 5, of lactate dehydrogenase-elevating ... Disulfide bonds were found to link the nonglycosylated envelope protein VP-2/M (19 kDa), encoded by open reading frame 6, ... virus (LDV). The two proteins comigrated in a complex … ... The envelope proteins of lactate dehydrogenase-elevating virus ... Disulfide bonds between two envelope proteins of lactate dehydrogenase-elevating virus are essential for viral infectivity K S ...
Pseudotyped viruses can mimic the entry process mediated by exogenous viral envelope proteins that belong to the class I fusion ... Pseudotyped viruses can mimic the entry process mediated by exogenous viral envelope proteins that belong to the class I fusion ... To produce viral spike protein-pseudotyped HIV virions, the HIV backbone vector pNL4-3. Benzathine penicilline Luc. R-E- was ... Several viral proteins have been suggested as Benzathine penicilline drug targets and are currently being investigated, such as ...
The envelope protein (Env) of human immunodeficiency virus type 1 forms homo-oligomers in the endoplasmic reticulum. The ... HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Serena M, Parolini F, Biswas P, ... Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface Rob J Center 1 , Richard ... Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface Rob J Center et al. J ...
Viral Envelope Proteins * Viral Vaccines * Viral Hepatitis Vaccines Grants and funding * R01 AI132213/AI/NIAID NIH HHS/United ... The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited ...
Viral Envelope Proteins [genetics] [metabolism] *Viral Load. *Virus Replication. *0 (Viral Envelope Proteins) ... SHIV challenges allow assessment of anti-HIV-1 envelope responses in primates. As such, SHIVs should mimic natural HIV-1 ... infection in humans and, to address the pandemic, encode HIV-1 Env components representing major viral subtypes worldwide. ...
Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus. / Paton, D. J.; Lowings, J. P.; Barrett, A. D.T. ... Paton, D. J. ; Lowings, J. P. ; Barrett, A. D.T. / Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus ... Paton, D. J., Lowings, J. P., & Barrett, A. D. T. (1992). Epitope mapping of the gp53 envelope protein of bovine viral diarrhea ... Paton, DJ, Lowings, JP & Barrett, ADT 1992, Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus, ...
Multiple necessary viral proteins are located within the envelope. DNA and proteins enter the host cell nucleus and turn-off ... Envelope fusion with the plasma membrane of the host cell causes separation of the nucleocapsid from viral DNA and proteins. ... gB, gD, gH, and gL proteins allow for fusion of the cell and envelope, and are necessary for survival. Entrance to host cells ... L genes are transcribed "after the synthesis of DNA and viral protein onset." Virion DNA maturation occurs as the nucleocapids ...
... envelope protein. The six koalas vaccinated in the study all generated a strong antibody response to the envelope protein, and ... In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South ... A vaccine candidate for Koala retrovirus elicits a protective antibody response and reduces the viral load in already-infected ... Vaccinated koalas with pre-existing KoRV infection benefited from an average 79% reduction in viral load when measured 12 weeks ...
Glycoprotein 120, the viral-envelope protein, binds to the host CD4+ molecule. ... Viral load in peripheral blood is used as a surrogate marker of viral replication rate; however, quantitative viral-load assays ... and is produced as a C-terminal extension of the Gag protein). The env gene encodes the viral envelope-the outer structural ... The accessory proteins of HIV-1 and HIV-2 are involved in viral replication and may play a role in the disease process. [35, 36 ...
Viral Envelope Proteins (biosynthesis, immunology) Join CureHunter, for free Research Interface BASIC access!. ... Recombinant vaccinia viruses expressing either the premembrane/truncated envelope (PrM/TrE) or truncated envelope (TrE) protein ... The deletion of the C-terminal hydrophobic domain of the envelope glycoprotein resulted in the secretion of E protein into the ... Both constructs expressed authentic E proteins as determined by their size and antigenic reactivity with a panel of monoclonal ...
Categories: Viral Envelope Proteins Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
We apply resurfacing to engineer Dengue virus envelope protein domain III (DENV DIII) … ... is a protein engineering strategy that can be utilized to disrupt antibody recognition or modulate the capacity of a protein to ... Viral Envelope Proteins Grants and funding * F31 AI145106/AI/NIAID NIH HHS/United States ... We apply resurfacing to engineer Dengue virus envelope protein domain III (DENV DIII) antigens with the goal of focusing ...
Viral Envelope Proteins/genetics*; Viral Envelope Proteins/immunology; Viral Envelope Proteins/therapeutic use ...
The M and E proteins are essential and sufficient for viral envelope formation. The M protein also interacts with the N protein ... protein, the small envelope (E) protein, the spike (S) glycoprotein, and the nucleocapside (N) protein. The N protein wraps the ... The coronavirus genome is a an infectious, positive-stranded RNA (a strand that s directly translated into protein) of about 30 ... The method depends on generating an interspecies chimeric FIPV, designated mFIPV, in which, part of its spike protein has been ...
Viral Envelope Proteins, Virus Latency, gamma-Aminobutyric Acid",. author = "Garry, {Emer M} and Ada Delaney and Anderson, { ... Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) ... Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) ... Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) ...
A Machine Learning Approach for Predicting Furin Cleavage Sites of Viral Envelope Proteins. Accepted for publication in ... A Novel Secreted Protein, MYR1, Is Central to Toxoplasmas Manipulation of Host Cells. mBio. 7, 2231 (2016). ... Lee W, Fong N, Franco M, Fowler R & Khuri S. (2008). Detection of Remote Protein Homology by Comparing Profile Hidden Markov ... FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat. ...
A new study has now identified over 300 human proteins involved in WNV infection, exposing numerous potential antiviral targets ... They then looked for viral envelope protein in the cells to identify genes whose absence either helps or hinders infection. ... The virus encodes only 10 proteins of its own, suggesting that it needs many human cellular proteins for infection. Supported ... A new study has now identified over 300 human proteins involved in WNV infection, exposing numerous potential antiviral targets ...
protein folding, structure of viral envelope proteins. jandh. 2012‑10‑02. Anthony J. Koleske (Info). Yale. Neuronal ... Protein Folding and Dynamics; Structural Biology. jandh. 2013‑07‑14. Phillip Allen Sharp (Info). MIT. Gene splicing. JLand52. ... proteins, biophysics, biochemistry. agc. 2016‑06‑18. Jerry D. Cohen (Info). UMN. Plant Physiology, Biochemistry. pq. 2016‑03‑22 ... protein folding. smitha. 2008‑03‑05. Harvey F. Lodish (Info). MIT. Cell biology, hematology, endocrinology. lodish. 2014‑10‑23 ...
... inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our ... viral load (NVL; viral load ≥1000 copies/mL), virologic failure (VF; ARVs present and viral load ≥1000 copies/mL), interrupted ... Study plasma viral load (sVL) determined at baseline, every 12 months thereafter and at the time of switch served for ... Access to HIV viral load testing and antiretroviral therapy switch practices: A multicountry prospective cohort study in sub- ...
M2: this is a small protein that is embedded in the viral envelope. Four molecules associate together to create a channel ... Beneath the envelope lies the matrix (M1 protein) which covers the viral genetic material (RNA). ... Envelope: the viral envelope is derived from the host cell plasma membrane when the virus buds from the cell. In the upper ... spikes pass through the green viral envelope to dock with the underlying matrix (M) proteins shown (purple). Inside the matrix ...
WSSV517s function is unknown, but WSSV051 is thought to be a structural protein in the viral envelope. The investigators think ... Identifying hub proteins is important, because these proteins are thought to be central to various viral functions.. "This work ... This mapping of protein-protein interactions within a virus is a first for "a shrimp virus or virus of any other invertebrate ... "WSSV hub proteins are critical once infection has been established, but the disruption of the initial WSSV and shrimp protein ...
One encodes a protein embedded in the viral envelope and the second yields a protein that helps the virus produce more RNA. The ... The main problem seemed to be a faulty primer, or a piece of DNA engineered to stick to the viral gene like a bit of Velcro. ... On New Years Eve, Chinese officials notified the World Health Organization that a new type of viral pneumonia was circulating ... and other needs-like a solution that helps preserve the viral RNA prior to testing. "All of them seem to be in short supply," ...
In Zika virus surface proteins are arranged in an icosahedral-like symmetry. Attachment of the viral envelope protein E to host ... The Pr peptide prevents premature fusion activity of the envelope proteins in trans golgi by binding to envelope protein E (at ... The non-structural protein 1 can form homodimers and homohexamers is involved in immune evasion, pathogenesis and viral ... MABF2043, is amouse monoclonal antibody that detects Zika virus envelope protein and has been tested for use in Western ...
Under homeopathic treatment, 90% of VBH (Viral B Hepatitis) will be cured in 6 months. ... Viral protein tests are HB surface antigen, HB envelope antigen, HB DNA and HC RNA. ... Correct the protein malnutrition of children early on. Increase vitamin C, glucose, calcium and protein rich vegetables in the ... Plasma protein: Plasma albumin level is lowered even in mild hepato cellular disease. The normal level of 3.6 gm to 4.7 gm/100 ...
Synthetic antigens produced from proteins of specific viral envelope domains also offer promise in improving the specificity of ... protein. Surface projections on the membrane are composed of a glycosylated envelope (E) and membrane (M) proteins. A pre M ... JE viral specific and cross reactive neutralizing epitopes have been mapped to specific regions of the E protein and ... Viral Strains. Dosage and Route of Administration. Inactivated Primary Hamster Kidney Cell-Derived JE Vaccine. Viral Strain. ...
Viral Envelope Proteins; Viral Vaccines; Young Adult ... Adolescent; Adult; Antibodies, Viral; CD4-Positive T- ...
Murine Monoclonal Antibodies for Antigenic Discrimination of HIV-1 Envelope Proteins. Viral Immunol 29(1):64-70, 2016. ... Murine monoclonal antibodies for antigenic discrimination of HIV-1 envelope proteins. Viral Immunology 29:64-70, 2016. ... Viral Immunol 30:737, 2017. Hurwitz JL, Jones BG, Charpentier E, Woodland DL. Hypothesis: RNA and DNA viral sequence ... Pre-clinical and clinical development of a multi-envelope DNA-Virus-Protein (D-V-P) HIV-1 vaccine (PMCID# PMC2649747). ...
Ubiquitin and ubiquitin-like proteins control the degradation of substrates as diverse as cyclins, viral envelope proteins, ... Spermatid histones are ubiquitinated as they are being transiently replaced by transitional proteins and permanently by ... Reproductive-system-disorders; Reproductive-system; Spermatogenesis; Spermatozoa; Fertility; DNA-damage; Proteins; Author ...
The two N-terminal YXXL sequences are reportedly critical for viral infection. However, their actual function in the viral life ... The transmembrane subunit of the BLV envelope glycoprotein, gp30, contains three completely conserved YXXL sequences that fit ... protein, following transport to the cell surface. Moreover, the 2nd and 3rd YXXL sequences contributed to Env protein ... Our findings provide new insights regarding the three YXXL sequences toward the BLV viral life cycle and for developing new ...
  • The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. (mdpi.com)
  • The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. (asm.org)
  • The major influenza C virus envelope glycoprotein is called HEF (hemagglutinin-esterase-fusion) because it has the functions of both the HA and the NA. (virology.ws)
  • Viral glycoproteins including gp350, gHgL, gB and gp42 mediate the preferential binding of EBV to B cells by interacting with the complement receptor CR2 (CD21) on the surface of B cells, and then the envelope glycoprotein gp42 and gp85/gp25 form a fusion protein triple molecule Complex. (selfgrowth.com)
  • The M protein or E1 glycoprotein is The coronavirus M protein is implicated in virus assembly. (nih.gov)
  • The envelope consists of a lipid bilayer containing an envelope glycoprotein and a matrix protein. (medscape.com)
  • In parallel, as the virus became more aggressive, cells that were resistant to infection emerged, displaying escape mechanisms operative at the level of viral entry, HCV RNA replication, or both. (nih.gov)
  • Viral replication causes an increase in vascular permeability, which leads to the lesions and hemorrhaging of organs, namely the liver, spleen, thymus, and bursa of Fabricius. (wikipedia.org)
  • Typically viral replication begins in the digestive track and moves to bursa of Fabricuis, thymus, spleen, and liver. (wikipedia.org)
  • The NB protein is believed to be an ion channel, but it is not required for viral replication in cell culture. (virology.ws)
  • Increasing evidence has shown that KSHV infection can alter central carbon metabolic pathways to produce biomass for viral replication, as well as the survival and proliferation of infected cells. (frontiersin.org)
  • Increasing evidence has shown that virus infection, similar to cancer development, depends on the reprogramming of cellular metabolism to produce biomass for viral replication and virion production. (frontiersin.org)
  • Viral vectors are usually derived from parental wild type viruses whose viral genes (essential for replication and virulence) have been replaced with the heterologous genes intended for cell manipulation. (bataviabiosciences.com)
  • Using HSV-1 as our primary model system, you will investigate the roles of internal DNA pressure for viral replication. (lu.se)
  • Some viruses have an outer envelope consisting of protein and lipid, surrounding a protein capsid complex with genomic RNA or DNA and sometimes enzymes needed for the first steps of viral replication. (msdmanuals.com)
  • Persistent in vitro infection was characterized by the selection of viral variants that displayed accelerated expansion kinetics, higher peak titers, and increased buoyant densities. (nih.gov)
  • It has also characterized Spike acylation and has also identified other acylated viral proteins and host enzymes involved in the process of infection. (news-medical.net)
  • Further, it has also revealed the importance of acylation in viral biogenesis and infection. (news-medical.net)
  • Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles. (asm.org)
  • Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. (asm.org)
  • Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. (wjgnet.com)
  • The specific nature of the new mutations in the virus also suggest to the team some possible relationships between viral infection and the severe symptoms associated with the virus in the Americas. (eurekalert.org)
  • Virus infection may reprogram host metabolism for viral genome and protein synthesis, as well as lipid envelope generation for virion production. (frontiersin.org)
  • During a natural infection, spike proteins play a key role in helping the virus enter the cells of your body. (thegatewaypundit.com)
  • The case attracted a lot of attention as a possible cure and researchers conducted a number of tests to find out if there was any trace of viral infection. (aidsmap.com)
  • A strategy for HIV-1 vaccine development is to define envelope (Env) evolution of broadly neutralizing antibodies (bnAbs) in infection and to recreate those events by vaccination. (duke.edu)
  • To be able to present knowledge to assist reply this query, we, subsequently, investigated the consequences of endurance coaching on the degrees of host proteins concerned in SARS-CoV-2 an infection in mice. (aidstar-one.com)
  • The presence of ACE-2 in varied tissues might allow viral an infection. (aidstar-one.com)
  • What Is a Viral Infection? (medicinenet.com)
  • A viral infection is a proliferation of a harmful virus inside your body. (medicinenet.com)
  • With an active viral infection, a virus makes copies of itself and bursts the host cell (killing it) to set the newly-formed virus particles free. (medicinenet.com)
  • Is it a Bacterial or Viral Infection? (medicinenet.com)
  • Contaminated food and water are other potential sources of viral infection. (medicinenet.com)
  • Several cell membrane proteins have been identified as herpes simplex virus (HSV) entry mediators (Hve). (nih.gov)
  • CoVs are enveloped by a protein membrane that consists of a minimum of three structural proteins, namely, Spike (S), Membrane (M), and Envelope (E). They also contain accessory factors such as Orf3a. (news-medical.net)
  • Moreover, in each entry mode, fusion of the viral and the cellular membranes, which is the plasma membrane in A and the endosomal membrane in B, is required to release the genetic information into the cell. (hstalks.com)
  • Scientists from the Institut Pasteur and the CNRS, working with the University of Göttingen, have characterized the mechanism used by the virus to insert one of its envelope proteins into the host cell membrane, thereby enabling it to infect the cell. (pasteur.fr)
  • They have demonstrated that the viral envelope protein has a "pocket" that specifically recognizes a category of lipids in the cell membrane. (pasteur.fr)
  • Scientists in the Structural Virology Unit (Institut Pasteur/CNRS) directed by Félix Rey, in collaboration with the University of Göttingen, characterized the mechanism used by the virus to insert one of its surface proteins into the host cell membrane and drive fusion. (pasteur.fr)
  • They also determined the atomic structure of this new protein-lipid complex, demonstrating that this protein has a "pocket" which specifically recognizes the hydrophilic heads of some of the lipids that make up the cell membrane. (pasteur.fr)
  • Understanding the mechanism used by these viruses for insertion in the cell membrane paves the way for the development of therapeutic agents that target the "pocket" involved in the fusion of viral and cell membranes with the aim of preventing pathogenic arboviruses from entering host cells. (pasteur.fr)
  • Viral Entry The envelope proteins of HCV form a heterodimer which helps binding the hepatitis C virus to the receptors present on the hepatocytes membrane. (bartleby.com)
  • The enveloped influenza A virions have three membrane proteins (HA, NA, M2), a matrix protein (M1) just below the lipid bilayer, a ribonucleoprotein core (consisting of 8 viral RNA segments and three proteins: PA, PB1, PB2), and the NEP/NS2 protein. (virology.ws)
  • The M1 protein lies just below the membrane, as in influenza A and B virions. (virology.ws)
  • A region of the protein, known as the S2, fuses the viral envelope to your cell membrane. (thegatewaypundit.com)
  • The E1 viral membrane protein is required for formation of the viral envelope and is transported via the Golgi complex. (nih.gov)
  • The entry of enveloped viruses into host cells involves a fusion step between the viral and a cellular membrane. (rupress.org)
  • E and M proteins are essential for viral assembly, whereas, S protein mediates the attachment of the virus to the host cell receptors, and also takes part in the transfer of the viral genome to the host. (news-medical.net)
  • There are mutations that occurred in the part of the viral genome that codes the viral envelope protein and the ends of the viral genome that are called 'untranslated regions. (eurekalert.org)
  • 5. HCV Genome: Polyprotein HCV contains a positive sense RNA genome of approximately 9600 bases, codes for a single polyprotein precursor of about 3000 amino acides that is co- and posttranslationally cleaved into structural and nonstructural proteins. (slideserve.com)
  • Herpesviruses consist of a double-stranded DNA genome contained within a protein shell, termed the capsid, that is surrounded by an unstructured protein layer and a lipid-envelope. (lu.se)
  • This pressure is capable of powering ejection of the entire viral genome. (lu.se)
  • Environmental and physiological cues cause latent carriers to shed viral particles. (wikipedia.org)
  • Retroviral vectors are envelope particles that bind with their surface receptor for cell entry. (hstalks.com)
  • Antiviral ingredients of Ci extracts target viral envelope proteins on infectious particles and prevent them from contacting host cells,' said lead researcher Ruth Brack-Werner. (pharmacytimes.com)
  • An analysis of the antiviral components of the extract showed it could block viral particles that carry Marburg and Ebola viral envelope proteins. (pharmacytimes.com)
  • Viral particles (red) walking across cellular bridges (blue). (yale.edu)
  • In production, it's the viral vector titer that needs to be drastically increased, in purification recovery of product needs to be drastically improved, while ensuring other critical quality attributes (such as the transducing titer for lentiviruses or the number of empty particles when working with AAV) are not affected. (bataviabiosciences.com)
  • In addition, an exciting new prospect is provided by the generation of stable vector producer cell lines, capable of expressing complete viral vector particles upon induction. (bataviabiosciences.com)
  • Viruses are small particles of genetic material (either DNA or RNA) that are surrounded by a protein coat. (medicinenet.com)
  • The structural proteins processed by the endoplasmic reticulum include the core protein (which forms the viral nucleocapsid), the envelope proteins (E1 and E2, which form the viral envelope). (slideserve.com)
  • The swab is placed in a reagent tube, which contains a lysis buffer that disrupts the cells to expose the nucleocapsid (N) protein. (futurelearn.com)
  • The test principle is based on the receptor-binding domain (RBD) of the spike and nucleocapsid proteins (antigens). (futurelearn.com)
  • The cassette has dye pad sections containing Recombinant 2019-novel coronavirus nucleocapsid protein and or Recombinant 2019-novel coronavirus Spike Protein (Si Subunit). (futurelearn.com)
  • SARS-CoV-2 gene targets commonly used include the nucleocapsid, envelope protein, RNA dependent RNA polymerase, and the viral open reading frames. (futurelearn.com)
  • Diagnosis can also be confirmed with presence of virus inclusion bodies in tissues or a positive immunohistochemical staining for viral antigen. (wikipedia.org)
  • The antigen test looks for a specific protein from the viral envelope. (hivplusmag.com)
  • We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. (duke.edu)
  • Module A contained serum samples spiked with cultured dengue virus (DENV) or chikungunya virus (CHIKV) for the detection of nucleic acid and DENV non-structural protein 1 (NS1) antigen. (who.int)
  • SIV proteins, especially the viral core proteins (i.e., p24, capsid protein), are antigenically related to HIV-I proteins (9). (cdc.gov)
  • The single RNA is complexed with a capsid protein. (medscape.com)
  • The S2 region also allows for the coronavirus spike protein to be easily detected by the immune system, which then makes antibodies to target and bind the virus. (thegatewaypundit.com)
  • Correction: Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. (duke.edu)
  • Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. (duke.edu)
  • In an immune response, viral neutralizing antibodies are present by the end of the first week, and the virus is rapidly cleared. (medscape.com)
  • patients with viral loads greater than 30,000/mL are 18.5 times more likely to die of AIDS than those with undetectable viral loads. (medscape.com)
  • During the past few decades, hemocyte-mediated phagocytosis, as one of the most important innate cellular immune function, has also received great attention in crustacean, and a good progress in elucidating the involvement of hemocyte-mediated phagocytosis, as well as its protective roles and mechanisms, against bacterial and viral infections has been achieved. (frontiersin.org)
  • These findings provide insight into the molecular basis for human antibody recognition of paramyxovirus surface proteins and the mechanisms of SOSV neutralization. (cdc.gov)
  • These studies will provide new insights into the key mechanisms facilitating as well as inhibiting viral infectivity. (lu.se)
  • Once the provirus is integrated into the host cell DNA, it is transcribed using typical cellular mechanisms to produce viral proteins and genetic material. (msdmanuals.com)
  • Influenza A has the most variation, and is named by the proteins on the viral envelope. (typepad.com)
  • These findings show that Ci can work against human viral pathogens, including influenza viruses. (pharmacytimes.com)
  • Influenza B virions have four proteins in the envelope: HA, NA, NB, and BM2. (virology.ws)
  • Like the M2 protein of influenza A virus, the BM2 protein is a proton channel that is essential for the uncoating process . (virology.ws)
  • Like the influenza A and B viruses, the core of influenza C viruses consists of a ribonucleoprotein made up of viral RNA and four proteins. (virology.ws)
  • Viral isolates have since been obtained from several species of nonhuman primates including African green monkeys (2), sooty mangabeys (3), pig-tailed macaques (4), and stump-tailed macaques (5). (cdc.gov)
  • Some SIV isolates, however, are antigenically more related to HIV-2 than to HIV-I by cross-reactivity of viral capsid and envelope proteins. (cdc.gov)
  • CDC was notified of one patient with persistent monkeypox whose viral isolates demonstrated tecovirimat resistance. (cdc.gov)
  • It has been hypothesized that conserved histidines in the class II fusion protein E of these viruses function as molecular switches and, by their protonation, control the fusion process. (rupress.org)
  • Many ATMPs under development rely on the delivery of genetic material to cells of a patient using so-called viral vectors. (bataviabiosciences.com)
  • In vitro and clinical use of viral vectors is based on RNA and DNA viruses that differ in their genomic structures and host range. (bataviabiosciences.com)
  • Although we focus on two viral vectors, i.e., adeno-associated virus (AAV) and lentivirus derived vectors as these two systems are mostly selected for the development of ATMPs (see figure 2), most vector systems under development face similar challenges. (bataviabiosciences.com)
  • Due to the high productivity of this production platform, it requires only limited sized clean rooms, making this manufacturing platform well suitable to produce viral vectors for ex vivo therapies for which only small volumes are required for individual patient treatment protocols. (bataviabiosciences.com)
  • CDC's Viral Special Pathogens Branch (VSPB) is available 24/7 to public health departments for consultations on Ebola disease or other viral hemorrhagic fevers by calling the CDC Emergency Operations Center at 770-488-7100 and requesting VSPB's on-call epidemiologist. (cdc.gov)
  • Proteins are separated in the first dimension based on their isoelectric point, and then in the second dimension by molecular weight. (learner.org)
  • Protein expression and function of organic anion transporters in short-term and long-term cultures of Huh7 human hepatoma cells. (cancerindex.org)
  • There's a hemagglutinin (the H protein), which lets the virus latch on to receptors on epithelial cells in the host's body. (typepad.com)
  • And there's a neuraminidase (the N protein) that lets the virus escape from the infected cells (see Flu Wiki's science section for more details). (typepad.com)
  • Cistus incanus found to inhibit viral proteins from infecting healthy cells. (pharmacytimes.com)
  • Antiviral ingredients found in the extracts from the medicinal plant cistus incanus (Ci) have been found to inhibit viral proteins from infecting healthy cells. (pharmacytimes.com)
  • In this epithelium, as well as in the more fragile single cell layer epithelium of endocervix, the cells are held together by proteins that form desmosomes, tight junctions, and adherens junctions, which decrease its permeability [ 19 ]. (hindawi.com)
  • Covid-19 vaccines are a new, still unproven, drug technology that aims to program the cells in our bodies to make spike protein, which in turn is supposed to provoke an immune response to protect the body from the virus. (thegatewaypundit.com)
  • In addition, since they are made in your own cells, your cells are then targeted by your immune system in an effort to destroy the spike protein. (thegatewaypundit.com)
  • Thus, your immune system's response to spike proteins can damage your body's cells. (thegatewaypundit.com)
  • Emerging evidence is also showing that in the nucleus of our cells the spike protein impairs our cells' ability to repair DNA . (thegatewaypundit.com)
  • EBV initially enters the body through the oropharyngeal mucosa and infects B cells through the binding of the viral envelope protein gp350 to CD21 on the surface of B cells. (selfgrowth.com)
  • A full-length ACE2 protein may very well be a possible drug to dam early entry of SARS-CoV-2 into host cells. (aidstar-one.com)
  • Angiotensin changing enzyme 2 (ACE-2) performs a key position in viral entry into host cells. (aidstar-one.com)
  • They have no cells (only protein coatings surrounding genetic material). (medicinenet.com)
  • With further development of these extracts, it could potentially put a dent in preventing and healing viral infections. (pharmacytimes.com)
  • How Long Are Viral Infections Contagious? (medicinenet.com)
  • Viral infections are contagious for varying periods of time depending on the virus. (medicinenet.com)
  • Respiratory viral infections affect the lungs, nose, and throat. (medicinenet.com)
  • The synthesis of E, M, and S proteins occurs in the ribosomes associated with the endoplasmic reticulum (ER). (news-medical.net)
  • This family consists of various coronavirus matrix proteins which are transmembrane glycoproteins. (nih.gov)
  • The blockage of interplay between angiotensin-converting enzyme 2 (ACE2) and S protein is taken into account an important goal for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) medication. (aidstar-one.com)
  • RÉSUMÉ Une analyse documentaire des informations publiques disponibles a été entreprise afin de passer en revue les connaissances et les lacunes actuelles sur le coronavirus du syndrome respiratoire du Moyen-Orient (MERS-CoV), notamment sur son origine, la transmission, les mesures de lutte efficaces et la prise en charge. (who.int)
  • Herpesviruses are a leading cause of human viral disease. (lu.se)
  • In this review, we summarize recent studies exploring how KSHV manipulates host cell metabolism to promote viral pathogenesis, which provides the potential therapeutic targets and strategies for KSHV-associated cancers. (frontiersin.org)
  • Nowadays, aquaculture industry has become one of the most important resources for providing the people of the premium animal proteins, and employments over the world, especially in China and many Southeast Asian countries ( 5 ). (frontiersin.org)
  • However, COVID-19 outbreaks may also lead to an increase in local community consumption and/or utilisation of aquatic food animals or their products due to limited transportation and trade away from the fishing and harvesting communities or limited supplies of alternative sources of animal proteins. (who.int)
  • Scientists have reported that in viruses such as SARS-CoV-1 and mouse hepatitis virus (MHV), both S and E proteins undergo S-acylation. (news-medical.net)
  • Importantly, this "recognition pocket" is found not only in RVF virus but also in the envelope proteins of other viral families transmitted by arthropods, such as the dengue, Zika and chikungunya viruses, which have caused major worldwide epidemics in recent years. (pasteur.fr)
  • Some viruses also have a fatty "envelope" covering. (medicinenet.com)
  • Dr. Mothes' laboratory is interested in various aspects of viral spread and pathogenesis of HIV-1 and other retroviruses. (yale.edu)
  • The HN protein possesses both hemagglutinin and neuraminidase activity. (bvsalud.org)
  • We isolated six mAbs recognizing the functional attachment protein hemagglutinin-neuraminidase (HN) and 18 mAbs against the fusion (F) protein. (cdc.gov)
  • All the viral genes were of avian fusion. (cdc.gov)
  • CDC has analyzed sequences from more than 4,000 specimens from across the world, and only 13 changes in the F13L protein were found, including the two cases included in this HAN Update. (cdc.gov)
  • however, quantitative viral-load assays should not be used as a diagnostic tool. (medscape.com)
  • In this study, researchers have used two assays to monitor protein acylation. (news-medical.net)
  • 2014). The three lives of viral fusion peptides. (tcdb.org)
  • The M2 is a transmembrane ed belonged to a single clade and were resistant to the protein that forms an ion channel required for the uncoating adamantane drugs but sensitive to neuraminidase process that precedes viral gene expression. (cdc.gov)
  • However it was not possible to culture the virus efficiently in vitro, impeding elucidation of the viral life cycle and the development of specifically target antivirals. (slideserve.com)
  • The hepatocyte host proteins help binding of the envelope proteins. (bartleby.com)
  • Taken collectively, endurance coaching altered the degrees of host proteins concerned in SARS-CoV-2 cell entry in an organ-dependent method. (aidstar-one.com)
  • A major current interest of the laboratory is to monitor viral spread and aspects of retroviral pathogenesis directly in living animals using multi-photon laser scanning microscopy. (yale.edu)
  • Spike proteins are also produced by your body after taking a Covid-19 jab, and they function similarly in that they are able to fuse to cell membranes. (thegatewaypundit.com)
  • The laboratory is also applying single molecule imaging to understand how conformational events in the HIV-1 envelope protein lead to fusion between viral and cellular membranes. (yale.edu)
  • Sequencing analysis revealed the selection of a single adaptive mutation in the HCV E2 envelope protein that was largely responsible for the variant phenotype. (nih.gov)
  • HveA (formerly HVEM) is a member of the tumor necrosis factor receptor family, whereas the poliovirus receptor-related proteins 1 and 2 (PRR1 and PRR2, renamed HveC and HveB) belong to the immunoglobulin superfamily. (nih.gov)
  • A 'functional' cure would suppress HIV viral load, keeping it below the level of detection without the use of ART. (aidsmap.com)
  • Additionally, they found a rapid degradation of spike protein following its synthesis when ZDHHC enzymes were silenced. (news-medical.net)
  • For those who have had COVID-19 or who have been vaccinated against it, the World Council for Health (WCH) has issued a guideline for "spike protein detox" to eliminate the risk of developing long-term effects from the spike proteins. (thegatewaypundit.com)
  • So, what is spike protein? (thegatewaypundit.com)
  • The SARS-CoV-2 virus contains a spike protein on its surface. (thegatewaypundit.com)
  • According to WCH , it is important to consider doing a "spike protein detox" as it is a "highly toxic part of the virus, and research has linked the vaccine-induced spike protein to toxic effects. (thegatewaypundit.com)
  • The virus spike protein has been linked to adverse effects, such as: blood clots, brain fog, organising pneumonia, and myocarditis. (thegatewaypundit.com)
  • Emerging evidence on spikopathy suggests that effects related to inflammation and clotting may occur in any tissue in which the spike protein accumulates. (thegatewaypundit.com)
  • In addition, peer-reviewed studies in mice have found that the spike protein is capable of crossing the blood-brain barrier. (thegatewaypundit.com)
  • Please do not undertake a spike protein detox without supervision from your trusted health practitioner. (thegatewaypundit.com)
  • Viral strains from South America are closely related to those from West Africa. (medscape.com)
  • Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. (duke.edu)
  • Symptoms of the viral illness occur as a result of cell damage, tissue destruction, and the associated immune response. (medicinenet.com)
  • These conformational changes are activated by specific triggers, allowing fusion to occur at the right time and at the right place in the viral life cycle. (rupress.org)
  • The symptoms of viral and bacterial illnesses are sometimes similar. (medicinenet.com)