A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE. Its species include those causing CHICKENPOX and HERPES ZOSTER in humans (HERPESVIRUS 3, HUMAN), as well as several animal viruses.

Latency-associated transcripts of equine herpesvirus type 4 in trigeminal ganglia of naturally infected horses. (1/71)

Equine herpesvirus type 4 (EHV-4) is a major respiratory pathogen of horses. Unlike most other members of the Alphaherpesvirinae, EHV-4 was regarded as non-neurotropic. Here, neural and lymphoid tissues of 17 horses have been analysed post-mortem. EHV-4 DNA was detected in 11 cases (65%) by PCR, exclusively in the trigeminal ganglia. In order to define the transcriptional activity, RNA preparations of 10 EHV-4 DNA-positive ganglia were investigated by nested RT-PCR. EHV-4-specific transcripts derived from genes 63 [herpes simplex virus type 1 (HSV-1) ICPO gene homologue] and 64 (HSV-1 ICP4 gene homologue) were detected in six trigeminal ganglia. In one other case, only gene 64-specific transcripts were present. All of the transcripts proved to be antisense orientated when a strand-specific RT-PCR was applied. Type-specific primers for gene 33 (encoding glycoprotein B) served to detect transcripts of an acute EHV-4-infection, which were found in only one of the six ganglia positive for gene 63- and gene 64-specific transcripts. Overall, these studies clearly demonstrate that EHV-4 is latent in trigeminal ganglia.  (+info)

The equine herpes virus 4 thymidine kinase is a better suicide gene than the human herpes virus 1 thymidine kinase. (2/71)

The herpes simplex virus type 1 thymidine kinase suicide gene (HSV1tk) together with ganciclovir (GCV) have been successfully used for in vivo treatment of various experimental tumors, and many clinical trials using this system have been launched. With the aim to improve this therapeutic system, we compared the potential efficacy of different herpes virus derived thymidine kinases (HSV1, varicella-zoster virus, equine herpes virus type-4 and Epstein-Barr virus) as suicide genes in association with the nucleoside analogs acyclovir, ganciclovir and bromovinyldeoxyur- idine. Using various murine and human cell lines expressing these viral tk, we show that HSV1- and EHV4tk are the more efficient suicide genes for the different nucleoside analogs tested. Moreover, EHV4tk expressing murine and human cells were three- to 12-fold more sensitive to GCV than HSV1tk expressing cells. This was correlated with the presence of five-fold higher amounts of the toxic triphosphated-GCV in EHV4- versus HSV1tk expressing cells. Altogether, these experiments underline the potential advantages of the EHV4tk as a suicide gene.  (+info)

Pathogenicity of a new neurotropic equine herpesvirus 9 (gazelle herpesvirus 1) in horses. (3/71)

Pathogenicity of equine herpesvirus 9 (EHV-9), a new type of equine herpesvirus isolated from Gazella thomsoni, in horses was investigated by intranasal inoculation of EHV-9 (10(7) pfu) to two conventionally reared 8-months old half-bred weanling horses. Fever higher than 39 degrees C was recorded. Virus was recovered from nasal swabs and peripheral blood mononuclear cells. Both horses developed neutralizing antibody to EHV-9. Perivascular infiltration of mononuclear cells and glial reaction were found in the olfactory and limbic systems. The results suggested that EHV-9 has a pathogenicity in horses.  (+info)

Characterization of heterosubunit complexes formed by the R1 and R2 subunits of herpes simplex virus 1 and equine herpes virus 4 ribonucleotide reductase. (4/71)

We report on the separate PCR cloning and subsequent expression and purification of the large (R1) and small (R2) subunits from equine herpes virus type 4 (EHV-4) ribonucleotide reductase. The EHV-4 R1 and R2 subunits reconstituted an active enzyme and their abilities to complement the R1 and R2 subunits from the closely related herpes simplex virus 1 (HSV-1) ribonucleotide reductase, with the use of subunit interaction and enzyme activity assays, were analysed. Both EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 were able to assemble heterosubunit complexes but, surprisingly, neither of these complexes was fully active in enzyme activity assays; the EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 enzymes had 50% and 5% of their respective wild-type activities. Site-directed mutagenesis was used to alter two non-conserved residues located within the highly conserved and functionally important C-termini of the EHV-4 and HSV-1 R1 proteins. Mutation of Pro-737 to Lys and Lys-1084 to Pro in EHV-4 and HSV-1 R1 respectively had no effects on subunit assembly. Mutation of Pro-737 to Lys in EHV-4 R1 decreased enzyme activity by 50%; replacement of Lys-1084 by Pro in HSV-1 R1 had no effect on enzyme activity. Both alterations failed to restore full enzyme activities to the heterosubunit enzymes. Therefore probably neither of these amino acids has a direct role in catalysis. However, mutation of the highly conserved Tyr-1111 to Phe in HSV-1 R1 inactivated enzyme activity without affecting subunit interaction.  (+info)

Application of a type-specific enzyme-linked immunosorbent assay for equine herpesvirus types 1 and 4 (EHV-1 and -4) to horse populations inoculated with inactivated EHV-1 vaccine. (5/71)

A type-specific enzyme-linked immunosorbent assay (ELISA) using equine herpesvirus types 1 (EHV-1) and 4 (EHV-4) glycoprotein G was applied for sero-epizootiology of EHV infections in Japan. Recently, an inactivated EHV-1 vaccine has been administered to racehorses for prevention of upper respiratory disease. To examine the effect of the vaccination on the result of the ELISA, 6 horses were experimentally inoculated three times intramuscularly or intranasally with inactivated EHV-1 vaccine. Sera collected from these horses were used to the type-specific ELISA and complement-fixation (CF) test. Although the CF test detected a significant increase of antibody elicited by vaccination, the ELISA did not detect any antibody response. Next, sera collected from thirty-eight horses, which were intramuscularly inoculated with inactivated EHV-1 twice at an interval of four weeks, were used in the ELISA and CF test. The results also indicated that CF titers increased by vaccine inoculation, but ELISA titers did not. To examine epizootiology of EHVs serologically in racehorse populations at two Training Centers of the Japan Racing Association, the type-specific ELISA and CF test were carried out using paired sera collected from racehorses before and after the winter season. The results showed that the ELISA could distinguish EHV-1 and EHV-4 infections in vaccinated horses serologically. In conclusion, the type-specific ELISA is considered to be useful for sero-diagnosis and sero-epizootiological research on EHV-1 and EHV-4 infections not only in unvaccinated horses, but also in vaccinated horses in Japan.  (+info)

Sequence analysis of the leftward end of simian varicella virus (EcoRI-I fragment) reveals the presence of an 8-bp repeat flanking the unique long segment and an 881-bp open-reading frame that is absent in the varicella zoster virus genome. (6/71)

Simian varicella virus (SVV) causes varicella (chickenpox) in nonhuman primates, becomes latent in cranial and dorsal root ganglia, and reactivates to produce zoster (shingles). Because the clinical and molecular features of SVV closely resemble those of varicella zoster virus (VZV) infection of humans, SVV infection of primates has served as an experimental model of VZV pathogenesis and latency. The SVV genome has been completely mapped, but attempts to clone the 3600-bp EcoRI fragment located at the leftward end of the virus genome have hitherto been unsuccessful. Herein, we report the cloning and the complete nucleotide sequence of this region. Comparison of the SVV and VZV sequences in this region revealed an 8-bp inverted repeat sequence flanking the unique long segment of the SVV genome; an 879-bp open-reading frame (ORF) A in SVV that is absent in VZV but has 42% amino acid identity to SVV ORF 4 and 49% to VZV ORF 4; a 342-bp ORF B in SVV with 35% amino acid identity to a 387-bp ORF located to the left of ORF 1 on the VZV genome; and a 303-bp ORF in SVV with 27% amino acid identity to VZV ORF 1. No homologue of VZV ORF 2 was detected. Transcripts specific for ORFs A and B were present in SVV-infected cells in culture and in acutely infected monkey ganglia. Overall, there are more than 2000 bp of DNA in the SVV genome that are absent in the VZV genome.  (+info)

Brain lesions and transmission of experimental equine herpesvirus type 9 in pigs. (7/71)

We demonstrated that pigs are susceptible to acute infection by equine herpesvirus type 9 (EHV-9). Six 8-week-old SPF pigs were inoculated intranasally and four were inoculated orally with different doses of EHV-9, and observed for 6 days. Although neurological signs did not develop in any of the infected pigs, the six intranasally infected pigs and one of the orally infected pigs developed lesions of encephalitis consisting of neuronal necrosis, neuronophagia, and intranuclear inclusion bodies, distributed mainly in the rhinencephalon. EHV-9 antigen was localized in the necrotic neuronal cells and was closely associated with the presence of inclusion bodies. These findings clearly demonstrate that pigs are fully susceptible to EHV-9 infection following intranasal inoculation (but less so following oral inoculation), and that EHV-9 in pigs has a highly neurotropic nature.  (+info)

Simian varicella virus infects ganglia before rash in experimentally infected monkeys. (8/71)

Monkeys experimentally infected with simian varicella virus (SVV) develop rash 10-14 days later. However, the route and the time of ganglionic infection are unknown. Using PCR, we analyzed DNA extracted from tissues of 13 monkeys 5 to 60 days after either intratracheal or intravenous inoculation with SVV. SVV DNA was detected in ganglia from four of five monkeys sacrificed 6 to 7 days after intratracheal inoculation. Further, analysis of ganglia from monkeys sacrificed at 10 days revealed that intravenous inoculation produced a higher proportion of SVV DNA-positive ganglia (63%) than that after intratracheal inoculation (13%), pointing to the role of hematogenous spread in ganglionic infection. Like other organs, monkey ganglia become infected with SVV before the appearance of rash.  (+info)

Varicellovirus is a genus of viruses in the family Herpesviridae, subfamily Alphaherpesvirinae. This genus includes several human and animal viruses that are closely related to each other. The most well-known member of this genus is the Varicella-zoster virus (VZV), which causes two distinct diseases: chickenpox (varicella) and shingles (zoster).

The Varicellovirus genus includes the following species:

1. Human alphaherpesvirus 3 (Varicella-zoster virus)
2. Simian varicella virus
3. Bovine herpesvirus 1
4. Bovine herpesvirus 5
5. Pseudorabies virus
6. Equid herpesvirus 1
7. Equid herpesvirus 3
8. Equid herpesvirus 4
9. Equid herpesvirus 8
10. Equid herpesvirus 9
11. Cercopithecine herpesvirus 1 (Herpes B virus)
12. Cercopithecine herpesvirus 2
13. Suid herpesvirus 1 (Aujeszky's disease virus)
14. Canid herpesvirus 1
15. Felid herpesvirus 1

These viruses are characterized by their ability to establish latency in the nervous system of their hosts and reactivate later in life, causing recurrent disease. They typically have a broad host range and can infect multiple species within a family or genus.

No FAQ available that match "varicellovirus"

No images available that match "varicellovirus"