Organic salts of cyanic acid containing the -OCN radical.
Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes.
Enzymes that catalyze the cleavage of a carbon-nitrogen bond by means other than hydrolysis or oxidation. Subclasses are the AMMONIA-LYASES, the AMIDINE-LYASES, the amine-lyases, and other carbon-nitrogen lyases. EC 4.3.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Organic derivatives of thiocyanic acid which contain the general formula R-SCN.
Aminohydrolases are a class of enzymes that catalyze the hydrolysis of various nitrogenous compounds, including proteins, nucleotides, and amines, playing a crucial role in numerous biological processes such as metabolism and signaling.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A species of gram-negative bacteria in the genus PSEUDOMONAS. All strains can utilize FRUCTOSE for energy. It is occasionally isolated from humans and some strains are pathogenic to WATERMELON.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis.
A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side.
Methylmaleic anhydrides.
Derivatives of carbamic acid, H2NC(=O)OH. Included under this heading are N-substituted and O-substituted carbamic acids. In general carbamate esters are referred to as urethanes, and polymers that include repeating units of carbamate are referred to as POLYURETHANES. Note however that polyurethanes are derived from the polymerization of ISOCYANATES and the singular term URETHANE refers to the ethyl ester of carbamic acid.
Isocitrate is a chemical compound, an isomer of citric acid, which is a key intermediate in the tricarboxylic acid cycle (Krebs cycle) and is involved in energy production through cellular respiration in living organisms.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical.

Cyanates are a class of chemical compounds that contain the functional group -O-C≡N, which consists of a carbon atom triple-bonded to a nitrogen atom and double-bonded to an oxygen atom. In medical terms, cyanates are not commonly used, but potassium cyanate has been studied in the past as a possible treatment for certain conditions such as angina and cyanide poisoning. However, its use is limited due to potential side effects and the availability of safer and more effective treatments. It's important to note that cyanides are highly toxic substances, and exposure to them can be life-threatening.

Cyanogen bromide is a solid compound with the chemical formula (CN)Br. It is a highly reactive and toxic substance that is used in research and industrial settings for various purposes, such as the production of certain types of resins and gels. Cyanogen bromide is an alkyl halide, which means it contains a bromine atom bonded to a carbon atom that is also bonded to a cyano group (a nitrogen atom bonded to a carbon atom with a triple bond).

Cyanogen bromide is classified as a class B poison, which means it can cause harm or death if swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects, such as damage to the nervous system and kidneys. Therefore, it is important to handle cyanogen bromide with care and to use appropriate safety precautions when working with it.

Carbon-nitrogen (C-N) lyases are a class of enzymes that catalyze the breakdown of a carbon-nitrogen bond, releasing an ammonia molecule and leaving a double bond. These enzymes play important roles in various biological processes, such as the biosynthesis and degradation of amino acids, nucleotides, and other biomolecules.

C-N lyases are classified based on the type of bond they cleave and the cofactors or prosthetic groups they use to catalyze the reaction. Some examples of C-N lyases include:

1. Alanine racemase: This enzyme catalyzes the conversion of L-alanine to D-alanine, which is an important component of bacterial cell walls.
2. Aspartate transcarbamylase: This enzyme catalyzes the transfer of a carbamoyl group from carbamoyl phosphate to aspartate, forming N-carbamoyl aspartate and inorganic phosphate. It is an important enzyme in the biosynthesis of pyrimidines.
3. Diaminopimelate decarboxylase: This enzyme catalyzes the decarboxylation of meso-diaminopimelate to form L-lysine, which is an essential amino acid for humans.
4. Glutamate decarboxylase: This enzyme catalyzes the decarboxylation of glutamate to form γ-aminobutyric acid (GABA), a neurotransmitter in the brain.
5. Histidine decarboxylase: This enzyme catalyzes the decarboxylation of histidine to form histamine, which is involved in various physiological processes such as immune response and allergic reactions.

C-N lyases are important targets for drug development, particularly in the treatment of bacterial infections and neurological disorders.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Thiocyanates are chemical compounds that contain the thiocyanate ion (SCN-), which consists of a sulfur atom, a carbon atom, and a nitrogen atom. The thiocyanate ion is formed by the removal of a hydrogen ion from thiocyanic acid (HSCN). Thiocyanates are used in various applications, including pharmaceuticals, agrochemicals, and industrial chemicals. In medicine, thiocyanates have been studied for their potential effects on the thyroid gland and their use as a treatment for cyanide poisoning. However, excessive exposure to thiocyanates can be harmful and may cause symptoms such as irritation of the eyes, skin, and respiratory tract, as well as potential impacts on thyroid function.

Aminohydrolases are a class of enzymes that catalyze the hydrolysis of amide bonds and the breakdown of urea, converting it into ammonia and carbon dioxide. They are also known as amidases or urease. These enzymes play an essential role in various biological processes, including nitrogen metabolism and the detoxification of xenobiotics.

Aminohydrolases can be further classified into several subclasses based on their specificity for different types of amide bonds. For example, peptidases are a type of aminohydrolase that specifically hydrolyze peptide bonds in proteins and peptides. Other examples include ureases, which hydrolyze urea, and acylamidases, which hydrolyze acylamides.

Aminohydrolases are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They have important applications in biotechnology and medicine, such as in the production of pharmaceuticals, the treatment of wastewater, and the diagnosis of genetic disorders.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Pseudomonas pseudoalcaligenes" is a gram-negative, rod-shaped bacterium that is widely found in various environments such as soil, water, and clinical samples. It is a close relative to the Pseudomonas genus but can be differentiated by its biochemical characteristics. This bacterium is generally considered to be non-pathogenic to humans, but it has been occasionally associated with infections in immunocompromised individuals or those with underlying medical conditions. It is known for its ability to degrade a wide range of organic compounds and can be used in bioremediation applications.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

Cell adhesion molecules (CAMs) are a type of protein found on the surface of cells that mediate the attachment or adhesion of cells to either other cells or to the extracellular matrix (ECM), which is the network of proteins and carbohydrates that provides structural and biochemical support to surrounding cells.

CAMs play crucial roles in various biological processes, including tissue development, differentiation, repair, and maintenance of tissue architecture and function. They are also involved in cell signaling, migration, and regulation of the immune response.

There are several types of CAMs, classified based on their structure and function, such as immunoglobulin-like CAMs (IgCAMs), cadherins, integrins, and selectins. Dysregulation of CAMs has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Chymotrypsin is a proteolytic enzyme, specifically a serine protease, that is produced in the pancreas and secreted into the small intestine as an inactive precursor called chymotrypsinogen. Once activated, chymotrypsin helps to digest proteins in food by breaking down specific peptide bonds in protein molecules. Its activity is based on the recognition of large hydrophobic side chains in amino acids like phenylalanine, tryptophan, and tyrosine. Chymotrypsin plays a crucial role in maintaining normal digestion and absorption processes in the human body.

Citraconic anhydride is a chemical compound that is used in the synthesis of various pharmaceuticals and industrial products. It is an anhydride of citraconic acid, which is a unsaturated dicarboxylic acid. Citraconic anhydride is an important reagent in organic chemistry due to its ability to act as a acylating agent, meaning it can transfer an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom: -CO-) to other molecules.

In the medical field, citraconic anhydride is not used directly as a therapeutic agent. However, it may be used in the production of certain drugs or drug delivery systems. For example, it has been used in the synthesis of biodegradable polymers for drug delivery, and in the modification of proteins and peptides for therapeutic purposes.

It is important to note that citraconic anhydride itself is not a medication, but rather a chemical reagent used in the production of certain pharmaceutical compounds. As such, it does not have a specific medical definition, but rather a chemical one.

Carbamates are a group of organic compounds that contain the carbamate functional group, which is a carbon atom double-bonded to oxygen and single-bonded to a nitrogen atom (> N-C=O). In the context of pharmaceuticals and agriculture, carbamates are a class of drugs and pesticides that have carbamate as their core structure.

Carbamate insecticides work by inhibiting the enzyme acetylcholinesterase, which is responsible for breaking down the neurotransmitter acetylcholine in the synapses of the nervous system. When this enzyme is inhibited, acetylcholine accumulates in the synaptic cleft, leading to overstimulation of the nervous system and ultimately causing paralysis and death in insects.

Carbamate drugs are used for a variety of medical indications, including as anticonvulsants, muscle relaxants, and psychotropic medications. They work by modulating various neurotransmitter systems in the brain, such as GABA, glutamate, and dopamine. Carbamates can also be used as anti- parasitic agents, such as ivermectin, which is effective against a range of parasites including nematodes, arthropods, and some protozoa.

It's important to note that carbamate pesticides can be toxic to non-target organisms, including humans, if not used properly. Therefore, it's essential to follow all safety guidelines when handling or using these products.

I believe there may be a slight spelling error in your question. If you are referring to "isocitrate," I can provide a medical definition for that. Isocitrate is a chemical compound that is naturally found in the body and plays a crucial role in energy production within cells. It is a key intermediate in the citric acid cycle, also known as the Krebs cycle or tricarboxylic acid (TCA) cycle, which is a series of chemical reactions used by all living cells to generate energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins into adenosine triphosphate (ATP).

Isocitrate is an important molecule in this cycle as it undergoes oxidative decarboxylation, catalyzed by the enzyme isocitrate dehydrogenase, to form alpha-ketoglutarate. This reaction also produces nicotinamide adenine dinucleotide (NADH), which serves as an essential electron carrier in the generation of ATP during oxidative phosphorylation.

If you meant something else or need more information, please let me know, and I will be happy to help.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Cyanides are a group of chemical compounds that contain the cyano group, -CN, which consists of a carbon atom triple-bonded to a nitrogen atom. They are highly toxic and can cause rapid death due to the inhibition of cellular respiration. Cyanide ions (CN-) bind to the ferric iron in cytochrome c oxidase, a crucial enzyme in the electron transport chain, preventing the flow of electrons and the production of ATP, leading to cellular asphyxiation.

Common sources of cyanides include industrial chemicals such as hydrogen cyanide (HCN) and potassium cyanide (KCN), as well as natural sources like certain fruits, nuts, and plants. Exposure to high levels of cyanides can occur through inhalation, ingestion, or skin absorption, leading to symptoms such as headache, dizziness, nausea, vomiting, rapid heartbeat, seizures, coma, and ultimately death. Treatment for cyanide poisoning typically involves the use of antidotes that bind to cyanide ions and convert them into less toxic forms, such as thiosulfate and rhodanese.

No FAQ available that match "type molecules cyanate cyanogen"

No images available that match "type molecules cyanate cyanogen"