A pancreatic trypsin inhibitor common to all mammals. It is secreted with the zymogens into the pancreatic juice. It is a protein composed of 56 amino acid residues and is different in amino acid composition and physiological activity from the Kunitz bovine pancreatic trypsin inhibitor (APROTININ).
Serine proteinase inhibitors which inhibit trypsin. They may be endogenous or exogenous compounds.
Acute or chronic INFLAMMATION of the PANCREAS due to excessive ALCOHOL DRINKING. Alcoholic pancreatitis usually presents as an acute episode but it is a chronic progressive disease in alcoholics.
An X-linked dominant multisystem disorder resulting in cardiomyopathy, myopathy and INTELLECTUAL DISABILITY. It is caused by mutation in the gene encoding LYSOSOMAL-ASSOCIATED MEMBRANE PROTEIN 2.
INFLAMMATION of the PANCREAS that is characterized by recurring or persistent ABDOMINAL PAIN with or without STEATORRHEA or DIABETES MELLITUS. It is characterized by the irregular destruction of the pancreatic parenchyma which may be focal, segmental, or diffuse.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
A high-molecular-weight protein (approximately 22,500) containing 198 amino acid residues. It is a strong inhibitor of trypsin and human plasmin.
A single-chain polypeptide derived from bovine tissues consisting of 58 amino-acid residues. It is an inhibitor of proteolytic enzymes including CHYMOTRYPSIN; KALLIKREIN; PLASMIN; and TRYPSIN. It is used in the treatment of HEMORRHAGE associated with raised plasma concentrations of plasmin. It is also used to reduce blood loss and transfusion requirements in patients at high risk of major blood loss during and following open heart surgery with EXTRACORPOREAL CIRCULATION. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995)
A low-molecular-weight protein (minimum molecular weight 8000) which has the ability to inhibit trypsin as well as chymotrypsin at independent binding sites. It is characterized by a high cystine content and the absence of glycine.
Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES.
A heterogeneous mixture of glycoproteins responsible for the gel structure of egg white. It has trypsin-inhibiting activity.
The inactive proenzyme of trypsin secreted by the pancreas, activated in the duodenum via cleavage by enteropeptidase. (Stedman, 25th ed)
A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES).
A subclass of lipid-linked proteins that contain a GLYCOSYLPHOSPHATIDYLINOSITOL LINKAGE which holds them to the CELL MEMBRANE.
Proteins secreted by the prostate gland. The major secretory proteins from the human prostate gland include PROSTATE-SPECIFIC ANTIGEN, prostate-specific acid phosphatase, prostate-specific membrane antigen, and prostate-specific protein-94.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A genus of freshwater polyps in the family Hydridae, order Hydroida, class HYDROZOA. They are of special interest because of their complex organization and because their adult organization corresponds roughly to the gastrula of higher animals.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
A serine proteinase inhibitor used therapeutically in the treatment of pancreatitis, disseminated intravascular coagulation (DIC), and as a regional anticoagulant for hemodialysis. The drug inhibits the hydrolytic effects of thrombin, plasmin, and kallikrein, but not of chymotrypsin and aprotinin.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Amidines substituted with a benzene group. Benzamidine and its derivatives are known as peptidase inhibitors.
A genus of destructive parasitic OOMYCETES in the family Peronosporaceae, order Peronosporales, affecting numerous fruit, vegetable, and other crops. Differentiation of zoospores usually takes place in the sporangium and no vesicle is formed. It was previously considered a fungus.
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
Proteolytic enzymes from the serine endopeptidase family found in normal blood and urine. Specifically, Kallikreins are potent vasodilators and hypotensives and increase vascular permeability and affect smooth muscle. They act as infertility agents in men. Three forms are recognized, PLASMA KALLIKREIN (EC 3.4.21.34), TISSUE KALLIKREIN (EC 3.4.21.35), and PROSTATE-SPECIFIC ANTIGEN (EC 3.4.21.77).
The gourd plant family of the order Violales, subclass Dilleniidae, class Magnoliopsida. It is sometimes placed in its own order, Cucurbitales. 'Melon' generally refers to CUCUMIS; CITRULLUS; or MOMORDICA.
A plant genus of the family FABACEAE. The gums and tanning agents obtained from Acacia are called GUM ARABIC. The common name of catechu is more often used for Areca catechu (ARECA).
The sum of the weight of all the atoms in a molecule.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
A specialized proteolytic enzyme secreted by intestinal cells. It converts TRYPSINOGEN into its active form TRYPSIN by removing the N-terminal peptide. EC 3.4.21.9.
Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS.
Peptides and proteins found in BODILY SECRETIONS and BODY FLUIDS that are PROTEASE INHIBITORS. They play a role in INFLAMMATION, tissue repair and innate immunity (IMMUNITY, INNATE) by inhibiting endogenous proteinases such as those produced by LEUKOCYTES and exogenous proteases such as those produced by invading microorganisms.
A trypsin-like enzyme of spermatozoa which is not inhibited by alpha 1 antitrypsin.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The rate dynamics in chemical or physical systems.
Transport proteins that carry specific substances in the blood or across cell membranes.
A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins.
A plant genus of the family POLYGONACEAE that is used as an EDIBLE GRAIN. Although the seeds are used as cereal, the plant is not one of the cereal grasses (POACEAE).
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The fluid containing digestive enzymes secreted by the pancreas in response to food in the duodenum.
A genus of leguminous shrubs or trees, mainly tropical, yielding useful compounds such as ALKALOIDS and PLANT LECTINS.
A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A G-protein-coupled, proteinase-activated receptor that is expressed in a variety of tissues including ENDOTHELIUM; LEUKOCYTES; and the GASTROINTESTINAL TRACT. The receptor is activated by TRYPSIN, which cleaves off the N-terminal peptide from the receptor. The new N-terminal peptide is a cryptic ligand for the receptor. The uncleaved receptor can also be activated by the N-terminal peptide present on the activated THROMBIN RECEPTOR and by small synthetic peptides that contain the unmasked N-terminal sequence.
The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family.
A thermostable extracellular metalloendopeptidase containing four calcium ions. (Enzyme Nomenclature, 1992) 3.4.24.27.

A Kazal-type trypsin inhibitor from the protochordate Ciona intestinalis. (1/104)

A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  (+info)

Mechanism of porcine pancreatic alpha-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose. (2/104)

The effects of Phaseolus vulgaris inhibitor (alpha-AI) on the amylose and maltopentaose hydrolysis catalysed by porcine pancreatic alpha-amylase (PPA) were investigated. Based on a statistical analysis of the kinetic data and using the general velocity equation, which is valid at equilibrium for all types of inhibition in a single-substrate reaction, it was concluded that the inhibitory mode is of the mixed noncompetitive type involving two molecules of inhibitor. In line with this conclusion, the Lineweaver-Burk primary plots intersect in the second quadrant and the secondary plots of the slopes and the intercepts versus the inhibitor concentrations are parabolic curves, whether the substrate used was amylose or maltopentaose. A specific inhibition model of the mixed noncompetitive type applies here. This model differs from those previously proposed for acarbose [Al Kazaz, M., Desseaux, V., Marchis-Mouren, G., Payan, F., Forest, E. & Santimone, M. (1996) Eur. J. Biochem. 241, 787-796 and Al Kazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E. & Santimone, M. (1998) Eur. J. Biochem. 252, 100-107]. In particular, with alpha-AI, the inhibition takes place only when PPA and alpha-AI are preincubated together before the substrate is added. This shows that the inhibitory PPA-alphaAI complex is formed during the preincubation period. Secondly, other inhibitory complexes are formed, in which two molecules of inhibitor are bound to either the free enzyme or the enzyme-substrate complex. The catalytic efficiency was determined both with and without inhibitor. Using the same molar concentration of inhibitor, alpha-AI was found to be a much stronger inhibitor than acarbose. However, when the inhibitor amount is expressed on a weight basis (mg x L-1), the opposite conclusion is drawn. In addition, limited proteolysis was performed on PPA alone and on the alpha-AI-PPA complex. The results show that, in the complex, PPA is more sensitive to subtilisin attack, and shorter fragments are obtained. These data reflect the conformational changes undergone by PPA as the result of the protein inhibitor binding, which differ from those previously observed with acarbose.  (+info)

Deleterious effects of beta-branched residues in the S1 specificity pocket of Streptomyces griseus proteinase B (SGPB): crystal structures of the turkey ovomucoid third domain variants Ile18I, Val18I, Thr18I, and Ser18I in complex with SGPB. (3/104)

Turkey ovomucoid third domain (OMTKY3) is a canonical inhibitor of serine proteinases. Upon complex formation, the inhibitors fully exposed P1 residue becomes fully buried in the preformed cavity of the enzyme. All 20 P1 variants of OMTKY3 have been obtained by recombinant DNA technology and their equilibrium association constants have been measured with six serine proteinases. To rationalize the trends observed in this data set, high resolution crystal structures have been determined for OMTKY3 P1 variants in complex with the bacterial serine proteinase, Streptomyces griseus proteinase B (SGPB). Four high resolution complex structures are being reported in this paper; the three beta-branched variants, Ile18I, Val18I, and Thr18I, determined to 2.1, 1.6, and 1.7 A resolution, respectively, and the structure of the Ser18I variant complex, determined to 1.9 A resolution. Models of the Cys18I, Hse18I, and Ape18I variant complexes are also discussed. The beta-branched side chains are not complementary to the shape of the S1 binding pocket in SGPB, in contrast to that of the wild-type gamma-branched P1 residue for OMTKY3, Leu18I. Chi1 angles of approximately 40 degrees are imposed on the side chains of Ile18I, Val18I, and Thr18I within the S1 pocket. Dihedral angles of +60 degrees, -60 degrees, or 180 degrees are more commonly observed but 40 degrees is not unfavorable for the beta-branched side chains. Thr18I Ogamma1 also forms a hydrogen bond with Ser195 Ogamma in this orientation. The Ser18I side chain adopts two alternate conformations within the S1 pocket of SGPB, suggesting that the side chain is not stable in either conformation.  (+info)

Inhibition spectra of the human pancreatic endopeptidases. (4/104)

The present work describes the effect of seven naturally occurring proteinase inhibitors on the human pancreatic endopeptidases cationic trypsin, anionic trypsin, chymotrypsin I, chymotrypsin II, and protease E (an elastase-like protease). The inhibitors tested in order of their decreasing effectiveness were alpha-1-proteinase inhibitor (alpha-1-antitrypsin), lima bean trypsin inhibitor, soybean trypsin inhibitor, Bowman-Birk (soybean) inhibitor, Kunitz pancreatic trypsin inhibitor, porcine Kazal inhibitor, and chicken ovomucoid. The human trypsins demonstrated a higher degree of susceptibility to these inhibitors than did the chymotrypsins while human protease E showed remarkably little inhibition by any of these naturally occurring proteinase inhibitors except for alpha-1-proteinase inhibitor. The contribution of each of these proteolytic enzymes to the total proteolytic activity of crude extracts was also investigated using specific active-site directed reagents. These studies revealed that the trypsins constituted approximately 35% of the proteolytic activity while the chymotrypsins represent approximately 32% of the total proteolytic activity. Human protease E and possibly human pancreatic elastase are responsible for approximately 21% of this activity as measured on crude pancreatic extracts.  (+info)

Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. (5/104)

Insect silk is made up of structural fibrous (fibroins) and sticky (sericins) proteins, and contains a few small peptides of hitherto unknown functions. We demonstrate that two of these peptides inhibit bacterial and fungal proteinases (subtilisin, proteinase K and pronase). These 'silk proteinase inhibitors' 1 and 2 (SPI 1 and 2) are produced in the middle section of the silk-secreting glands prior to cocoon spinning and their production is controlled at transcription level. The full length cDNA of pre-SPI 1 contains 443 nucleotides and encodes a peptide of 76 amino-acid residues, of which 20 make up a signal sequence. The mature SPI 1 (6056.7 Da, 56 residues) is a typical thermostable Kunitz-type proteinase inhibitor with Arg in P1 position. The cDNA of pre-SPI 2 consists of 260 nucleotides and yields a putative secretory peptide of 58 amino-acid residues. The functional SPI 2 (3993 Da, 36 residues) is a single-domain Kazal-type proteinase inhibitor with unique structural features: free segment of the N-terminus is reduced to a single amino-acid residue, lack of CysI and CysV precludes formation of the A-ring and provides increased flexibility to the C-ring, and absence of several residues around the normal position of CysV shortens and changes the alpha helix segment of the protein. The structure reveals that the length and arrangement of the B-ring, including exposure of the P1 residue, and the position of the C-terminus relative to the B-loop, are essential for the activity of the Kazal-type inhibitors.  (+info)

Comparative in vitro studies on native and recombinant human cationic trypsins. Cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. (6/104)

Hereditary pancreatitis, an autosomal dominant disease is believed to be caused by mutation in the human trypsinogen gene. The role of mutations has been investigated by in vitro studies using recombinant rat and human trypsinogen (TG). In this study we compare the enzymatic properties and inhibition by human pancreatic secretory trypsin inhibitor (hPSTI) of the native, postsynthetically modified and recombinant cationic trypsin, and found these values practically identical. We also determined the autolytic stability of recombinant wild type (Hu1Asn21) and pancreatitis-associated (Hu1Ile21) trypsin. Both forms were equally stable. Similarly, we found no difference in the rate of activation of the two zymogens by human cationic and anionic trypsin. Mesotrypsin did not activate either form. The rate of autocatalytic activation of Hu1Asn21 TG and Hu1Ile21 TG was also identical at pH 8 both in the presence and absence of Ca2+. At pH 5 Hu1Ile21 TG autoactivated about twice as fast as Hu1Asn21 TG. The presence of physiological amount of hPSTI completely prevented autoactivation of both zymogens at pH 8 and at pH 5 as well. Cathepsin B readily activated both zymogens although Hu1Ile21 TG was activated about 2.5-3 times as fast as Hu1Asn21 TG. The presence of hPSTI did not prevent the activation of zymogens by cathepsin B. Our results underlie the central role of cathepsin B in the development of different forms of pancreatitis.  (+info)

Genetic aspects of chronic pancreatitis: insights into aetiopathogenesis and clinical implications. (7/104)

The recent genetic discoveries in CP support the hypothesis that inappropriate intrapancreatic activation of zymogens by trypsin results in autodigestion and pancreatitis. Two different protective mechanisms prevent activation of the pancreatic digestive enzyme cascade. First, SPINK1 inhibits up to 20% of potential trypsin activity and, second, trypsin itself activates trypsin-like enzymes readily degrading trypsinogen and other zymogens. Pancreatitis may therefore be the result of an imbalance between proteases and their inhibitors within the pancreatic parenchyma. The discovery of PRSS1 mutations in families with CP was the first breakthrough in the understanding of the underlying genetic mechanisms. Enhanced trypsinogen activation may be the common initiating step in pancreatitis caused by these mutations. The discovery of SPINK1 mutations underlines the importance of the protease inhibitor system in the pathogenesis of CP. Thus, gain-of-function in the cationic trypsinogen resulting in an enhanced autoactivation, or loss-of-function mutations in SPINK1 leading to decreased inhibitory capacity, may similarly disturb the delicate intrapancreatic balance of proteases and their inhibitors. The recent findings of SPINK1, CFTR, and PRSS1 mutations in CP patients without a family history have challenged the concept of idiopathic CP as a non-genetic disorder and the differentiation between HP and ICP. There is a clear mode of autosomal dominant inheritance for some mutations (R122H, N291, possibly MIT), whereas the inheritance pattern (autosomal recessive, complex, or modifying) of other mutations (A16V, N34S) is controverted or unknown. The lack of mutations in the above-mentioned genes in many patients suggests that CP may also be caused by genetic alterations in yet unidentified genes. Evaluation of CP patients without an obvious predisposing factor, e.g. alcohol abuse, should include genetic testing even in the absence of a family history of pancreatitis. Finally, identification of further disease-causing genes will create a better understanding of pathogenesis and may help to develop specific preventive and therapeutic strategies.  (+info)

Determination of the relative contribution of three genes-the cystic fibrosis transmembrane conductance regulator gene, the cationic trypsinogen gene, and the pancreatic secretory trypsin inhibitor gene-to the etiology of idiopathic chronic pancreatitis. (8/104)

In the last 5 years, mutations in three genes, the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the cationic trypsinogen (PRSS1) gene, and the pancreatic secretory trypsin inhibitor (PSTI) gene, have been found to be associated with chronic pancreatitis (CP). In this study, using established mutation screening methods, we systematically analysed the entire coding sequences and all exon/intron junctions of the three genes in 39 patients with idiopathic CP (ICP), with a view to evaluating the relative contribution of each gene to the aetiology of the disease. Our results demonstrate that, firstly, 'gain-of-function' mutations in the PRSS1 gene may occasionally be found in an obvious ICP subject. Secondly, presumably 'loss-of-function' mutations in the PSTI gene appear to be frequent, with a detection rate of at least 10% in ICP and, finally, abnormal CFTR alleles are common: at least 20% of patients carried one of the most common CFTR mutations, and about 10% of patients were compound heterozygotes, having at least one 'mild' allele. Thus, in total, about 30% of ICP patients carried at least one abnormal allele in one of the three genes, and this is the most conservative estimate. Moreover, a trans-heterozygous state with sequence variations in the PSTI/CFTR genes was found in three patients. However, an association between the 5T allele in intron 8 of the CFTR gene and ICP remains unproven.  (+info)

Trypsin Inhibitor, Kazal Pancreatic is a type of protein that is produced in the pancreas and functions as an inhibitor to trypsin, which is a proteolytic enzyme involved in digestion. Specifically, this inhibitor belongs to the Kazal-type serine protease inhibitors. It helps regulate the activity of trypsin within the pancreas, preventing premature activation and potential damage to pancreatic tissue. Any imbalance or deficiency in this inhibitor can lead to pancreatic diseases such as pancreatitis.

Trypsin inhibitors are substances that inhibit the activity of trypsin, an enzyme that helps digest proteins in the small intestine. Trypsin inhibitors can be found in various foods such as soybeans, corn, and raw egg whites. In the case of soybeans, trypsin inhibitors are denatured and inactivated during cooking and processing.

In a medical context, trypsin inhibitors may be used therapeutically to regulate excessive trypsin activity in certain conditions such as pancreatitis, where there is inflammation of the pancreas leading to the release of activated digestive enzymes, including trypsin, into the pancreas and surrounding tissues. By inhibiting trypsin activity, these inhibitors can help reduce tissue damage and inflammation.

Alcoholic pancreatitis is a specific type of pancreatitis, which is inflammation of the pancreas. This condition is caused by excessive and prolonged consumption of alcohol. The exact mechanism by which alcohol induces pancreatitis is not fully understood, but it is believed that alcohol causes damage to the cells of the pancreas, leading to inflammation. This can result in abdominal pain, nausea, vomiting, fever, and increased heart rate. Chronic alcoholic pancreatitis can also lead to serious complications such as diabetes, malnutrition, and pancreatic cancer. Treatment typically involves supportive care, such as hydration, pain management, and nutritional support, along with abstinence from alcohol. In severe cases, surgery may be necessary to remove damaged tissue or to relieve blockages in the pancreas.

Glycogen Storage Disease Type IIb, also known as Pompe Disease, is a genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, a complex carbohydrate, into glucose within lysosomes. When GAA activity is lacking, glycogen accumulates in various tissues, including muscle and nerve cells, leading to cellular dysfunction and damage.

Type IIb Pompe Disease is characterized by progressive muscle weakness and hypertrophy (enlargement) of the heart muscle (cardiomyopathy). This form of the disease typically presents in infancy or early childhood and can progress rapidly, often resulting in severe cardiac complications and respiratory failure if left untreated.

Early diagnosis and treatment with enzyme replacement therapy (ERT) can significantly improve outcomes for individuals with Type IIb Pompe Disease. ERT involves administering recombinant human GAA to replace the deficient enzyme, helping to reduce glycogen accumulation in tissues and alleviate symptoms.

Chronic pancreatitis is a long-standing inflammation of the pancreas that leads to irreversible structural changes and impaired function of the pancreas. It is characterized by recurrent or persistent abdominal pain, often radiating to the back, and maldigestion with steatorrhea (fatty stools) due to exocrine insufficiency. The pancreatic damage results from repeated episodes of acute pancreatitis, alcohol abuse, genetic predisposition, or autoimmune processes. Over time, the pancreas may lose its ability to produce enough digestive enzymes and hormones like insulin, which can result in diabetes mellitus. Chronic pancreatitis also increases the risk of developing pancreatic cancer.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

Trypsin inhibitor, Kunitz soybean, also known as Bowman-Birk inhibitor, is a type of protease inhibitor found in soybeans. It is a small protein molecule that inhibits the activity of trypsin, a digestive enzyme that helps break down proteins in the body. The Kunitz soybean trypsin inhibitor has two binding sites for trypsin and is resistant to digestion, making it biologically active in the gastrointestinal tract. It can inhibit the absorption of trypsin and regulate its activity, which may have implications for protein digestion and the regulation of certain physiological processes.

Aprotinin is a medication that belongs to a class of drugs called serine protease inhibitors. It works by inhibiting the activity of certain enzymes in the body that can cause tissue damage and bleeding. Aprotinin is used in medical procedures such as heart bypass surgery to reduce blood loss and the need for blood transfusions. It is administered intravenously and its use is typically stopped a few days after the surgical procedure.

Aprotinin was first approved for use in the United States in 1993, but its use has been restricted or withdrawn in many countries due to concerns about its safety. In 2006, a study found an increased risk of kidney damage and death associated with the use of aprotinin during heart bypass surgery, leading to its withdrawal from the market in Europe and Canada. However, it is still available for use in the United States under a restricted access program.

It's important to note that the use of aprotinin should be carefully considered and discussed with the healthcare provider, taking into account the potential benefits and risks of the medication.

The Trypsin Inhibitor, Bowman-Birk Soybean is a type of protease inhibitor that is found in soybeans. It is named after its discoverer, Henry B. Bowman, and the location where it was first discovered, the Birk farm in Ohio. This protein inhibits the activity of trypsin, an enzyme that helps digest proteins in the body.

The Bowman-Birk Trypsin Inhibitor (BBTI) is a small protein with a molecular weight of approximately 8000 Da and consists of two inhibitory domains, each containing a reactive site for trypsin. This dual inhibitory property allows BBTI to inhibit both trypsin and chymotrypsin, another proteolytic enzyme.

BBTI has been studied extensively due to its potential health benefits. It has been shown to have anti-cancer properties, as it can inhibit the growth of cancer cells and induce apoptosis (programmed cell death). Additionally, BBTI may also have anti-inflammatory effects and has been shown to protect against oxidative stress.

However, it is important to note that excessive consumption of BBTI may interfere with protein digestion and absorption in the body, as it inhibits trypsin activity. Therefore, soybeans and soybean-derived products should be consumed in moderation as part of a balanced diet.

Serine proteinase inhibitors, also known as serine protease inhibitors or serpins, are a group of proteins that inhibit serine proteases, which are enzymes that cut other proteins in a process called proteolysis. Serine proteinases are important in many biological processes such as blood coagulation, fibrinolysis, inflammation and cell death. The inhibition of these enzymes by serpin proteins is an essential regulatory mechanism to maintain the balance and prevent uncontrolled proteolytic activity that can lead to diseases.

Serpins work by forming a covalent complex with their target serine proteinases, irreversibly inactivating them. The active site of serpins contains a reactive center loop (RCL) that mimics the protease's target protein sequence and acts as a bait for the enzyme. When the protease cleaves the RCL, it gets trapped within the serpin structure, leading to its inactivation.

Serpin proteinase inhibitors play crucial roles in various physiological processes, including:

1. Blood coagulation and fibrinolysis regulation: Serpins such as antithrombin, heparin cofactor II, and protease nexin-2 control the activity of enzymes involved in blood clotting and dissolution to prevent excessive or insufficient clot formation.
2. Inflammation modulation: Serpins like α1-antitrypsin, α2-macroglobulin, and C1 inhibitor regulate the activity of proteases released during inflammation, protecting tissues from damage.
3. Cell death regulation: Some serpins, such as PI-9/SERPINB9, control apoptosis (programmed cell death) by inhibiting granzyme B, a protease involved in this process.
4. Embryonic development and tissue remodeling: Serpins like plasminogen activator inhibitor-1 (PAI-1) and PAI-2 regulate the activity of enzymes involved in extracellular matrix degradation during embryonic development and tissue remodeling.
5. Neuroprotection: Serpins such as neuroserpin protect neurons from damage by inhibiting proteases released during neuroinflammation or neurodegenerative diseases.

Dysregulation of serpins has been implicated in various pathological conditions, including thrombosis, emphysema, Alzheimer's disease, and cancer. Understanding the roles of serpins in these processes may provide insights into potential therapeutic strategies for treating these diseases.

Ovomucin is a glycoprotein found in the egg white (albumen) of birds. It is one of the major proteins in egg white, making up about 10-15% of its total protein content. Ovomucin is known for its ability to form a gel-like structure when egg whites are beaten, which helps to protect the developing embryo inside the egg.

Ovomucin has several unique properties that make it medically interesting. For example, it has been shown to have antibacterial and antiviral activities, and may help to prevent microbial growth in the egg. Additionally, ovomucin is a complex mixture of proteins with varying molecular weights and structures, which makes it a subject of interest for researchers studying protein structure and function.

In recent years, there has been some research into the potential medical uses of ovomucin, including its possible role in wound healing and as a potential treatment for respiratory infections. However, more research is needed to fully understand the potential therapeutic applications of this interesting protein.

Trypsinogen is a precursor protein that is converted into the enzyme trypsin in the small intestine. It is produced by the pancreas and released into the duodenum, where it is activated by enterokinase, an enzyme produced by the intestinal mucosa. Trypsinogen plays a crucial role in digestion by helping to break down proteins into smaller peptides and individual amino acids.

In medical terms, an elevated level of trypsinogen in the blood may indicate pancreatic disease or injury, such as pancreatitis or pancreatic cancer. Therefore, measuring trypsinogen levels in the blood is sometimes used as a diagnostic tool to help identify these conditions.

Chymotrypsin is a proteolytic enzyme, specifically a serine protease, that is produced in the pancreas and secreted into the small intestine as an inactive precursor called chymotrypsinogen. Once activated, chymotrypsin helps to digest proteins in food by breaking down specific peptide bonds in protein molecules. Its activity is based on the recognition of large hydrophobic side chains in amino acids like phenylalanine, tryptophan, and tyrosine. Chymotrypsin plays a crucial role in maintaining normal digestion and absorption processes in the human body.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Protease inhibitors are a class of antiviral drugs that are used to treat infections caused by retroviruses, such as the human immunodeficiency virus (HIV), which is responsible for causing AIDS. These drugs work by blocking the activity of protease enzymes, which are necessary for the replication and multiplication of the virus within infected cells.

Protease enzymes play a crucial role in the life cycle of retroviruses by cleaving viral polyproteins into functional units that are required for the assembly of new viral particles. By inhibiting the activity of these enzymes, protease inhibitors prevent the virus from replicating and spreading to other cells, thereby slowing down the progression of the infection.

Protease inhibitors are often used in combination with other antiretroviral drugs as part of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS. Common examples of protease inhibitors include saquinavir, ritonavir, indinavir, and atazanavir. While these drugs have been successful in improving the outcomes of people living with HIV/AIDS, they can also cause side effects such as nausea, diarrhea, headaches, and lipodystrophy (changes in body fat distribution).

GPI-linked proteins are a type of cell surface protein that are attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The GPI anchor is a complex glycolipid molecule that acts as a molecular tether, connecting the protein to the outer leaflet of the lipid bilayer of the cell membrane.

The GPI anchor is synthesized in the endoplasmic reticulum (ER) and added to proteins in the ER or Golgi apparatus during protein trafficking. The addition of the GPI anchor to a protein occurs in a post-translational modification process called GPI anchoring, which involves the transfer of the GPI moiety from a lipid carrier to the carboxyl terminus of the protein.

GPI-linked proteins are found on the surface of many different types of cells, including red blood cells, immune cells, and nerve cells. They play important roles in various cellular processes, such as cell signaling, cell adhesion, and enzyme function. Some GPI-linked proteins also serve as receptors for bacterial toxins and viruses, making them potential targets for therapeutic intervention.

Prostatic secretory proteins are a group of proteins that are produced and secreted by the prostate gland, which is a small gland that is part of the male reproductive system. These proteins play an important role in maintaining the health and function of the reproductive system.

One of the most well-known prostatic secretory proteins is prostate-specific antigen (PSA), which is often used as a biomarker for the early detection and monitoring of prostate cancer. PSA is a protein that is produced by the cells in the prostate gland and is normally found in low levels in the blood. However, when the prostate gland becomes enlarged or cancerous, the levels of PSA in the blood can increase, making it possible to detect these conditions through a simple blood test.

Other prostatic secretory proteins include prostate-specific acid phosphatase (PSAP), prostatein, and prolactin-inducible protein (PIP). These proteins are also produced by the prostate gland and have various functions, such as helping to liquefy semen and protecting sperm from the immune system.

It is important to note that while these proteins can provide valuable information about the health of the prostate gland, they are not foolproof indicators of disease. Other factors, such as age, inflammation, and benign prostatic hyperplasia (BPH), can also affect the levels of these proteins in the blood. Therefore, it is important to consult with a healthcare professional for proper interpretation and follow-up care.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

I'm sorry for any confusion, but "Hydra" is not a term commonly used in medical definitions. Hydra is a genus of small, simple aquatic animals, belonging to the class Hydrozoa in the phylum Cnidaria. They are named after the multi-headed creature from Greek mythology due to their ability to regenerate lost body parts.

If you're looking for a medical term related to hydra, one possibility could be "Hydralazine," which is a medication used to treat high blood pressure. It works by relaxing the muscle in the walls of blood vessels, causing them to widen and the blood to flow more easily.

I hope this information is helpful! If you have any other questions or need clarification on a different topic, please let me know.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

Gabexate is a medicinal drug that belongs to the class of agents known as serine protease inhibitors. It is used in the treatment and prevention of inflammation and damage to tissues caused by various surgical procedures, pancreatitis, and other conditions associated with the activation of proteolytic enzymes.

Gabexate works by inhibiting the activity of certain enzymes such as trypsin, chymotrypsin, and thrombin, which play a key role in the inflammatory response and blood clotting cascade. By doing so, it helps to reduce the release of inflammatory mediators, prevent further tissue damage, and promote healing.

Gabexate is available in various forms, including injectable solutions and enteric-coated tablets, and its use is typically reserved for clinical settings under the supervision of a healthcare professional. As with any medication, it should be used only under the direction of a qualified medical practitioner, and its potential benefits and risks should be carefully weighed against those of other available treatment options.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Benzamidines are a group of organic compounds that contain a benzene ring linked to an amidine functional group. They are commonly used as antimicrobial agents, particularly in the treatment of various gram-negative bacterial infections. Benzamidines work by inhibiting the enzyme bacterial dehydrogenases, which are essential for the bacteria's survival.

Some examples of benzamidine derivatives include:

* Tempanamine hydrochloride (Tembaglanil): used to treat urinary tract infections caused by susceptible strains of Escherichia coli and Klebsiella pneumoniae.
* Chlorhexidine: a broad-spectrum antimicrobial agent used as a disinfectant and preservative in various medical and dental applications.
* Prothiobenzamide: an anti-inflammatory and analgesic drug used to treat gout and rheumatoid arthritis.

It is important to note that benzamidines have a narrow therapeutic index, which means that the difference between an effective dose and a toxic dose is small. Therefore, they should be used with caution and under the supervision of a healthcare professional.

"Phytophthora" is not a medical term, but rather a genus of microorganisms known as oomycetes, which are commonly referred to as water molds. These organisms are not true fungi, but they have a similar lifestyle and can cause diseases in plants. Some species of Phytophthora are responsible for significant crop losses and are considered important plant pathogens.

In a medical context, the term "phytophthora" is not used, and it would be more appropriate to refer to specific diseases caused by these organisms using their common or scientific names. For example, Phytophthora infestans is the causative agent of late blight, a serious disease of potatoes and tomatoes.

Peptide hydrolases, also known as proteases or peptidases, are a group of enzymes that catalyze the hydrolysis of peptide bonds in proteins and peptides. They play a crucial role in various biological processes such as protein degradation, digestion, cell signaling, and regulation of various physiological functions. Based on their catalytic mechanism and the specificity for the peptide bond, they are classified into several types, including serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. These enzymes have important clinical applications in the diagnosis and treatment of various diseases, such as cancer, viral infections, and inflammatory disorders.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

Kallikreins are a group of serine proteases, which are enzymes that help to break down other proteins. They are found in various tissues and body fluids, including the pancreas, kidneys, and saliva. In the body, kallikreins play important roles in several physiological processes, such as blood pressure regulation, inflammation, and fibrinolysis (the breakdown of blood clots).

There are two main types of kallikreins: tissue kallikreins and plasma kallikreins. Tissue kallikreins are primarily involved in the activation of kininogen, a protein that leads to the production of bradykinin, a potent vasodilator that helps regulate blood pressure. Plasma kallikreins, on the other hand, play a key role in the coagulation cascade by activating factors XI and XII, which ultimately lead to the formation of a blood clot.

Abnormal levels or activity of kallikreins have been implicated in various diseases, including cancer, cardiovascular disease, and inflammatory disorders. For example, some studies suggest that certain tissue kallikreins may promote tumor growth and metastasis, while others indicate that they may have protective effects against cancer. Plasma kallikreins have also been linked to the development of thrombosis (blood clots) and inflammation in cardiovascular disease.

Overall, kallikreins are important enzymes with diverse functions in the body, and their dysregulation has been associated with various pathological conditions.

Cucurbitaceae is the scientific name for the gourd family of plants, which includes a variety of vegetables and fruits such as cucumbers, melons, squashes, and pumpkins. These plants are characterized by their trailing or climbing growth habits and their large, fleshy fruits that have hard seeds enclosed in a protective coat. The fruits of these plants are often used as food sources, while other parts of the plant may also have various uses such as medicinal or ornamental purposes.

"Acacia" is a scientific name for a genus of shrubs and trees that belong to the pea family, Fabaceae. It includes over 1,350 species found primarily in Australia and Africa, but also in Asia, America, and Europe. Some acacia species are known for their hardwood, others for their phyllodes (flattened leaf stalks) or compound leaves, and yet others for their flowers, which are typically small and yellow or cream-colored.

It is important to note that "Acacia" is not a medical term or concept, but rather a botanical one. While some acacia species have medicinal uses, the name itself does not have a specific medical definition.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Enteropeptidase, also known as enterokinase, is an enzyme that is produced by the intestinal brush border cells. Its primary function is to activate other digestive enzymes, most notably trypsinogen, which is a precursor to the digestive enzyme trypsin.

Trypsinogen is inactive until it is cleaved by enteropeptidase, which removes a small peptide from the N-terminus of the molecule, activating it and allowing it to participate in protein digestion. Enteropeptidase also plays a role in activating other zymogens, such as chymotrypsinogen and procarboxypeptidases, which are involved in the breakdown of proteins and peptides in the small intestine.

Deficiency or absence of enteropeptidase can lead to malabsorption and impaired digestion, as the activation of other digestive enzymes is hindered.

Alpha-amylases are a type of enzyme that breaks down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, maltotriose, and glucose. These enzymes catalyze the hydrolysis of alpha-1,4 glycosidic bonds in these complex carbohydrates, making them more easily digestible.

Alpha-amylases are produced by various organisms, including humans, animals, plants, and microorganisms such as bacteria and fungi. In humans, alpha-amylases are primarily produced by the salivary glands and pancreas, and they play an essential role in the digestion of dietary carbohydrates.

Deficiency or malfunction of alpha-amylases can lead to various medical conditions, such as diabetes, kidney disease, and genetic disorders like congenital sucrase-isomaltase deficiency. On the other hand, excessive production of alpha-amylases can contribute to dental caries and other oral health issues.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Endopeptidases are a type of enzyme that breaks down proteins by cleaving peptide bonds inside the polypeptide chain. They are also known as proteinases or endoproteinases. These enzymes work within the interior of the protein molecule, cutting it at specific points along its length, as opposed to exopeptidases, which remove individual amino acids from the ends of the protein chain.

Endopeptidases play a crucial role in various biological processes, such as digestion, blood coagulation, and programmed cell death (apoptosis). They are classified based on their catalytic mechanism and the structure of their active site. Some examples of endopeptidase families include serine proteases, cysteine proteases, aspartic proteases, and metalloproteases.

It is important to note that while endopeptidases are essential for normal physiological functions, they can also contribute to disease processes when their activity is unregulated or misdirected. For instance, excessive endopeptidase activity has been implicated in the pathogenesis of neurodegenerative disorders, cancer, and inflammatory conditions.

Secretory proteinase inhibitory proteins (SPIPs) are a group of proteins that function to regulate the activity of proteinases, which are enzymes that break down other proteins. SPIPs are produced by various cell types and secreted into extracellular spaces, where they help maintain the balance between protein degradation and synthesis.

Proteinases play crucial roles in many physiological processes, including tissue remodeling, wound healing, and immune defense. However, uncontrolled or excessive proteinase activity can lead to tissue damage and disease. SPIPs help prevent this by inhibiting the activity of specific proteinases, thereby protecting tissues from unwanted proteolysis.

Examples of SPIPs include:

1. Alpha-1 antitrypsin (AAT): A serine proteinase inhibitor that primarily inhibits neutrophil elastase and protects lung tissue from damage during inflammation.
2. Secretory leukocyte protease inhibitor (SLPI): A serine proteinase inhibitor that inhibits several proteinases, including elastase, cathepsin G, and trypsin. SLPI is produced by epithelial cells and has anti-inflammatory properties.
3. Elafin: A serine proteinase inhibitor mainly expressed in the skin and mucous membranes that inhibits neutrophil elastase, proteinase 3, and trypsin.
4. Tissue inhibitors of metalloproteinases (TIMPs): A family of proteins that inhibit matrix metalloproteinases (MMPs), which are involved in extracellular matrix remodeling.
5. Cystatins: A group of proteins that inhibit cysteine proteinases, which play a role in various physiological and pathological processes, including inflammation, immune response, and cancer.

Dysregulation of SPIPs has been implicated in several diseases, such as emphysema, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and cancer.

Acrosin is a proteolytic enzyme that is found in the acrosome, which is a cap-like structure located on the anterior part of the sperm head. This enzyme plays an essential role in the fertilization process by helping the sperm to penetrate the zona pellucida, which is the glycoprotein coat surrounding the egg.

Acrosin is released from the acrosome when the sperm encounters the zona pellucida, and it begins to digest the glycoproteins in the zona pellucida, creating a path for the sperm to reach and fuse with the egg's plasma membrane. This enzyme is synthesized and stored in the acrosome during spermatogenesis and is activated during the acrosome reaction, which is a critical event in fertilization.

Defects in acrosin function or regulation have been implicated in male infertility, making it an important area of research in reproductive biology.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Fibrinolysin is defined as a proteolytic enzyme that dissolves or breaks down fibrin, a protein involved in the clotting of blood. This enzyme is produced by certain cells, such as endothelial cells that line the interior surface of blood vessels, and is an important component of the body's natural mechanism for preventing excessive blood clotting and maintaining blood flow.

Fibrinolysin works by cleaving specific bonds in the fibrin molecule, converting it into soluble degradation products that can be safely removed from the body. This process is known as fibrinolysis, and it helps to maintain the balance between clotting and bleeding in the body.

In medical contexts, fibrinolysin may be used as a therapeutic agent to dissolve blood clots that have formed in the blood vessels, such as those that can occur in deep vein thrombosis or pulmonary embolism. It is often administered in combination with other medications that help to enhance its activity and specificity for fibrin.

'Fagopyrum' is the genus name for buckwheat plants, which belong to the family Polygonaceae. There are several species within this genus, including Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). These plants are not related to wheat or grasses, despite their name. They are important crops in some parts of the world, particularly in Asia, and their seeds are used as a source of food and flour. Buckwheat is also valued for its high protein content and unique nutritional profile.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Pancreatic elastase is a type of elastase that is specifically produced by the pancreas. It is an enzyme that helps in digesting proteins found in the food we eat. Pancreatic elastase breaks down elastin, a protein that provides elasticity to tissues and organs in the body.

In clinical practice, pancreatic elastase is often measured in stool samples as a diagnostic tool to assess exocrine pancreatic function. Low levels of pancreatic elastase in stool may indicate malabsorption or exocrine pancreatic insufficiency, which can be caused by various conditions such as chronic pancreatitis, cystic fibrosis, or pancreatic cancer.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Pancreatic juice is an alkaline fluid secreted by the exocrine component of the pancreas, primarily containing digestive enzymes such as amylase, lipase, and trypsin. These enzymes aid in the breakdown of carbohydrates, fats, and proteins, respectively, in the small intestine during the digestion process. The bicarbonate ions present in pancreatic juice help neutralize the acidic chyme that enters the duodenum from the stomach, creating an optimal environment for enzymatic activity.

'Erythrina' is a botanical term, not a medical one. It refers to a genus of plants in the family Fabaceae, also known as the pea or legume family. These plants are commonly called coral trees due to their bright red flowers. While some parts of certain species can have medicinal uses, such as anti-inflammatory and analgesic properties, 'Erythrina' itself is not a medical term or condition.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Amylases are enzymes that break down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, glucose, and maltotriose. There are several types of amylases found in various organisms, including humans.

In humans, amylases are produced by the pancreas and salivary glands. Pancreatic amylase is released into the small intestine where it helps to digest dietary carbohydrates. Salivary amylase, also known as alpha-amylase, is secreted into the mouth and begins breaking down starches in food during chewing.

Deficiency or absence of amylases can lead to difficulties in digesting carbohydrates and may cause symptoms such as bloating, diarrhea, and abdominal pain. Elevated levels of amylase in the blood may indicate conditions such as pancreatitis, pancreatic cancer, or other disorders affecting the pancreas.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Proteinase-activated receptor 2 (PAR-2) is a type of G protein-coupled receptor that is widely expressed in various tissues, including the respiratory and gastrointestinal tracts, skin, and nervous system. PAR-2 can be activated by serine proteases such as trypsin, mast cell tryptase, and thrombin, which cleave the N-terminal extracellular domain of the receptor to expose a tethered ligand that binds to and activates the receptor.

Once activated, PAR-2 signaling can lead to a variety of cellular responses, including inflammation, pain, and altered ion channel activity. PAR-2 has been implicated in several physiological and pathophysiological processes, such as airway hyperresponsiveness, asthma, cough, gastrointestinal motility disorders, and skin disorders.

In summary, PAR-2 is a type of receptor that can be activated by serine proteases, leading to various cellular responses and involvement in several disease processes.

Fabaceae is the scientific name for a family of flowering plants commonly known as the legume, pea, or bean family. This family includes a wide variety of plants that are important economically, agriculturally, and ecologically. Many members of Fabaceae have compound leaves and produce fruits that are legumes, which are long, thin pods that contain seeds. Some well-known examples of plants in this family include beans, peas, lentils, peanuts, clover, and alfalfa.

In addition to their importance as food crops, many Fabaceae species have the ability to fix nitrogen from the atmosphere into the soil through a symbiotic relationship with bacteria that live in nodules on their roots. This makes them valuable for improving soil fertility and is one reason why they are often used in crop rotation and as cover crops.

It's worth noting that Fabaceae is sometimes still referred to by its older scientific name, Leguminosae.

Thermolysin is not a medical term per se, but it is a bacterial enzyme that is often used in biochemistry and molecular biology research. Here's the scientific or biochemical definition:

Thermolysin is a zinc metalloprotease enzyme produced by the bacteria Geobacillus stearothermophilus. It has an optimum temperature for activity at around 65°C, and it can remain active in high temperatures, which makes it useful in various industrial applications. Thermolysin is known for its ability to cleave peptide bonds, particularly those involving hydrophobic residues, making it a valuable tool in protein research and engineering.

... of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor ... Kazal-type)". J. Mol. Biol. 220 (3): 711-22. doi:10.1016/0022-2836(91)90112-J. PMID 1870127. v t e (Articles with short ...
Pancreatic secretory trypsin inhibitor (PSTI) also known as serine protease inhibitor Kazal-type 1 (SPINK1) or tumor-associated ... Kazal-type protease inhibitor isolated from rat hepatocytes is identical to rat pancreatic secretory trypsin inhibitor II. ... "Entrez Gene: SPINK1 serine peptidase inhibitor, Kazal type 1". Schneider, A. "SPINK1 - serine peptidase inhibitor, Kazal type 1 ... "Three-dimensional structure of a recombinant variant of human pancreatic secretory trypsin inhibitor (Kazal type)". Journal of ...
A further safeguard against inappropriate trypsin activation is the presence of inhibitors such as bovine pancreatic trypsin ... inhibitor (BPTI) and serine protease inhibitor Kazal-type 1 (SPINK1), which binds to any trypsin formed. Trypsin autocatalytic ... Once activated, the trypsin can cleave more trypsinogen into trypsin, a process called autoactivation. Trypsin cleaves the ... Premature trypsin activation can be destructive and may trigger a series of events that lead to pancreatic self-digestion. In ...
... such as trypsin and elastase), belong to family of proteins that includes pancreatic secretory trypsin inhibitor; avian ... and elastase inhibitor. These proteins contain between 1 and 7 Kazal-type inhibitor repeats. The structure of the Kazal repeat ... serine protease inhibitors that act via their Kazal domain are grouped under the MEROPS inhibitor family I1, clan IA. Kazal ... This family of Kazal inhibitors, belongs to MEROPS inhibitor family I1, clan IA. They inhibit serine peptidases of the S1 ...
... and premature deaths in murine embryos deficient of the inhibitor reversion-inducing-cysteine-rich protein with kazal motifs ( ... The propeptide of most MMPs is cleavable by proteases such as trypsin, plasmin, chymotrypsin and other MMPs. ADAMs participate ... activity in the angiogenic blood vessels and invasive fronts of carcinoma in the RIP-Tag2 transgenic mouse model of pancreatic ... and by endogenous inhibitors known as tissue inhibitors of metalloproteinases (TIMPs). The role of matrix metalloproteinases ...
Trypsin / analysis * Trypsin Inhibitor, Kazal Pancreatic / analysis * alpha 1-Antitrypsin / analysis Substances * Biomarkers ... pancreatic secretory trypsin inhibitor (PSTI), alpha 2-macroglobulin (alpha 2M), alpha 1-protease inhibitor (alpha 1 PI), ... A surprise finding was that the patients had higher peritoneal levels of pancreatic secretory trypsin inhibitor (PSTI) after ... cationic trypsin (irCT), complexes between cationic trypsin and alpha 1-protease inhibitor (irCT-alpha 1 PI), leukocyte ...
... of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor ... Kazal-type)". J. Mol. Biol. 220 (3): 711-22. doi:10.1016/0022-2836(91)90112-J. PMID 1870127. v t e (Articles with short ...
Kazal Pancreatic Trypsin Inhibitor Medicine & Life Sciences 11% View full fingerprint Collaborations and top research areas ... The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse ...
Pancreatic Secretory Trypsin Inhibitor (SPINK1) Gene Mutation in Patients with Acute Alcohol Pancreatitis (AAP) Compared to ... Kazal Pancreatic Trypsin Inhibitor 100% * trypsin 91% * Trypsin Inhibitor 76% * genes 74% ... Plasma suPAR may help to distinguish between chronic pancreatitis and pancreatic cancer. Aronen, A., Aittoniemi, J., Huttunen, ... in the diagnostics between malignant and non-malignant pancreatic lesions. Aronen, A., Aittoniemi, J., Huttunen, R., Nikkola, A ...
Kazal Pancreatic Trypsin Inhibitor 100% * Prostatectomy 52% * Prostatic Neoplasms 50% * Tensins 49% ... A phase II trial of the aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate ...
Trypsin Inhibitor, Kazal Pancreatic * Social Class * Privacy * Rural Health Services * Health Facilities ...
THREE-DIMENSIONAL STRUCTURE OF A RECOMBINANT VARIANT OF HUMAN PANCREATIC SECRETORY TRYPSIN INHIBITOR (KAZAL TYPE). ... Kazal-type inhibitors represent the most studied canonical proteinase inhibitors. Kazal inhibitors are extremely variable at ... NMR structure of human Serine protease inhibitor Kazal type II (SPINK2). 2kcx. Solution NMR Structure of Kazal-1 Domain of ... THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX BETWEEN PANCREATIC SECRETORY INHIBITOR (KAZAL TYPE) AND TRYPSINOGEN AT 1.8 ANGSTROMS ...
... as well as bovine and porcine pancreatic secretory trypsin inhibitor (Kazal) to human cathepsin G: a kinetic and thermodynamic ... The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Prot Pept Sci. Vol. 4, 231-251. ... Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor) to human and bovine factor Xa. A thermodynamic ... Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz) to human alpha-, beta- and gamma-thrombin; a kinetic and ...
A Pancreatic secretory trypsin inhibitor (PSTI) which is also known as serine protease inhibitor Kazal-type 1: SPINK1) ...
Serine peptidase inhibitor, Kazal Type II (acrosin-trypsin inhibitor). Chemokine (C-C motif) ligand 27 ... Fig. 3. p-Value corresponding to all the genes in the training set for dataset "human pancreatic islets from normal and type II ... Fig. 4. p-Value corresponding to all the genes in the training set for dataset "human pancreatic islets from normal and type II ... Fig. 7. Gene regulatory network of dataset "human pancreatic islets from normal and type II diabetic subjects (A)". ...
... pancreatic secretory trypsin inhibitor (PSTI) and serine protease inhibitor, kazal type 1 (SPINK1) that prevents conversion of ... Pancreas synthesises SPINK1, a specific trypsin inhibitor, the function of which can be lost by mutation. In pancreatic ductal ... Protease inhibitors are found in ?. A. Pancreatic acinar cells. B. Pancreatic secretions. C. Alpha1- and alpha2-globulin ... Kazal type 1 (SPINK1) is best related to ?. A. Pancreatic hyperstimulation. B. Alcohol abuse. C. Anti-inflammatory cytokine. D ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
DESIGN OF EFFICIENT HUMAN LEUKOCYTE ELASTASE INHIBITORS; VARIANTS OF HUMAN PANCREATIC SECRETORY TRYPSIN INHIBITOR (hPSTI) ... In the initial planning the structure of related Kazal-type inhibitors were taken into account. For subsequent protein design, ... specific inhibitors and obtaining a better insight into the parameters effecting inhibitor/protease interaction. ... and to postulate the structure of better elastase inhibitors which were duly generated. Excellent specific inhibitors (Ky=1.5 ...
Trypsin Inhibitor, Kazal Pancreatic. *Alpha-Globulins. *alpha 1-Antichymotrypsin. *alpha 1-Antitrypsin ... Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic. Kearns Syndrome use Kearns-Sayer Syndrome ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin. Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Kazal Pancreatic Trypsin Inhibitor use Trypsin Inhibitor, Kazal Pancreatic KB Cells KCNQ Potassium Channels ... Kunitz Pancreatic Trypsin Inhibitor use Aprotinin Kunitz Soybean Trypsin Inhibitor use Trypsin Inhibitor, Kunitz Soybean ...
Binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal) to human leukocyte elastase: a thermodynamic ... Influence of plasma proteinase inhibitors and the secretory leucocyte proteinase inhibitor on pancreatic elastase-induced ... Influence of plasma proteinase inhibitors and the secretory leucocyte proteinase inhibitor on pancreatic elastase-induced ... Two promising low molecular mass serine proteinase inhibitors, Eglin c and secretory leukocyte proteinase inhibitor (SLPI), ...
buy 435-97-2 Several Kunitz/bovine pancreatic trypsin buy 435-97-2 inhibitors from your venom of Viperidae and Elapidae snakes ... Kazal Serpin and mucous households (3). Many Kunitz-type protease inhibitors including bikunin hepatocyte development aspect ... caspase-8 inhibitor) Z-DEVD-fmk (caspase-3 inhibitor) and PP2 (Lyn inhibitor) were purchased from Calbiochem. Anti-cytochrome ... Because soybean Kunitz-type trypsin inhibitor has been found to induce apoptotic death of human being leukemia Jurkat cells (17 ...
Loss of function mutations in the serine protease inhibitor, Kazal type 1 (SPINK1), increase the risk of developing ... Findings may include pancreatic edema, fluid collections, areas of pancreatic or peri-pancreatic necrosis, peripancreatic ... Gain of function mutations in this gene cause premature activation of trypsinogen to trypsin. Most cases are of pediatric onset ... pancreatic ascites, pancreatic fistula, and rarely, colonic stricture. Late complications involve pancreatic insufficiency or ...

No FAQ available that match "trypsin inhibitor kazal pancreatic"

No images available that match "trypsin inhibitor kazal pancreatic"