Oligosaccharides containing three monosaccharide units linked by glycosidic bonds.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
The characteristic 3-dimensional shape of a carbohydrate.
Oligosaccharides containing two monosaccharide units linked by a glycosidic bond.
The major human blood type system which depends on the presence or absence of two antigens A and B. Type O occurs when neither A nor B is present and AB when both are present. A and B are genetic factors that determine the presence of enzymes for the synthesis of certain glycoproteins mainly in the red cell membrane.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Fucose is a deoxyhexose sugar, specifically a L-configuration 6-deoxygalactose, often found as a component of complex carbohydrates called glycans in various glycoproteins and glycolipids within the human body.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The buttercup plant family of the order Ranunculales, subclass Magnoliidae, class Magnoliopsida. The leaves are usually alternate and stalkless. The flowers usually have two to five free sepals and may be radially symmetrical or irregular.
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
SUGARS containing an amino group. GLYCOSYLATION of other compounds with these amino sugars results in AMINOGLYCOSIDES.
Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Hydrofluoric acid. A solution of hydrogen fluoride in water. It is a colorless fuming liquid which can cause painful burns.
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
A mass spectrometric technique that is used for the analysis of a wide range of biomolecules, such as glycoalkaloids, glycoproteins, polysaccharides, and peptides. Positive and negative fast atom bombardment spectra are recorded on a mass spectrometer fitted with an atom gun with xenon as the customary beam. The mass spectra obtained contain molecular weight recognition as well as sequence information.
The lipopolysaccharide-protein somatic antigens, usually from gram-negative bacteria, important in the serological classification of enteric bacilli. The O-specific chains determine the specificity of the O antigens of a given serotype. O antigens are the immunodominant part of the lipopolysaccharide molecule in the intact bacterial cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
Simple sugars, carbohydrates which cannot be decomposed by hydrolysis. They are colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. (From Dorland, 28th ed)
The N-acetyl derivative of glucosamine.
Polysaccharides found in bacteria and in capsules thereof.
A genus of tiny mushrooms in the family Tricholomataceae. They help break down the decaying organic matter of the forest floor.
A group of dominantly and independently inherited antigens associated with the ABO blood factors. They are glycolipids present in plasma and secretions that may adhere to the erythrocytes. The phenotype Le(b) is the result of the interaction of the Le gene Le(a) with the genes for the ABO blood groups.
Glycosphingolipids containing N-acetylglucosamine (paragloboside) or N-acetylgalactosamine (globoside). Globoside is the P antigen on erythrocytes and paragloboside is an intermediate in the biosynthesis of erythrocyte blood group ABH and P 1 glycosphingolipid antigens. The accumulation of globoside in tissue, due to a defect in hexosaminidases A and B, is the cause of Sandhoff disease.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
Acids derived from monosaccharides by the oxidation of the terminal (-CH2OH) group farthest removed from the carbonyl group to a (-COOH) group. (From Stedmans, 26th ed)
Carbohydrates covalently linked to a nonsugar moiety (lipids or proteins). The major glycoconjugates are glycoproteins, glycopeptides, peptidoglycans, glycolipids, and lipopolysaccharides. (From Biochemical Nomenclature and Related Documents, 2d ed; From Principles of Biochemistry, 2d ed)
A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal.
A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, CD15 antigen is a stage-specific embryonic antigen.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A strong oxidizing agent.
Glycosphingolipids which contain as their polar head group a trisaccharide (galactose-galactose-glucose) moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in ceramide trihexosidase, is the cause of angiokeratoma corporis diffusum (FABRY DISEASE).
Polyacenes with four ortho-fused benzene rings in a straight linear arrangement. This group is best known for the subclass called TETRACYCLINES.
A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed)
Enzymes catalyzing the transfer of fucose from a nucleoside diphosphate fucose to an acceptor molecule which is frequently another carbohydrate, a glycoprotein, or a glycolipid molecule. Elevated activity of some fucosyltransferases in human serum may serve as an indicator of malignancy. The class includes EC 2.4.1.65; EC 2.4.1.68; EC 2.4.1.69; EC 2.4.1.89.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
Sets of cell surface antigens located on BLOOD CELLS. They are usually membrane GLYCOPROTEINS or GLYCOLIPIDS that are antigenically distinguished by their carbohydrate moieties.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Enzymes that catalyze the transfer of N-acetylglucosamine from a nucleoside diphosphate N-acetylglucosamine to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase).
Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)
A nucleoside diphosphate sugar which can be converted to the deoxy sugar GDPfucose, which provides fucose for lipopolysaccharides of bacterial cell walls. Also acts as mannose donor for glycolipid synthesis.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
Disaccharidases are a group of enzymes, including maltase, sucrase, lactase, and trehalase, found primarily in the brush border of the small intestine, responsible for breaking down complex disaccharides into simpler monosaccharides for absorption.
The N-acetyl derivative of galactosamine.
Glycosides formed by the reaction of the hydroxyl group on the anomeric carbon atom of mannose with an alcohol to form an acetal. They include both alpha- and beta-mannosides.
A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues.
Polyhydric alcohols having no more than one hydroxy group attached to each carbon atom. They are formed by the reduction of the carbonyl group of a sugar to a hydroxyl group.(From Dorland, 28th ed)
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4.
The process of cleaving a chemical compound by the addition of a molecule of water.
An N-acyl derivative of neuraminic acid. N-acetylneuraminic acid occurs in many polysaccharides, glycoproteins, and glycolipids in animals and bacteria. (From Dorland, 28th ed, p1518)
Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A class of inorganic or organic compounds that contain the borohydride (BH4-) anion.
Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage)
A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.
Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES.
Glycoside Hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds, resulting in the breakdown of complex carbohydrates and oligosaccharides into simpler sugars.
Sites on an antigen that interact with specific antibodies.
Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry.
Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure.
Substances elaborated by bacteria that have antigenic activity.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Hexosamines are amino sugars that are formed by the substitution of an amino group for a hydroxyl group in a hexose sugar, playing crucial roles in various biological processes such as glycoprotein synthesis and protein folding.
Hexoses are simple monosaccharides, specifically six-carbon sugars, which include glucose, fructose, and galactose, and play crucial roles in biological processes such as energy production and storage, and structural components of cells.
A methylpentose whose L- isomer is found naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides.
The rate dynamics in chemical or physical systems.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
A group of enzymes with the general formula CMP-N-acetylneuraminate:acceptor N-acetylneuraminyl transferase. They catalyze the transfer of N-acetylneuraminic acid from CMP-N-acetylneuraminic acid to an acceptor, which is usually the terminal sugar residue of an oligosaccharide, a glycoprotein, or a glycolipid. EC 2.4.99.-.
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.
A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis.
Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight.
High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface.
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)
Inorganic salts of sulfuric acid.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE.
The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL).
Polysaccharides consisting of mannose units.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Polysaccharides composed of repeating glucose units. They can consist of branched or unbranched chains in any linkages.

Single cell studies of enzymatic hydrolysis of a tetramethylrhodamine labeled triglucoside in yeast. (1/546)

Several hundred molecules of enzyme reaction products were detected in a single spheroplast from yeast cells incubated with a tetramethylrhodamine (TMR) labeled triglucoside, alpha-d-Glc(1-->2)alpha-d-Glc(1-->3)alpha-d-Glc-O(CH2)8CONHCH2- CH2NH- COTMR. Product detection was accomplished using capillary electrophoresis and laser induced fluorescence following the introduction of a single spheroplast into the separation capillary. The in vivo enzymatic hydrolysis of the TMR-trisaccharide involves at least two enzymes, limited by processing alpha-glucosidase I, producing TMR-disaccharide, TMR-monosaccharide, and the free TMR-linking arm. Hydrolysis was reduced by preincubation of the cells with the processing enzyme inhibitor castanospermine. Confocal laser scanning microscopy studies confirmed the uptake and internalization of fluorescent substrate. This single cell analysis methodology can be applied for the in vivo assay of any enzyme with a fluorescent substrate.  (+info)

Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis. (2/546)

Nonlipophilic corynebacteria associated with clinical and subclinical mastitis in dairy cows were found to belong to four species: Corynebacterium amycolatum, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis, and Corynebacterium minutissimum. These species may easily be confused. However, clear-cut differences between C. ulcerans and C. pseudotuberculosis were found in their acid production from maltotriose and ethylene glycol, susceptibility to vibriostatic agent O129, and alkaline phosphatase. Absence of growth at 20 degrees C and lack of alpha-glucosidase and 4MU-alpha-D-glycoside hydrolysis activity differentiated C. amycolatum from C. pseudotuberculosis and C. ulcerans. The mastitis C. pseudotuberculosis strains differed from the biovar equi and ovis reference strains and from caprine field strains in their colony morphologies and in their reduced inhibitory activity on staphylococcal beta-hemolysin. C. amycolatum was the most frequently isolated nonlipophilic corynebacterium.  (+info)

Manganese sulfate-dependent glycosylation of endogenous glycoproteins in human skeletal muscle is catalyzed by a nonglucose 6-P-dependent glycogen synthase and not glycogenin. (3/546)

Glycogenin, a Mn2+-dependent, self-glucosylating protein, is considered to catalyze the initial glucosyl transfer steps in glycogen biogenesis. To study the physiologic significance of this enzyme, measurements of glycogenin mediated glucose transfer to endogenous trichloroacetic acid precipitable material (protein-bound glycogen, i.e., glycoproteins) in human skeletal muscle were attempted. Although glycogenin protein was detected in muscle extracts, activity was not, even after exercise that resulted in marked glycogen depletion. Instead, a MnSO4-dependent glucose transfer to glycoproteins, inhibited by glycogen and UDP-pyridoxal (which do not affect glycogenin), and unaffected by CDP (a potent inhibitor of glycogenin), was consistently detected. MnSO4-dependent activity increased in concert with glycogen synthase fractional activity after prolonged exercise, and the MnSO4-dependent enzyme stimulated glucosylation of glycoproteins with molecular masses lower than those glucosylated by glucose 6-P-dependent glycogen synthase. Addition of purified glucose 6-P-dependent glycogen synthase to the muscle extract did not affect MnSO4-dependent glucose transfer, whereas glycogen synthase antibody completely abolished MnSO4-dependent activity. It is concluded that: (1) MnSO4-dependent glucose transfer to glycoproteins is catalyzed by a nonglucose 6-P-dependent form of glycogen synthase; (2) MnSO4-dependent glycogen synthase has a greater affinity for low molecular mass glycoproteins and may thus play a more important role than glucose 6-P-dependent glycogen synthase in the initial stages of glycogen biogenesis; and (3) glycogenin is generally inactive in human muscle in vivo.  (+info)

Novel guidance cues during neuronal pathfinding in the early scaffold of axon tracts in the rostral brain. (4/546)

A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.  (+info)

Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. (5/546)

A maltogenic amylase gene was cloned in Escherichia coli from a gram-negative thermophilic bacterium, Thermus strain IM6501. The gene encoded an enzyme (ThMA) with a molecular mass of 68 kDa which was expressed by the expression vector p6xHis119. The optimal temperature of ThMA was 60 degrees C, which was higher than those of other maltogenic amylases reported so far. Thermal inactivation kinetic analysis of ThMA indicated that it was stabilized in the presence of 10 mM EDTA. ThMA harbored both hydrolysis and transglycosylation activities. It hydrolyzed beta-cyclodextrin and starch mainly to maltose and pullulan to panose. ThMA not only hydrolyzed acarbose, an amylase inhibitor, to glucose and pseudotrisaccharide (PTS) but also transferred PTS to 17 sugar acceptors, including glucose, fructose, maltose, cellobiose, etc. Structural analysis of acarbose transfer products by using methylation, thin-layer chromatography, high-performance ion chromatography, and nuclear magnetic resonance indicated that PTS was transferred primarily to the C-6 of the acceptors and at lower degrees to the C-3 and/or C-4. The transglycosylation of sugar to methyl-alpha-D-glucopyranoside by forming an alpha-(1,3)-glycosidic linkage was demonstrated for the first time by using acarbose and ThMA. Kinetic analysis of the acarbose transfer products showed that the C-4 transfer product formed most rapidly but readily hydrolyzed, while the C-6 transfer product was stable and accumulated in the reaction mixture as the main product.  (+info)

The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. (6/546)

The putative biosynthetic gene cluster for the alpha-glucosidase inhibitor acarbose was identified in the producer Actinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-D-glucose 4,6-dehydratase, acbB. The two flanking genes were acbA (dTDP-D-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C7-cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety of acarbose. A possible five-step reaction mechanism is proposed for the cyclization reaction catalyzed by AcbC based on the recent analysis of the three-dimensional structure of a eukaryotic 3-dehydroquinate synthase domain (Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Nature 394, 299-302).  (+info)

Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli. (7/546)

The pseudooligosaccharide acarbose is a potent inhibitor of amylases, glucosidases, and cyclodextrin glycosyltransferase and is clinically used for the treatment of so-called type II or insulin-independent diabetes. The compound consists of an unsaturated aminocyclitol, a deoxyhexose, and a maltose. The unsaturated aminocyclitol moiety (also called valienamine) is primarily responsible for the inhibition of glucosidases. Due to its structural similarity to maltotetraose, we have investigated whether acarbose is recognized as a substrate by the maltose/maltodextrin system of Escherichia coli. Acarbose at millimolar concentrations specifically affected the growth of E. coli K-12 on maltose as the sole source of carbon and energy. Uptake of radiolabeled maltose was competitively inhibited by acarbose, with a Ki of 1.1 microM. Maltose-grown cells transported radiolabeled acarbose, indicating that the compound is recognized as a substrate. Studying the interaction of acarbose with purified maltoporin in black lipid membranes revealed that the kinetics of acarbose binding to LamB is asymmetric. The on-rate of acarbose is approximately 30 times lower when the molecule enters the pore from the extracellular side than when it enters from the periplasmic side. Acarbose could not be utilized as a carbon source since the compound alone was not a substrate of amylomaltase (MalQ) and was only poorly attacked by maltodextrin glucosidase (MalZ).  (+info)

Distribution of chitinase in guinea pig tissues and increases in levels of this enzyme after systemic infection with Aspergillus fumigatus. (8/546)

Intravenous infection of guinea pigs with the fungus Aspergillus fumigatus resulted in increased levels of chitinase in serum and tissues of the animals. The molecular properties of the enzyme were demonstrated to be different from those of the fungal chitinase, but also from guinea pig lysozyme and beta-N-acetylhexosaminidase. Bio-Gel P-100 gel filtration showed that in liver, spleen, heart and lung tissue of control animals there were two molecular mass forms present with apparent molecular masses of 35 kDa and 15 kDa. In brain and serum, only the 35 kDa form was detectable. Kidney showed only the 15 kDa form. Upon infection the 35 kDa form appeared in kidney and increased in the other tissues. When a less pathogenic form of the fungus was used the 35 kDa form remained absent in kidney. In contrast to human serum chitinase, the enzyme from guinea pig serum and tissues did bind to concanavalin A-Sepharose. This was the case for both molecular mass forms. The mode of cleavage of the substrate 4-methylumbelliferyl-tri-N-acetylchitotrioside (MU-[GlcNAc]3, where GlcNAc is N-acetylglucosamine) by the two forms of the enzyme was the same: both [GlcNAc]2 and [GlcNAc]3 were released. The chitinase activity levels in the control tissues showed a large variation in this order: spleen > lung, kidney > liver > heart > brain. The fact that spleen showed the highest chitinase level is in agreement with its major role as a lymphoid organ in cases of systemic infections. The relative increases upon infection were the highest for the tissues that showed low control values.  (+info)

A trisaccharide is a type of carbohydrate molecule composed of three monosaccharide units joined together by glycosidic bonds. Monosaccharides are simple sugars, such as glucose, fructose, and galactose, which serve as the building blocks of more complex carbohydrates.

In a trisaccharide, two monosaccharides are linked through a glycosidic bond to form a disaccharide, and then another monosaccharide is attached to the disaccharide via another glycosidic bond. The formation of these bonds involves the loss of a water molecule (dehydration synthesis) between the hemiacetal or hemiketal group of one monosaccharide and the hydroxyl group of another.

Examples of trisaccharides include raffinose (glucose + fructose + galactose), maltotriose (glucose + glucose + glucose), and melezitose (glucose + fructose + glucose). Trisaccharides can be found naturally in various foods, such as honey, sugar beets, and some fruits and vegetables. They play a role in energy metabolism, serving as an energy source for the body upon digestion into monosaccharides, which are then absorbed into the bloodstream and transported to cells for energy production or storage.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

Carbohydrate conformation refers to the three-dimensional shape and structure of a carbohydrate molecule. Carbohydrates, also known as sugars, can exist in various conformational states, which are determined by the rotation of their component bonds and the spatial arrangement of their functional groups.

The conformation of a carbohydrate molecule can have significant implications for its biological activity and recognition by other molecules, such as enzymes or antibodies. Factors that can influence carbohydrate conformation include the presence of intramolecular hydrogen bonds, steric effects, and intermolecular interactions with solvent molecules or other solutes.

In some cases, the conformation of a carbohydrate may be stabilized by the formation of cyclic structures, in which the hydroxyl group at one end of the molecule forms a covalent bond with the carbonyl carbon at the other end, creating a ring structure. The most common cyclic carbohydrates are monosaccharides, such as glucose and fructose, which can exist in various conformational isomers known as anomers.

Understanding the conformation of carbohydrate molecules is important for elucidating their biological functions and developing strategies for targeting them with drugs or other therapeutic agents.

Disaccharides are a type of carbohydrate that is made up of two monosaccharide units bonded together. Monosaccharides are simple sugars, such as glucose, fructose, or galactose. When two monosaccharides are joined together through a condensation reaction, they form a disaccharide.

The most common disaccharides include:

* Sucrose (table sugar), which is composed of one glucose molecule and one fructose molecule.
* Lactose (milk sugar), which is composed of one glucose molecule and one galactose molecule.
* Maltose (malt sugar), which is composed of two glucose molecules.

Disaccharides are broken down into their component monosaccharides during digestion by enzymes called disaccharidases, which are located in the brush border of the small intestine. These enzymes catalyze the hydrolysis of the glycosidic bond that links the two monosaccharides together, releasing them to be absorbed into the bloodstream and used for energy.

Disorders of disaccharide digestion and absorption can lead to various symptoms, such as bloating, diarrhea, and abdominal pain. For example, lactose intolerance is a common condition in which individuals lack sufficient levels of the enzyme lactase, leading to an inability to properly digest lactose and resulting in gastrointestinal symptoms.

The ABO blood-group system is a classification system used in blood transfusion medicine to determine the compatibility of donated blood with a recipient's blood. It is based on the presence or absence of two antigens, A and B, on the surface of red blood cells (RBCs), as well as the corresponding antibodies present in the plasma.

There are four main blood types in the ABO system:

1. Type A: These individuals have A antigens on their RBCs and anti-B antibodies in their plasma.
2. Type B: They have B antigens on their RBCs and anti-A antibodies in their plasma.
3. Type AB: They have both A and B antigens on their RBCs but no natural antibodies against either A or B antigens.
4. Type O: They do not have any A or B antigens on their RBCs, but they have both anti-A and anti-B antibodies in their plasma.

Transfusing blood from a donor with incompatible ABO antigens can lead to an immune response, causing the destruction of donated RBCs and potentially life-threatening complications such as acute hemolytic transfusion reaction. Therefore, it is crucial to match the ABO blood type between donors and recipients before performing a blood transfusion.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Fucose is a type of sugar molecule that is often found in complex carbohydrates known as glycans, which are attached to many proteins and lipids in the body. It is a hexose sugar, meaning it contains six carbon atoms, and is a type of L-sugar, which means that it rotates plane-polarized light in a counterclockwise direction.

Fucose is often found at the ends of glycan chains and plays important roles in various biological processes, including cell recognition, signaling, and interaction. It is also a component of some blood group antigens and is involved in the development and function of the immune system. Abnormalities in fucosylation (the addition of fucose to glycans) have been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Ranunculaceae is a family of flowering plants, also known as the buttercup family. It includes over 2,000 species distributed across 58 genera. The plants in this family are characterized by their showy, often brightly colored flowers and typically have numerous stamens and carpels. Many members of Ranunculaceae contain toxic compounds, which can be irritants or even poisonous if ingested. Examples of plants in this family include buttercups, delphiniums, monkshood, and columbines.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Amino sugars, also known as glycosamine or hexosamines, are sugar molecules that contain a nitrogen atom as part of their structure. The most common amino sugars found in nature are glucosamine and galactosamine, which are derived from the hexose sugars glucose and galactose, respectively.

Glucosamine is an essential component of the structural polysaccharide chitin, which is found in the exoskeletons of arthropods such as crustaceans and insects, as well as in the cell walls of fungi. It is also a precursor to the glycosaminoglycans (GAGs), which are long, unbranched polysaccharides that are important components of the extracellular matrix in animals.

Galactosamine, on the other hand, is a component of some GAGs and is also found in bacterial cell walls. It is used in the synthesis of heparin and heparan sulfate, which are important anticoagulant molecules.

Amino sugars play a critical role in many biological processes, including cell signaling, inflammation, and immune response. They have also been studied for their potential therapeutic uses in the treatment of various diseases, such as osteoarthritis and cancer.

Galactosyltransferases are a group of enzymes that play a crucial role in the biosynthesis of glycoconjugates, which are complex carbohydrate structures found on the surface of many cell types. These enzymes catalyze the transfer of galactose, a type of sugar, to another molecule, such as another sugar or a lipid, to form a glycosidic bond.

Galactosyltransferases are classified based on the type of donor substrate they use and the type of acceptor substrate they act upon. For example, some galactosyltransferases use UDP-galactose as a donor substrate and transfer galactose to an N-acetylglucosamine (GlcNAc) residue on a protein or lipid, forming a lactosamine unit. Others may use different donor and acceptor substrates to form different types of glycosidic linkages.

These enzymes are involved in various biological processes, including cell recognition, signaling, and adhesion. Abnormalities in the activity of galactosyltransferases have been implicated in several diseases, such as congenital disorders of glycosylation, cancer, and inflammatory conditions. Therefore, understanding the function and regulation of these enzymes is important for developing potential therapeutic strategies for these diseases.

Hydrofluoric acid is not typically considered a medical term, but rather a chemical one. However, it's important for medical professionals to be aware of its potential hazards and health effects.

Hydrofluoric acid (HF) is a highly corrosive and toxic liquid, which is colorless or slightly yellowish. It is a solution of hydrogen fluoride in water. It is used in various industries for etching glass, cleaning metal surfaces, manufacturing semiconductors, and in chemical research.

In terms of health effects, exposure to HF can cause severe burns and tissue damage. Even at very low concentrations, it can cause pain and irritation to the skin and eyes. Inhalation can lead to respiratory irritation, coughing, and choking. If ingested, it can be fatal due to its ability to cause deep burns in the gastrointestinal tract and potentially lead to systemic fluoride toxicity. Delayed medical attention can result in serious complications, including damage to bones and nerves.

Plant lectins are proteins or glycoproteins that are abundantly found in various plant parts such as seeds, leaves, stems, and roots. They have the ability to bind specifically to carbohydrate structures present on cell membranes, known as glycoconjugates. This binding property of lectins is reversible and non-catalytic, meaning it does not involve any enzymatic activity.

Lectins play several roles in plants, including defense against predators, pathogens, and herbivores. They can agglutinate red blood cells, stimulate the immune system, and have been implicated in various biological processes such as cell growth, differentiation, and apoptosis (programmed cell death). Some lectins also exhibit mitogenic activity, which means they can stimulate the proliferation of certain types of cells.

In the medical field, plant lectins have gained attention due to their potential therapeutic applications. For instance, some lectins have been shown to possess anti-cancer properties and are being investigated as potential cancer treatments. However, it is important to note that some lectins can be toxic or allergenic to humans and animals, so they must be used with caution.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

Fast Atom Bombardment (FAB) Mass Spectrometry is a technique used for determining the mass of ions in a sample. In FAB-MS, the sample is mixed with a matrix material and then bombarded with a beam of fast atoms, usually xenon or cesium. This bombardment leads to the formation of ions from the sample which can then be detected and measured using a mass analyzer. The resulting mass spectrum provides information about the molecular weight and structure of the sample molecules. FAB-MS is particularly useful for the analysis of large, thermally labile, or polar molecules that may not ionize well by other methods.

"O antigens" are a type of antigen found on the lipopolysaccharide (LPS) component of the outer membrane of Gram-negative bacteria. The "O" in O antigens stands for "outer" membrane. These antigens are composed of complex carbohydrates and can vary between different strains of the same species of bacteria, which is why they are also referred to as the bacterial "O" somatic antigens.

The O antigens play a crucial role in the virulence and pathogenesis of many Gram-negative bacteria, as they help the bacteria evade the host's immune system by changing the structure of the O antigen, making it difficult for the host to mount an effective immune response against the bacterial infection.

The identification and classification of O antigens are important in epidemiology, clinical microbiology, and vaccine development, as they can be used to differentiate between different strains of bacteria and to develop vaccines that provide protection against specific bacterial infections.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

Monosaccharides are simple sugars that cannot be broken down into simpler units by hydrolysis. They are the most basic unit of carbohydrates and are often referred to as "simple sugars." Monosaccharides typically contain three to seven atoms of carbon, but the most common monosaccharides contain five or six carbon atoms.

The general formula for a monosaccharide is (CH2O)n, where n is the number of carbon atoms in the molecule. The majority of monosaccharides have a carbonyl group (aldehyde or ketone) and multiple hydroxyl groups. These functional groups give monosaccharides their characteristic sweet taste and chemical properties.

The most common monosaccharides include glucose, fructose, and galactose, all of which contain six carbon atoms and are known as hexoses. Other important monosaccharides include pentoses (five-carbon sugars) such as ribose and deoxyribose, which play crucial roles in the structure and function of nucleic acids (DNA and RNA).

Monosaccharides can exist in various forms, including linear and cyclic structures. In aqueous solutions, monosaccharides often form cyclic structures through a reaction between the carbonyl group and a hydroxyl group, creating a hemiacetal or hemiketal linkage. These cyclic structures can adopt different conformations, known as anomers, depending on the orientation of the hydroxyl group attached to the anomeric carbon atom.

Monosaccharides serve as essential building blocks for complex carbohydrates, such as disaccharides (e.g., sucrose, lactose, and maltose) and polysaccharides (e.g., starch, cellulose, and glycogen). They also participate in various biological processes, including energy metabolism, cell recognition, and protein glycosylation.

Acetylglucosamine is a type of sugar that is commonly found in the body and plays a crucial role in various biological processes. It is a key component of glycoproteins and proteoglycans, which are complex molecules made up of protein and carbohydrate components.

More specifically, acetylglucosamine is an amino sugar that is formed by the addition of an acetyl group to glucosamine. It can be further modified in the body through a process called acetylation, which involves the addition of additional acetyl groups.

Acetylglucosamine is important for maintaining the structure and function of various tissues in the body, including cartilage, tendons, and ligaments. It also plays a role in the immune system and has been studied as a potential therapeutic target for various diseases, including cancer and inflammatory conditions.

In summary, acetylglucosamine is a type of sugar that is involved in many important biological processes in the body, and has potential therapeutic applications in various diseases.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

"Marasmius" is a genus of fungi in the family Marasmiaceae. It includes several species of small, slender mushrooms that typically have a cap that is convex to bell-shaped and gills that are attached to the stem. Some species of Marasmius are known for their ability to dry out and then rehydrate when conditions are favorable, allowing them to survive in harsh environments. The best-known species is probably Marasmius oreades, also known as the "fairy ring mushroom," which grows in circles in grassy areas and is often considered edible, although it can cause digestive upset in some people.

The Lewis blood-group system is one of the human blood group systems, which is based on the presence or absence of two antigens: Lea and Leb. These antigens are carbohydrate structures that can be found on the surface of red blood cells (RBCs) as well as other cells and in various body fluids.

The Lewis system is unique because its antigens are not normally present at birth, but instead develop during early childhood or later in life due to the action of certain enzymes in the digestive tract. The production of Lea and Leb antigens depends on the activity of two genes, FUT3 (also known as Lewis gene) and FUT2 (also known as Secretor gene).

There are four main phenotypes or blood types in the Lewis system:

1. Le(a+b-): This is the most common phenotype, where individuals have both Lea and Leb antigens on their RBCs.
2. Le(a-b+): In this phenotype, individuals lack the Lea antigen but have the Leb antigen on their RBCs.
3. Le(a-b-): This is a rare phenotype where neither Lea nor Leb antigens are present on the RBCs.
4. Le(a+b+): In this phenotype, individuals have both Lea and Leb antigens on their RBCs due to the simultaneous expression of FUT3 and FUT2 genes.

The Lewis blood-group system is not typically associated with transfusion reactions or hemolytic diseases, unlike other blood group systems such as ABO and Rh. However, the presence or absence of Lewis antigens can still have implications for certain medical conditions and tests, including:

* Infectious diseases: Some bacteria and viruses can use the Lewis antigens as receptors to attach to and infect host cells. For example, Helicobacter pylori, which causes gastritis and peptic ulcers, binds to Lea antigens in the stomach.
* Autoimmune disorders: In some cases, autoantibodies against Lewis antigens have been found in patients with autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus (SLE).
* Pregnancy: The Lewis antigens can be expressed on the surface of placental cells, and changes in their expression have been linked to pregnancy complications such as preeclampsia and fetal growth restriction.
* Blood typing: Although not a primary factor in blood transfusion compatibility, the Lewis blood-group system is still considered when determining the best match for patients who require frequent transfusions or organ transplants.

Globosides are a type of glycosphingolipids, which are molecules that consist of a lipid and a carbohydrate. They are found in animal tissues, especially in the nervous system. The term "globoside" refers to a specific structure of these molecules, where the carbohydrate portion consists of a complex chain of sugars, including galactose, N-acetylgalactosamine, and glucose. Globosides play important roles in cell recognition and interaction, and abnormalities in their metabolism have been associated with certain diseases, such as paroxysmal nocturnal hemoglobinuria (PNH).

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

Uronic acids are a type of organic compound that are carboxylic acids derived from sugars (carbohydrates). They are formed by the oxidation of the primary alcohol group (-CH2OH) on a pentose sugar, resulting in a carboxyl group (-COOH) at that position.

The most common uronic acid is glucuronic acid, which is derived from glucose. Other examples include galacturonic acid (derived from galactose), iduronic acid (derived from glucose or galactose), and mannuronic acid (derived from mannose).

Uronic acids play important roles in various biological processes, such as the formation of complex carbohydrates like glycosaminoglycans, which are major components of connective tissues. They also serve as important intermediates in the metabolism of sugars and other carbohydrates.

Glycoconjugates are a type of complex molecule that form when a carbohydrate (sugar) becomes chemically linked to a protein or lipid (fat) molecule. This linkage, known as a glycosidic bond, results in the formation of a new molecule that combines the properties and functions of both the carbohydrate and the protein or lipid component.

Glycoconjugates can be classified into several categories based on the type of linkage and the nature of the components involved. For example, glycoproteins are glycoconjugates that consist of a protein backbone with one or more carbohydrate chains attached to it. Similarly, glycolipids are molecules that contain a lipid anchor linked to one or more carbohydrate residues.

Glycoconjugates play important roles in various biological processes, including cell recognition, signaling, and communication. They are also involved in the immune response, inflammation, and the development of certain diseases such as cancer and infectious disorders. As a result, understanding the structure and function of glycoconjugates is an active area of research in biochemistry, cell biology, and medical science.

Raffinose is a complex carbohydrate, specifically an oligosaccharide, that is composed of three sugars: galactose, fructose, and glucose. It is a non-reducing sugar, which means it does not undergo oxidation reactions like reducing sugars do.

Raffinose is found in various plants, including beans, cabbage, brussels sprouts, broccoli, and whole grains. It is a member of the class of carbohydrates known as alpha-galactosides.

In humans, raffinose cannot be digested because we lack the enzyme alpha-galactosidase, which is necessary to break down the bond between galactose and glucose in raffinose. As a result, it passes through the small intestine intact and enters the large intestine, where it is fermented by gut bacteria. This fermentation process can lead to the production of gases such as methane and hydrogen, which can cause digestive discomfort, bloating, and flatulence in some individuals.

It's worth noting that raffinose has been studied for its potential prebiotic properties, as it can promote the growth of beneficial gut bacteria. However, excessive consumption may lead to digestive issues in sensitive individuals.

CD15 is a type of antigen that is found on the surface of certain types of white blood cells called neutrophils and monocytes. It is also expressed on some types of cancer cells, including myeloid leukemia cells and some lymphomas. CD15 antigens are part of a group of molecules known as carbohydrate antigens because they contain sugar-like substances called carbohydrates.

CD15 antigens play a role in the immune system's response to infection and disease. They can be recognized by certain types of immune cells, such as natural killer (NK) cells and cytotoxic T cells, which can then target and destroy cells that express CD15 antigens. In cancer, the presence of CD15 antigens on the surface of cancer cells can make them more visible to the immune system, potentially triggering an immune response against the cancer.

CD15 antigens are also used as a marker in laboratory tests to help identify and classify different types of white blood cells and cancer cells. For example, CD15 staining is often used in the diagnosis of acute myeloid leukemia (AML) to distinguish it from other types of leukemia.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Periodic acid is not a medical term per se, but it is a chemical reagent that is used in some laboratory tests and staining procedures in the field of pathology, which is a medical specialty.

Periodic acid is an oxidizing agent with the chemical formula HIO4 or H5IO6. It is often used in histology (the study of the microscopic structure of tissues) to perform a special staining technique called the periodic acid-Schiff (PAS) reaction. This reaction is used to identify certain types of carbohydrates, such as glycogen and some types of mucins, in tissues.

The periodic acid first oxidizes the carbohydrate molecules, creating aldehydes. These aldehydes then react with a Schiff reagent, which results in a pink or magenta color. This reaction can help pathologists identify and diagnose various medical conditions, such as cancer, infection, and inflammation.

Trihexosylceramides are a type of glycosphingolipids, which are complex lipids found in animal tissues. They consist of a ceramide molecule (a sphingosine and fatty acid) with three hexose sugars attached to it in a specific sequence, typically glucose-galactose-galactose.

Trihexosylceramides are further classified into two types based on the type of ceramide they contain: lactosylceramide (Gal-Glc-Cer) and isoglobotrihexosylceramide (GalNAcβ1-4Galβ1-4Glc-Cer).

These lipids are important components of the cell membrane and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion. Abnormal accumulation of trihexosylceramides has been implicated in certain diseases, such as Gaucher disease and Tay-Sachs disease, which are caused by deficiencies in enzymes involved in their breakdown.

Naphthacenes are hydrocarbon compounds that consist of a naphthalene ring fused to two additional benzene rings. They belong to the class of polycyclic aromatic hydrocarbons (PAHs) and have been studied for their potential carcinogenic properties. Naphthacenes can be found in various environmental sources, including air pollution from vehicle emissions and cigarette smoke. However, it's important to note that specific medical definitions related to diseases or conditions are not typically associated with naphthacenes.

Mannose is a simple sugar (monosaccharide) that is similar in structure to glucose. It is a hexose, meaning it contains six carbon atoms. Mannose is a stereoisomer of glucose, meaning it has the same chemical formula but a different structural arrangement of its atoms.

Mannose is not as commonly found in foods as other simple sugars, but it can be found in some fruits, such as cranberries, blueberries, and peaches, as well as in certain vegetables, like sweet potatoes and turnips. It is also found in some dietary fibers, such as those found in beans and whole grains.

In the body, mannose can be metabolized and used for energy, but it is also an important component of various glycoproteins and glycolipids, which are molecules that play critical roles in many biological processes, including cell recognition, signaling, and adhesion.

Mannose has been studied as a potential therapeutic agent for various medical conditions, including urinary tract infections (UTIs), because it can inhibit the attachment of certain bacteria to the cells lining the urinary tract. Additionally, mannose-binding lectins have been investigated for their potential role in the immune response to viral and bacterial infections.

Fucosyltransferases (FUTs) are a group of enzymes that catalyze the transfer of fucose, a type of sugar, to specific acceptor molecules, such as proteins and lipids. This transfer results in the addition of a fucose residue to these molecules, creating structures known as fucosylated glycans. These structures play important roles in various biological processes, including cell-cell recognition, inflammation, and cancer metastasis.

There are several different types of FUTs, each with its own specificity for acceptor molecules and the linkage type of fucose it adds. For example, FUT1 and FUT2 add fucose to the terminal position of glycans in a alpha-1,2 linkage, while FUT3 adds fucose in an alpha-1,3 or alpha-1,4 linkage. Mutations in genes encoding FUTs have been associated with various diseases, including congenital disorders of glycosylation and cancer.

In summary, Fucosyltransferases are enzymes that add fucose to acceptor molecules, creating fucosylated glycans that play important roles in various biological processes.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Blood group antigens are molecular markers found on the surface of red blood cells (RBCs) and sometimes other types of cells in the body. These antigens are proteins, carbohydrates, or glycoproteins that can stimulate an immune response when foreign antigens are introduced into the body.

There are several different blood group systems, but the most well-known is the ABO system, which includes A, B, AB, and O blood groups. The antigens in this system are called ABO antigens. Individuals with type A blood have A antigens on their RBCs, those with type B blood have B antigens, those with type AB blood have both A and B antigens, and those with type O blood have neither A nor B antigens.

Another important blood group system is the Rh system, which includes the D antigen. Individuals who have this antigen are considered Rh-positive, while those who do not have it are considered Rh-negative.

Blood group antigens can cause complications during blood transfusions and pregnancy if there is a mismatch between the donor's or fetus's antigens and the recipient's antibodies. For example, if a person with type A blood receives type B blood, their anti-B antibodies will attack the foreign B antigens on the donated RBCs, causing a potentially life-threatening transfusion reaction. Similarly, if an Rh-negative woman becomes pregnant with an Rh-positive fetus, her immune system may produce anti-D antibodies that can cross the placenta and attack the fetal RBCs, leading to hemolytic disease of the newborn.

It is important for medical professionals to determine a patient's blood group before performing a transfusion or pregnancy-related procedures to avoid these complications.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

N-Acetylglucosaminyltransferases (GlcNAc transferases) are a group of enzymes that play a crucial role in the post-translational modification of proteins by adding N-acetylglucosamine (GlcNAc) to specific amino acids in a protein sequence. These enzymes catalyze the transfer of GlcNAc from a donor molecule, typically UDP-GlcNAc, to acceptor proteins, which can be other glycoproteins or proteins without any prior glycosylation.

The addition of N-acetylglucosamine by these enzymes is an essential step in the formation of complex carbohydrate structures called N-linked glycans, which are attached to asparagine residues within the protein sequence. The process of adding GlcNAc can occur in different ways, leading to various types of N-glycan structures, such as oligomannose, hybrid, and complex types.

There are several classes of N-Acetylglucosaminyltransferases (GnTs) based on their substrate specificity and the type of glycosidic linkage they form:

1. GnT I (MGAT1): Transfers GlcNAc to the α1,6 position of the mannose residue in the chitobiose core of N-linked glycans, initiating the formation of complex-type structures.
2. GnT II (MGAT2): Adds a second GlcNAc residue to the β1,4 position of the mannose residue at the non-reducing end of the chitobiose core, forming bi-antennary N-glycans.
3. GnT III (MGAT3): Transfers GlcNAc to the β1,4 position of the mannose residue in the chitobiose core, creating a branching point for further glycosylation and leading to tri- or tetra-antennary N-glycans.
4. GnT IV (MGAT4): Adds GlcNAc to the β1,4 position of the mannose residue at the non-reducing end of antennae, forming multi-branched complex-type structures.
5. GnT V (MGAT5): Transfers GlcNAc to the β1,6 position of the mannose residue in the chitobiose core, leading to hybrid and complex-type N-glycans with bisecting GlcNAc.
6. GnT VI (MGAT6): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
7. GnT VII (MGAT7): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
8. GnT VIII (MGAT8): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
9. GnT IX (MGAT9): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
10. GnT X (MGAT10): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
11. GnT XI (MGAT11): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
12. GnT XII (MGAT12): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
13. GnT XIII (MGAT13): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
14. GnT XIV (MGAT14): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
15. GnT XV (MGAT15): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
16. GnT XVI (MGAT16): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
17. GnT XVII (MGAT17): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
18. GnT XVIII (MGAT18): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
19. GnT XIX (MGAT19): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
20. GnT XX (MGAT20): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
21. GnT XXI (MGAT21): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
22. GnT XXII (MGAT22): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
23. GnT XXIII (MGAT23): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
24. GnT XXIV (MGAT24): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
25. GnT XXV (MGAT25): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
26. GnT XXVI (MGAT26): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
27. GnT XXVII (MGAT27): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
28. GnT XXVIII (MGAT28): Adds GlcNAc to the α1,3 position of the mannose residue at the non-reducing end of antennae, forming a-linked poly-N-acetyllactosamine structures.
29. GnT XXIX (MGAT29): Transfers GlcNAc to the β1,6 position of the N-acetylglucosamine residue in complex-type N-glycans, forming i-antigen structures.
30. GnT XXX (MG

Paper chromatography is a type of chromatography technique that involves the separation and analysis of mixtures based on their components' ability to migrate differently upon capillary action on a paper medium. This simple and cost-effective method utilizes a paper, typically made of cellulose, as the stationary phase. The sample mixture is applied as a small spot near one end of the paper, and then the other end is dipped into a developing solvent or a mixture of solvents (mobile phase) in a shallow container.

As the mobile phase moves up the paper by capillary action, components within the sample mixture separate based on their partition coefficients between the stationary and mobile phases. The partition coefficient describes how much a component prefers to be in either the stationary or mobile phase. Components with higher partition coefficients in the mobile phase will move faster and further than those with lower partition coefficients.

Once separation is complete, the paper is dried and can be visualized under ultraviolet light or by using chemical reagents specific for the components of interest. The distance each component travels from the origin (point of application) and its corresponding solvent front position are measured, allowing for the calculation of Rf values (retardation factors). Rf is a dimensionless quantity calculated as the ratio of the distance traveled by the component to the distance traveled by the solvent front.

Rf = (distance traveled by component) / (distance traveled by solvent front)

Paper chromatography has been widely used in various applications, such as:

1. Identification and purity analysis of chemical compounds in pharmaceuticals, forensics, and research laboratories.
2. Separation and detection of amino acids, sugars, and other biomolecules in biological samples.
3. Educational purposes to demonstrate the principles of chromatography and separation techniques.

Despite its limitations, such as lower resolution compared to high-performance liquid chromatography (HPLC) and less compatibility with volatile or nonpolar compounds, paper chromatography remains a valuable tool for quick, qualitative analysis in various fields.

Methylation, in the context of genetics and epigenetics, refers to the addition of a methyl group (CH3) to a molecule, usually to the nitrogenous base of DNA or to the side chain of amino acids in proteins. In DNA methylation, this process typically occurs at the 5-carbon position of cytosine residues that precede guanine residues (CpG sites) and is catalyzed by enzymes called DNA methyltransferases (DNMTs).

DNA methylation plays a crucial role in regulating gene expression, genomic imprinting, X-chromosome inactivation, and suppression of repetitive elements. Hypermethylation or hypomethylation of specific genes can lead to altered gene expression patterns, which have been associated with various human diseases, including cancer.

In summary, methylation is a fundamental epigenetic modification that influences genomic stability, gene regulation, and cellular function by introducing methyl groups to DNA or proteins.

Guanosine diphosphate mannose (GDP-mannose) is a nucleotide sugar that plays a crucial role in the biosynthesis of various glycans, including those found on proteins and lipids. It is formed from mannose-1-phosphate through the action of the enzyme mannose-1-phosphate guanylyltransferase, using guanosine triphosphate (GTP) as a source of energy.

GDP-mannose serves as a donor substrate for several glycosyltransferases involved in the biosynthesis of complex carbohydrates, such as those found in glycoproteins and glycolipids. It is also used in the synthesis of certain polysaccharides, like bacterial cell wall components.

Defects in the metabolism or utilization of GDP-mannose can lead to various genetic disorders, such as congenital disorders of glycosylation (CDG), which can affect multiple organ systems and present with a wide range of clinical manifestations.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Disaccharidases are a group of enzymes found in the brush border of the small intestine. They play an essential role in digesting complex carbohydrates into simpler sugars, which can then be absorbed into the bloodstream. The three main disaccharidases are:

1. Maltase-glucoamylase: This enzyme breaks down maltose (a disaccharide formed from two glucose molecules) and maltotriose (a trisaccharide formed from three glucose molecules) into individual glucose units.
2. Sucrase: This enzyme is responsible for breaking down sucrose (table sugar, a disaccharide composed of one glucose and one fructose molecule) into its component monosaccharides, glucose and fructose.
3. Lactase: This enzyme breaks down lactose (a disaccharide formed from one glucose and one galactose molecule) into its component monosaccharides, glucose and galactose.

Deficiencies in these disaccharidases can lead to various digestive disorders, such as lactose intolerance (due to lactase deficiency), sucrase-isomaltase deficiency, or congenital sucrase-isomaltase deficiency (CSID). These conditions can cause symptoms like bloating, diarrhea, and abdominal cramps after consuming foods containing the specific disaccharide.

Acetylgalactosamine (also known as N-acetyl-D-galactosamine or GalNAc) is a type of sugar molecule called a hexosamine that is commonly found in glycoproteins and proteoglycans, which are complex carbohydrates that are attached to proteins and lipids. It plays an important role in various biological processes, including cell-cell recognition, signal transduction, and protein folding.

In the context of medical research and biochemistry, Acetylgalactosamine is often used as a building block for synthesizing glycoconjugates, which are molecules that consist of a carbohydrate attached to a protein or lipid. These molecules play important roles in many biological processes, including cell-cell recognition, signaling, and immune response.

Acetylgalactosamine is also used as a target for enzymes called glycosyltransferases, which add sugar molecules to proteins and lipids. In particular, Acetylgalactosamine is the acceptor substrate for a class of glycosyltransferases known as galactosyltransferases, which add galactose molecules to Acetylgalactosamine-containing structures.

Defects in the metabolism of Acetylgalactosamine have been linked to various genetic disorders, including Schindler disease and Kanzaki disease, which are characterized by neurological symptoms and abnormal accumulation of glycoproteins in various tissues.

Mannosides are glycosylated compounds that consist of a mannose sugar molecule (a type of monosaccharide) linked to another compound, often a protein or lipid. They are formed when an enzyme called a glycosyltransferase transfers a mannose molecule from a donor substrate, such as a nucleotide sugar (like GDP-mannose), to an acceptor molecule.

Mannosides can be found on the surface of many types of cells and play important roles in various biological processes, including cell recognition, signaling, and protein folding. They are also involved in the immune response and have been studied as potential therapeutic targets for a variety of diseases, including infectious diseases and cancer.

It's worth noting that mannosides can be further classified based on the specific linkage between the mannose molecule and the acceptor compound. For example, an N-linked mannoside is one in which the mannose is linked to a nitrogen atom on the acceptor protein, while an O-linked mannoside is one in which the mannose is linked to an oxygen atom on the acceptor protein.

Sialic acids are a family of nine-carbon sugars that are commonly found on the outermost surface of many cell types, particularly on the glycoconjugates of mucins in various secretions and on the glycoproteins and glycolipids of cell membranes. They play important roles in a variety of biological processes, including cell recognition, immune response, and viral and bacterial infectivity. Sialic acids can exist in different forms, with N-acetylneuraminic acid being the most common one in humans.

Sugar alcohols, also known as polyols, are carbohydrates that are chemically similar to sugar but have a different molecular structure. They occur naturally in some fruits and vegetables, but most sugar alcohols used in food products are manufactured.

The chemical structure of sugar alcohols contains a hydroxyl group (-OH) instead of a hydrogen and a ketone or aldehyde group, which makes them less sweet than sugar and have fewer calories. They are not completely absorbed by the body, so they do not cause a rapid increase in blood glucose levels, making them a popular sweetener for people with diabetes.

Common sugar alcohols used in food products include xylitol, sorbitol, mannitol, erythritol, and maltitol. They are often used as sweeteners in sugar-free and low-sugar foods such as candy, chewing gum, baked goods, and beverages.

However, consuming large amounts of sugar alcohols can cause digestive symptoms such as bloating, gas, and diarrhea, due to their partial absorption in the gut. Therefore, it is recommended to consume them in moderation.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Glycosyltransferases are a group of enzymes that play a crucial role in the synthesis of glycoconjugates, which are complex carbohydrate structures found on the surface of cells and in various biological fluids. These enzymes catalyze the transfer of a sugar moiety from an activated donor molecule to an acceptor molecule, resulting in the formation of a glycosidic bond.

The donor molecule is typically a nucleotide sugar, such as UDP-glucose or CMP-sialic acid, which provides the energy required for the transfer reaction. The acceptor molecule can be a wide range of substrates, including proteins, lipids, and other carbohydrates.

Glycosyltransferases are highly specific in their activity, with each enzyme recognizing a particular donor and acceptor pair. This specificity allows for the precise regulation of glycan structures, which have been shown to play important roles in various biological processes, including cell recognition, signaling, and adhesion.

Defects in glycosyltransferase function can lead to a variety of genetic disorders, such as congenital disorders of glycosylation (CDG), which are characterized by abnormal glycan structures and a wide range of clinical manifestations, including developmental delay, neurological impairment, and multi-organ dysfunction.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

N-Acetylneuraminic Acid (Neu5Ac) is an organic compound that belongs to the family of sialic acids. It is a common terminal sugar found on many glycoproteins and glycolipids on the surface of animal cells. Neu5Ac plays crucial roles in various biological processes, including cell recognition, signaling, and intercellular interactions. It is also involved in the protection against pathogens by serving as a barrier to prevent their attachment to host cells. Additionally, Neu5Ac has been implicated in several disease conditions, such as cancer and inflammation, due to its altered expression and metabolism.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Borohydrides are a class of chemical compounds that contain boron and hydrogen ions (H-). The most common borohydride is sodium borohydride (NaBH4), which is a white, solid compound often used in chemistry as a reducing agent. Borohydrides are known for their ability to donate hydride ions (H:-) in chemical reactions, making them useful for reducing various organic and inorganic compounds. Other borohydrides include lithium borohydride (LiBH4), potassium borohydride (KBH4), and calcium borohydride (Ca(BH4)2).

Glycosphingolipids are a type of complex lipid molecule found in animal cell membranes, particularly in the outer leaflet of the plasma membrane. They consist of a hydrophobic ceramide backbone, which is composed of sphingosine and fatty acids, linked to one or more hydrophilic sugar residues, such as glucose or galactose.

Glycosphingolipids can be further classified into two main groups: neutral glycosphingolipids (which include cerebrosides and gangliosides) and acidic glycosphingolipids (which are primarily gangliosides). Glycosphingolipids play important roles in various cellular processes, including cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism or structure of glycosphingolipids have been implicated in several diseases, such as lysosomal storage disorders (e.g., Gaucher's disease, Fabry's disease) and certain types of cancer (e.g., ganglioside-expressing neuroblastoma).

Lactose is a disaccharide, a type of sugar, that is naturally found in milk and dairy products. It is made up of two simple sugars, glucose and galactose, linked together. In order for the body to absorb and use lactose, it must be broken down into these simpler sugars by an enzyme called lactase, which is produced in the lining of the small intestine.

People who have a deficiency of lactase are unable to fully digest lactose, leading to symptoms such as bloating, diarrhea, and abdominal cramps, a condition known as lactose intolerance.

Sulfotransferases (STs) are a group of enzymes that play a crucial role in the process of sulfoconjugation, which is the transfer of a sulfo group (-SO3H) from a donor molecule to an acceptor molecule. These enzymes are widely distributed in nature and are found in various organisms, including humans.

In humans, STs are involved in the metabolism and detoxification of numerous xenobiotics, such as drugs, food additives, and environmental pollutants, as well as endogenous compounds, such as hormones, neurotransmitters, and lipids. The sulfoconjugation reaction catalyzed by STs can increase the water solubility of these compounds, facilitating their excretion from the body.

STs can be classified into several families based on their sequence similarity and cofactor specificity. The largest family of STs is the cytosolic sulfotransferases, which use 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a cofactor to transfer the sulfo group to various acceptor molecules, including phenols, alcohols, amines, and steroids.

Abnormalities in ST activity have been implicated in several diseases, such as cancer, cardiovascular disease, and neurological disorders. Therefore, understanding the function and regulation of STs is essential for developing new therapeutic strategies to treat these conditions.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Glucuronic acid is a physiological important organic acid, which is a derivative of glucose. It is formed by the oxidation of the primary alcohol group of glucose to form a carboxyl group at the sixth position. Glucuronic acid plays a crucial role in the detoxification process in the body as it conjugates with toxic substances, making them water-soluble and facilitating their excretion through urine or bile. This process is known as glucuronidation. It is also a component of various polysaccharides, such as heparan sulfate and chondroitin sulfate, which are found in the extracellular matrix of connective tissues.

Glycoside hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds found in various substrates such as polysaccharides, oligosaccharides, and glycoproteins. These enzymes break down complex carbohydrates into simpler sugars by cleaving the glycosidic linkages that connect monosaccharide units.

Glycoside hydrolases are classified based on their mechanism of action and the type of glycosidic bond they hydrolyze. The classification system is maintained by the International Union of Biochemistry and Molecular Biology (IUBMB). Each enzyme in this class is assigned a unique Enzyme Commission (EC) number, which reflects its specificity towards the substrate and the type of reaction it catalyzes.

These enzymes have various applications in different industries, including food processing, biofuel production, pulp and paper manufacturing, and biomedical research. In medicine, glycoside hydrolases are used to diagnose and monitor certain medical conditions, such as carbohydrate-deficient glycoprotein syndrome, a rare inherited disorder affecting the structure of glycoproteins.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Chondroitin sulfates are a type of complex carbohydrate molecules known as glycosaminoglycans (GAGs). They are a major component of cartilage, the tissue that cushions and protects the ends of bones in joints. Chondroitin sulfates are composed of repeating disaccharide units made up of glucuronic acid and N-acetylgalactosamine, which can be sulfated at various positions.

Chondroitin sulfates play a crucial role in the biomechanical properties of cartilage by attracting water and maintaining the resiliency and elasticity of the tissue. They also interact with other molecules in the extracellular matrix, such as collagen and proteoglycans, to form a complex network that provides structural support and regulates cell behavior.

Chondroitin sulfates have been studied for their potential therapeutic benefits in osteoarthritis, a degenerative joint disease characterized by the breakdown of cartilage. Supplementation with chondroitin sulfate has been shown to reduce pain and improve joint function in some studies, although the evidence is not consistent across all trials. The mechanism of action is thought to involve inhibition of enzymes that break down cartilage, as well as stimulation of cartilage repair and synthesis.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

Mass spectrometry with electrospray ionization (ESI-MS) is an analytical technique used to identify and quantify chemical species in a sample based on the mass-to-charge ratio of charged particles. In ESI-MS, analytes are ionized through the use of an electrospray, where a liquid sample is introduced through a metal capillary needle at high voltage, creating an aerosol of charged droplets. As the solvent evaporates, the analyte molecules become charged and can be directed into a mass spectrometer for analysis.

ESI-MS is particularly useful for the analysis of large biomolecules such as proteins, peptides, and nucleic acids, due to its ability to gently ionize these species without fragmentation. The technique provides information about the molecular weight and charge state of the analytes, which can be used to infer their identity and structure. Additionally, ESI-MS can be interfaced with separation techniques such as liquid chromatography (LC) for further purification and characterization of complex samples.

Glucuronates are not a medical term per se, but they refer to salts or esters of glucuronic acid, a organic compound that is a derivative of glucose. In the context of medical and biological sciences, glucuronidation is a common detoxification process in which glucuronic acid is conjugated to a wide variety of molecules, including drugs, hormones, and environmental toxins, to make them more water-soluble and facilitate their excretion from the body through urine or bile.

The process of glucuronidation is catalyzed by enzymes called UDP-glucuronosyltransferases (UGTs), which are found in various tissues, including the liver, intestines, and kidneys. The resulting glucuronides can be excreted directly or further metabolized before excretion.

Therefore, "glucuronates" can refer to the chemical compounds that result from this process of conjugation with glucuronic acid, as well as the therapeutic potential of enhancing or inhibiting glucuronidation for various clinical applications.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Hexosamines are amino sugars that are formed by the substitution of an amino group (-NH2) for a hydroxyl group (-OH) in a hexose sugar. The most common hexosamine is N-acetylglucosamine (GlcNAc), which is derived from glucose. Other hexosamines include galactosamine, mannosamine, and fucosamine.

Hexosamines play important roles in various biological processes, including the formation of glycosaminoglycans, proteoglycans, and glycoproteins. These molecules are involved in many cellular functions, such as cell signaling, cell adhesion, and protein folding. Abnormalities in hexosamine metabolism have been implicated in several diseases, including diabetes, cancer, and neurodegenerative disorders.

Hexoses are simple sugars (monosaccharides) that contain six carbon atoms. The most common hexoses include glucose, fructose, and galactose. These sugars play important roles in various biological processes, such as serving as energy sources or forming complex carbohydrates like starch and cellulose. Hexoses are essential for the structure and function of living organisms, including humans.

Rhamnose is a naturally occurring sugar or monosaccharide, that is commonly found in various plants and some fruits. It is a type of deoxy sugar, which means it lacks one hydroxyl group (-OH) compared to a regular hexose sugar. Specifically, rhamnose has a hydrogen atom instead of a hydroxyl group at the 6-position of its structure.

Rhamnose is an essential component of various complex carbohydrates and glycoconjugates found in plant cell walls, such as pectins and glycoproteins. It also plays a role in bacterial cell wall biosynthesis and is used in the production of some antibiotics.

In medical contexts, rhamnose may be relevant to research on bacterial infections, plant-derived medicines, or the metabolism of certain sugars. However, it is not a commonly used term in clinical medicine.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

Sialyltransferases are a group of enzymes that play a crucial role in the biosynthesis of sialic acids, which are a type of sugar molecule found on the surface of many cell types. These enzymes catalyze the transfer of sialic acid from a donor molecule (usually CMP-sialic acid) to an acceptor molecule, such as a glycoprotein or glycolipid.

The addition of sialic acids to these molecules can affect their function and properties, including their recognition by other cells and their susceptibility to degradation. Sialyltransferases are involved in various biological processes, including cell-cell recognition, inflammation, and cancer metastasis.

There are several different types of sialyltransferases, each with specific substrate preferences and functions. For example, some sialyltransferases add sialic acids to the ends of N-linked glycans, while others add them to O-linked glycans or glycolipids.

Abnormalities in sialyltransferase activity have been implicated in various diseases, including cancer, inflammatory disorders, and neurological conditions. Therefore, understanding the function and regulation of these enzymes is an important area of research with potential implications for disease diagnosis and treatment.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a type of mass spectrometry that is used to analyze large biomolecules such as proteins and peptides. In this technique, the sample is mixed with a matrix compound, which absorbs laser energy and helps to vaporize and ionize the analyte molecules.

The matrix-analyte mixture is then placed on a target plate and hit with a laser beam, causing the matrix and analyte molecules to desorb from the plate and become ionized. The ions are then accelerated through an electric field and into a mass analyzer, which separates them based on their mass-to-charge ratio.

The separated ions are then detected and recorded as a mass spectrum, which can be used to identify and quantify the analyte molecules present in the sample. MALDI-MS is particularly useful for the analysis of complex biological samples, such as tissue extracts or biological fluids, because it allows for the detection and identification of individual components within those mixtures.

Glycopeptides are a class of antibiotics that are characterized by their complex chemical structure, which includes both peptide and carbohydrate components. These antibiotics are produced naturally by certain types of bacteria and are effective against a range of Gram-positive bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE).

The glycopeptide antibiotics work by binding to the bacterial cell wall precursor, preventing the cross-linking of peptidoglycan chains that is necessary for the formation of a strong and rigid cell wall. This leads to the death of the bacteria.

Examples of glycopeptides include vancomycin, teicoplanin, and dalbavancin. While these antibiotics have been used successfully for many years, their use is often limited due to concerns about the emergence of resistance and potential toxicity.

Mucins are high molecular weight, heavily glycosylated proteins that are the major components of mucus. They are produced and secreted by specialized epithelial cells in various organs, including the respiratory, gastrointestinal, and urogenital tracts, as well as the eyes and ears.

Mucins have a characteristic structure consisting of a protein backbone with numerous attached oligosaccharide side chains, which give them their gel-forming properties and provide a protective barrier against pathogens, environmental insults, and digestive enzymes. They also play important roles in lubrication, hydration, and cell signaling.

Mucins can be classified into two main groups based on their structure and function: secreted mucins and membrane-bound mucins. Secreted mucins are released from cells and form a physical barrier on the surface of mucosal tissues, while membrane-bound mucins are integrated into the cell membrane and participate in cell adhesion and signaling processes.

Abnormalities in mucin production or function have been implicated in various diseases, including chronic inflammation, cancer, and cystic fibrosis.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Hemagglutination tests are laboratory procedures used to detect the presence of antibodies or antigens in a sample, typically in blood serum. These tests rely on the ability of certain substances, such as viruses or bacteria, to agglutinate (clump together) red blood cells.

In a hemagglutination test, a small amount of the patient's serum is mixed with a known quantity of red blood cells that have been treated with a specific antigen. If the patient has antibodies against that antigen in their serum, they will bind to the antigens on the red blood cells and cause them to agglutinate. This clumping can be observed visually, indicating a positive test result.

Hemagglutination tests are commonly used to diagnose infectious diseases caused by viruses or bacteria that have hemagglutinating properties, such as influenza, parainfluenza, and HIV. They can also be used in blood typing and cross-matching before transfusions.

In the context of medicine and biology, sulfates are ions or compounds that contain the sulfate group (SO4−2). Sulfate is a polyatomic anion with the structure of a sphere. It consists of a central sulfur atom surrounded by four oxygen atoms in a tetrahedral arrangement.

Sulfates can be found in various biological molecules, such as glycosaminoglycans and proteoglycans, which are important components of connective tissue and the extracellular matrix. Sulfate groups play a crucial role in these molecules by providing negative charges that help maintain the structural integrity and hydration of tissues.

In addition to their biological roles, sulfates can also be found in various medications and pharmaceutical compounds. For example, some laxatives contain sulfate salts, such as magnesium sulfate (Epsom salt) or sodium sulfate, which work by increasing the water content in the intestines and promoting bowel movements.

It is important to note that exposure to high levels of sulfates can be harmful to human health, particularly in the form of sulfur dioxide (SO2), a common air pollutant produced by burning fossil fuels. Prolonged exposure to SO2 can cause respiratory problems and exacerbate existing lung conditions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Mannosidases are a group of enzymes that catalyze the hydrolysis of mannose residues from glycoproteins, oligosaccharides, and glycolipids. These enzymes play a crucial role in the processing and degradation of N-linked glycans, which are carbohydrate structures attached to proteins in eukaryotic cells.

There are several types of mannosidases, including alpha-mannosidase and beta-mannosidase, which differ in their specificity for the type of linkage they cleave. Alpha-mannosidases hydrolyze alpha-1,2-, alpha-1,3-, alpha-1,6-mannosidic bonds, while beta-mannosidases hydrolyze beta-1,4-mannosidic bonds.

Deficiencies in mannosidase activity can lead to various genetic disorders, such as alpha-mannosidosis and beta-mannosidosis, which are characterized by the accumulation of unprocessed glycoproteins and subsequent cellular dysfunction.

Hemagglutination is a medical term that refers to the agglutination or clumping together of red blood cells (RBCs) in the presence of an agglutinin, which is typically a protein or a polysaccharide found on the surface of certain viruses, bacteria, or incompatible blood types.

In simpler terms, hemagglutination occurs when the agglutinin binds to specific antigens on the surface of RBCs, causing them to clump together and form visible clumps or aggregates. This reaction is often used in diagnostic tests to identify the presence of certain viruses or bacteria, such as influenza or HIV, by mixing a sample of blood or other bodily fluid with a known agglutinin and observing whether hemagglutination occurs.

Hemagglutination inhibition (HI) assays are also commonly used to measure the titer or concentration of antibodies in a serum sample, by adding serial dilutions of the serum to a fixed amount of agglutinin and observing the highest dilution that still prevents hemagglutination. This can help determine whether a person has been previously exposed to a particular pathogen and has developed immunity to it.

Mannans are a type of complex carbohydrate, specifically a heteropolysaccharide, that are found in the cell walls of certain plants, algae, and fungi. They consist of chains of mannose sugars linked together, often with other sugar molecules such as glucose or galactose.

Mannans have various biological functions, including serving as a source of energy for microorganisms that can break them down. In some cases, mannans can also play a role in the immune response and are used as a component of vaccines to stimulate an immune response.

In the context of medicine, mannans may be relevant in certain conditions such as gut dysbiosis or allergic reactions to foods containing mannans. Additionally, some research has explored the potential use of mannans as a delivery vehicle for drugs or other therapeutic agents.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Glucans are polysaccharides (complex carbohydrates) that are made up of long chains of glucose molecules. They can be found in the cell walls of certain plants, fungi, and bacteria. In medicine, beta-glucans derived from yeast or mushrooms have been studied for their potential immune-enhancing effects. However, more research is needed to fully understand their role and effectiveness in human health.

Trisaccharides are oligosaccharides composed of three monosaccharides with two glycosidic bonds connecting them. Similar to the ... ISBN 978-1-319-11467-1. OCLC 1037810557.{{cite book}}: CS1 maint: location missing publisher (link) Trisaccharides at the U.S. ... result in trisaccharides that are diastereoisomers with different chemical and physical properties. Nelson, David L. (2021). ... National Library of Medicine Medical Subject Headings (MeSH) v t e (CS1 maint: location missing publisher, Trisaccharides, All ...
... (EC 4.2.2.22, exopectate-lyase, pectate lyase A, PelA) is an enzyme with systematic name (1→4)-α-D- ... Pectate+trisaccharide-lyase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 4.2.2) ... galacturonan reducing-end-trisaccharide-lyase. This enzyme catalyses the following chemical reaction: eliminative cleavage of ... from the reducing end of polygalacturonic acid/pectate The predominant action of this enzyme is removal of a trisaccharide. ...
C. pilicornis produces the trisaccharide melezitose. Citronellol, cis-trans-nepetalactone and cis-trans-nepetalactol are stress ...
Also, the proportions of di- and trisaccharides can be quantified. Glucose uptake in cells of organisms is measured with 2- ... spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey". Journal ...
It contains betaine and the trisaccharide raffinose. These result from the concentration of the original plant material or ...
"Structural Basis for the Recognition of Blood Group Trisaccharides by Norovirus". J. Virol. 81 (11): 5949-57. doi:10.1128/JVI. ...
1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides". FEBS J. 272 (24): 6276-86. doi:10.1111/j.1742- ...
1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides". FEBS J. 272 (24): 6276-86. doi:10.1111/j.1742- ...
Each full trisaccharide unit is connected to each other by an alpha 1,3 linkage from Fuc4NAc to GlcNAc. There are three types ... This trisaccharide is made of N-acetylglucosamine (GlcNAc), N-Acetyl-D-Mannosaminuronic Acid (ManNAcA), and 4-acetamido-4,6- ... Step 11: WzyE polymerizes the ECA trisaccharides by taking the ECA unit from the lipid carrier and WzxE. The lipid carrier is ... Each monosaccharide is added to the lipid carrier to make a trisaccharide attached to a lipid. The enzymes that catalyze the ...
1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides". FEBS J. 272 (24): 6276-86. doi:10.1111/j.1742- ...
1H-NMR and 13C-NMR studies of reduced trisaccharides and hexasaccharides". FEBS J. 272 (24): 6276-86. doi:10.1111/j.1742- ...
The most common cryoprotectant used for semen is glycerol (10% in culture medium). Often sucrose or other di-, trisaccharides ...
Raghavan, S.; Kahne, D. (1993). "A one step synthesis of the ciclamycin trisaccharide". J. Am. Chem. Soc. 115 (4): 1580-1. doi: ... producing the desired trisaccharide. Chemical glycosylation Carbohydrate synthesis Carbohydrate chemistry Mootoo, D.R.; ...
2011). A new trisaccharide derivative from Prenanthes purpurea. Journal of the Serbian Chemical Society 76(6), 841-45. BSBI ...
... is a trisaccharide composed of galactose, glucose, and fructose. It can be found in beans, cabbage, brussels sprouts ... and the most common are the trisaccharide raffinose, the tetrasaccharide stachyose, and the pentasaccharide verbascose. RFOs ...
Preparation of Some Derivatives of di- and tri- saccharides via a simple Alcoholysis Reaction. Carbohyd. Res., 1972, 22, 399- ...
Two, three, several or many monosaccharides thus linked form disaccharides, trisaccharides, oligosaccharides, or ...
cite journal}}: Cite journal requires ,journal= (help) Anthocyanin trisaccharides in blue berries of Vaccinium padifolium. Luis ...
For example, the diastase α-Amylase degrades starch to a mixture of the disaccharide maltose; the trisaccharide maltotriose, ...
Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence". The Journal of ...
The trisaccharides, with most of their functional groups protected to prevent side reactions, are linked by creating the GalNAc ... One synthesis is achieved by first building two trisaccharides from their component sugars, and then linking them. ... this reacts with the hydroxyl group on the 3 position of the other galactose to link the trisaccharides and form the ...
Hanson, S. R.; Culyba, E. K.; Hsu, T.-L.; Wong, C.-H.; Kelly, J. W.; Powers, E. T. (2009-03-03). "The core trisaccharide of an ...
Biosynthesis and characterization of a trisaccharide (alpha-D-galactose-(1 goes to 3)-N-acetyllactosamine)". J. Biol. Chem. 256 ...
Most meningococci from groups B and C, as well as gonococci, have been shown to have this trisaccharide as part of their LOS ... In another example, the terminal trisaccharide portion (lactotriaose) of the oligosaccharide from pathogenic Neisseria spp. LOS ...
"Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands". J. Biol. Chem. ...
The membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides, trisaccharides, and disaccharides to glucose and ...
Of all studied S. sciuri subspecies, only S. lentus has been found to use the trisaccharide raffinose. Stepanović, Srdjan; ...
Following, the enzyme fructan-fructan 1-fructosyl transferase combines fructose residue from trisaccharides, and by that ... one fructose molecule is combined with sucrose to form a trisaccharide. In the 1-kestose type, the fructose molecule will be ... the enzyme fructan-fructan 6-fructosyl transferase should combine fructose residue from trisaccharide and that synthesize a ...
The term "oligosaccharide" encompasses carbohydrates that are larger than simple di- or tri-saccharides, but smaller than ... and isomaltotriose make up the trisaccharide fraction. A mixture of isomaltotetraose, isomaltopentaose, maltohexaose, ...
Centella contains pentacyclic triterpenoids and trisaccharide derivatives, including asiaticoside, brahmoside, asiatic acid, ...
Trisaccharides are oligosaccharides composed of three monosaccharides with two glycosidic bonds connecting them. Similar to the ... ISBN 978-1-319-11467-1. OCLC 1037810557.{{cite book}}: CS1 maint: location missing publisher (link) Trisaccharides at the U.S. ... result in trisaccharides that are diastereoisomers with different chemical and physical properties. Nelson, David L. (2021). ... National Library of Medicine Medical Subject Headings (MeSH) v t e (CS1 maint: location missing publisher, Trisaccharides, All ...
Click the button below to add the Lewis A trisaccharide methyl glycoside 500 ug to your wish list. ...
Human blood group H type 1 trisaccharide. DrugBank Accession Number. DB04679. Background. Not Available ... Human blood group H type 1 trisaccharide: Overview ... H type I trisaccharide. *α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc ...
Mono-, Di- and Trisaccharides (2). RSpak DC-613 is a column for the analysis of saccharides. by normal phase mode. Under this ...
Lewis X Trisaccharide, Methyl Glycoside , CAS 176106-81-3 REF CSP700688779329 - structural formula, chemical names, physical ... Alternative Distributors of [Lewis X Trisaccharide, Methyl Glycoside]. Producers or manufacturers change the product range from ... Lewis X Trisaccharide, Methyl Glycoside binds to selectins and acts as an antiinflammatory agent. ...
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above. ...
The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of α-d-Galp-(1→3)-β-d-Galp-(1→4)-α-d- ... Stortz, C.A. mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans . Carbohydrate Research, vol ... 2006) . mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans. Carbohydrate Research, 341(15), ... Stortz, C.A. mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans . Carbohydrate Research 341 ...
N-Trisaccharide significantly (p 0.05) increased the plasma insulin and liver glycogen levels in diabetic rats. The altered ... Materials and methods Different doses of N-Trisaccharide (25 and 50 mg/kg b.w.) were administered once daily for 28 days to STZ ... Kavishankar, G. B. and Lakshmidevi, N. (2014) Anti-diabetic effect of a novel N-Trisaccharide isolated from Cucumis prophetarum ... Aim of the study The present investigation was designed to study the effect of N-Trisaccharide (a new compound isolated from ...
With the protected trisaccharide acceptor 47 in hand, the non-labelled Gb3 sphingolipids can be synthesized by the union with ... Trisaccharide 70 was then equipped with a pentenyl chain in the position, where the flexible OEG linker connected to the ... The trisaccharide building block is much more difficult to access than the previously shown one without the OEG linker. To ... 2020). The receptor lipid is composed of the trisaccharide α-D-galactose-(1 → 4)-β-D-galactose-(1 → 4)-β-D-glucose, bound via ...
... and trisaccharides. A high level of dietary fiber was detected (x = 13.7 ± 1.3 g/100 g). The main fatty acids detected ...
A Straighforward Synthesis of Lineal-Cyclic Hybrid Trisaccharides. Poster en Congreso. European Carbohydrate Symposium. ...
complex with Gb3 trisaccharide. complexed with gal, glc; mutant. *Domain(s) for 1czg: *. Domain d1czga_: 1czg A: [25095]. ...
Isolation of a trisaccharide containing 2-amino-2-deoxy-D-galacturonic acid from the Bordetella pertussis endotoxin. Moreau M, ...
TERNARY COMPLEX BETWEEN PSYCHROPHILIC ALPHA-AMYLASE, COMII (PSEUDO TRI-SACCHARIDE FROM BAYER) AND TRIS (2-AMINO-2-HYDROXYMETHYL ...
DP-3 (trisaccharides) 4.4%. *DP-4 (tetrasaccharides) 3.8%. *DP-5 (pentasaccharides) 3.4% ...
Trisaccharide, n-hexadecanoic acid was isolated. The trisaccharide and partially separated fractions yielded higher antioxidant ...
Epitope recognition of antibodies against a Yersinia pestis lipopolysaccharide trisaccharide component. ACS Chemical Biology 9 ...
Epitope recognition of antibodies against a Yersinia pestis lipopolysaccharide trisaccharide component. ACS Chemical Biology 9 ...
... or trisaccharides content, does not excedd 8,5 %. ...
Rational optimization of the mannoside building block for automated electrochemical assembly of the core trisaccharide of GPI ...
Here, we provide evidence for the involvement of the specific trisaccharide unit of the phenolic glycolipid-1 (PGL-1) of ... Here, we provide evidence for the involvement of the specific trisaccharide unit of the phenolic glycolipid-1 (PGL-1) of ... Here, we provide evidence for the involvement of the specific trisaccharide unit of the phenolic glycolipid-1 (PGL-1) of ... Here, we provide evidence for the involvement of the specific trisaccharide unit of the phenolic glycolipid-1 (PGL-1) of ...
b) Tri saccharides: e.g. Raffinose (Glucose + Fructose + Galactose) found in cotton seed and sugar beet.. c) Tetra saccharides: ...
Bidesmosidic derivatives of quillajic acid substituted with a trisaccharide at C-3 and an oligosaccharide in C-28. ...
... produce diverse polysaccharides that are often comprised of a repeating trisaccharide with galactosyl modifications. The cell ...
Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 in Complex with H-trisaccharide. ...
Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 in Complex with H-trisaccharide. ...
The sugar spectrum showed low % of trisaccharides and sucrose. Enzymic activity was lower than that found in other unifloral ... Physico-chemical analysis showed that there was a low percentage of sucrose (x=0.01%) and trisaccharides. Mineral analysis ... trisaccharides, oligosaccharides, proline, minerals, electrical conductivity, acidity (total, free, lactone), HMF, diastase ...
... comprising an aminoglycosyl trisaccharide repeat: -,4)-beta-d-ManpNAc-(1-,4)-beta-d-GlcpNAc-(1-,6)-alpha-d-GlcpNAc-(1-,, ... The SCWPs of Bc CA/CI contained the identical HexNAc trisaccharide backbone and Gal modifications found in Ba, together with ...
... acetylated trisaccharide (M+Cl ion: 581.15), f, trisaccharide (M+Cl ion: 539.14), g, cellobiose (M+Cl ion: 377.09), and h, ...
Trisaccharide : property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+,,c__DisplayClass230_0., ...

No FAQ available that match "trisaccharides"

No images available that match "trisaccharides"