Transcription Factors
Transcription, Genetic
Promoter Regions, Genetic
DNA-Binding Proteins
Sp1 Transcription Factor
Gene Expression Regulation
Molecular Sequence Data
Base Sequence
Transcriptional Activation
Binding Sites
Trans-Activators
Basic Helix-Loop-Helix Transcription Factors
RNA, Messenger
Protein Binding
Nuclear Proteins
Transcription Factor AP-1
Repressor Proteins
Forkhead Transcription Factors
Homeodomain Proteins
Gene Expression Regulation, Developmental
Signal Transduction
Amino Acid Sequence
DNA
Basic-Leucine Zipper Transcription Factors
Transcription Factor AP-2
Mutation
Cell Nucleus
Cell Differentiation
Transfection
Kruppel-Like Transcription Factors
Transcription Factors, TFII
Chromatin Immunoprecipitation
Genes, Reporter
YY1 Transcription Factor
HeLa Cells
STAT3 Transcription Factor
GATA4 Transcription Factor
Transcription Factor TFIID
Cells, Cultured
Activating Transcription Factor 3
NFATC Transcription Factors
Sp3 Transcription Factor
Transcription Initiation Site
NF-kappa B
Reverse Transcriptase Polymerase Chain Reaction
Zinc Fingers
Paired Box Transcription Factors
Electrophoretic Mobility Shift Assay
Activating Transcription Factor 2
Transcription Factor TFIIB
Enhancer Elements, Genetic
Regulatory Sequences, Nucleic Acid
E2F1 Transcription Factor
RNA Polymerase II
Gene Expression Profiling
Cloning, Molecular
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
MEF2 Transcription Factors
Recombinant Fusion Proteins
Plasmids
GATA3 Transcription Factor
GATA1 Transcription Factor
GATA2 Transcription Factor
Gene Expression
Gene Expression Regulation, Fungal
TCF Transcription Factors
GATA Transcription Factors
Microphthalmia-Associated Transcription Factor
Luciferases
STAT1 Transcription Factor
Protein Structure, Tertiary
Activating Transcription Factors
Transcription Factor RelA
E2F Transcription Factors
Phosphorylation
Helix-Loop-Helix Motifs
Chromatin
Saccharomyces cerevisiae
Oligonucleotide Array Sequence Analysis
Saccharomyces cerevisiae Proteins
Gene Expression Regulation, Plant
GATA6 Transcription Factor
Activating Transcription Factor 4
Models, Biological
Transcription Factor 7-Like 1 Protein
Activating Transcription Factor 1
Cyclic AMP Response Element-Binding Protein
Sequence Homology, Amino Acid
Transcription Factor TFIIIA
Proto-Oncogene Proteins
Blotting, Western
Mice, Knockout
TATA Box
NFI Transcription Factors
Models, Genetic
Tumor Cells, Cultured
Down-Regulation
Proto-Oncogene Proteins c-jun
Drosophila Proteins
Proto-Oncogene Proteins c-ets
Mice, Transgenic
Up-Regulation
Sequence Alignment
Phenotype
CCAAT-Enhancer-Binding Proteins
Transcription Factor TFIIH
SOX9 Transcription Factor
Transcription Factor TFIIA
DNA-Directed RNA Polymerases
Consensus Sequence
Histones
Gene Expression Regulation, Bacterial
STAT5 Transcription Factor
Transcription Factor DP1
In Situ Hybridization
Arabidopsis Proteins
DNA Footprinting
Conserved Sequence
T-Box Domain Proteins
DNA, Complementary
Leucine Zippers
Octamer Transcription Factor-1
Regulatory Elements, Transcriptional
Gene Expression Regulation, Enzymologic
Arabidopsis
Gene Expression Regulation, Neoplastic
TATA-Box Binding Protein
Erythroid-Specific DNA-Binding Factors
Two-Hybrid System Techniques
Drosophila
Transcription Factors, TFIII
GA-Binding Protein Transcription Factor
Cell Lineage
Gene Regulatory Networks
Blotting, Northern
Early Growth Response Protein 1
Gene Deletion
Sequence Homology, Nucleic Acid
RNA Interference
RNA, Small Interfering
High Mobility Group Proteins
Transcription Factor 7-Like 2 Protein
Proto-Oncogene Protein c-ets-1
Deoxyribonuclease I
RNA
Plant Proteins
Sequence Analysis, DNA
Apoptosis
Escherichia coli
Twist Transcription Factor
NF-E2 Transcription Factor, p45 Subunit
Carrier Proteins
Chloramphenicol O-Acetyltransferase
Mutagenesis, Site-Directed
Gene Expression Regulation, Viral
Proto-Oncogene Proteins c-fos
Polymerase Chain Reaction
Oligodeoxyribonucleotides
Transcription Factor TFIIIB
Active Transport, Cell Nucleus
Activating Transcription Factor 6
Transcription Factor Brn-3
Restriction Mapping
Cell Cycle
SOXB1 Transcription Factors
3T3 Cells
COS Cells
NF-E2 Transcription Factor
Genes, Regulator
CCAAT-Binding Factor
Response Elements
Multigene Family
Drosophila melanogaster
SOXE Transcription Factors
Upstream Stimulatory Factors
Gene Silencing
Cell Cycle Proteins
Embryo, Mammalian
Myogenic Regulatory Factors
RNA Polymerase III
Immunohistochemistry
Embryo, Nonmammalian
Dimerization
Pol1 Transcription Initiation Complex Proteins
Transcription Factor 3
Organ Specificity
Amino Acid Motifs
Transcription Factor Pit-1
Mutagenesis
Inducible NO synthase: role in cellular signalling. (1/70946)
The discovery of endothelium-derived relaxing factor and its identification as nitric oxide (NO) was one of the most exciting discoveries of biomedical research in the 1980s. Besides its potent vasodilatory effects, NO was found under certain circumstances to be responsible for the killing of microorganisms and tumour cells by activated macrophages and to act as a novel, unconventional type of neurotransmitter. In 1992, Science picked NO as the 'Molecule of the Year', and over the past years NO has become established as a universal intercellular messenger that acutely affects important signalling pathways and, on a more long-term scale, modulates gene expression in target cells. These actions will form the focus of the present review. (+info)The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. (2/70946)
The nephric duct is the first epithelial tubule to differentiate from intermediate mesoderm that is essential for all further urogenital development. In this study we identify the domain of intermediate mesoderm that gives rise to the nephric duct and demonstrate that the surface ectoderm is required for its differentiation. Removal of the surface ectoderm resulted in decreased levels of Sim-1 and Pax-2 mRNA expression in mesenchymal nephric duct progenitors, and caused inhibition of nephric duct formation and subsequent kidney development. The surface ectoderm expresses BMP-4 and we show that it is required for the maintenance of high-level BMP-4 expression in lateral plate mesoderm. Addition of a BMP-4-coated bead to embryos lacking the surface ectoderm restored normal levels of Sim-1 and Pax-2 mRNA expression in nephric duct progenitors, nephric duct formation and the initiation of nephrogenesis. Thus, BMP-4 signaling can substitute for the surface ectoderm in supporting nephric duct morphogenesis. Collectively, these data suggest that inductive interactions between the surface ectoderm, lateral mesoderm and intermediate mesoderm are essential for nephric duct formation and the initiation of urogenital development. (+info)Separation of shoot and floral identity in Arabidopsis. (3/70946)
The overall morphology of an Arabidopsis plant depends on the behaviour of its meristems. Meristems derived from the shoot apex can develop into either shoots or flowers. The distinction between these alternative fates requires separation between the function of floral meristem identity genes and the function of an antagonistic group of genes, which includes TERMINAL FLOWER 1. We show that the activities of these genes are restricted to separate domains of the shoot apex by different mechanisms. Meristem identity genes, such as LEAFY, APETALA 1 and CAULIFLOWER, prevent TERMINAL FLOWER 1 transcription in floral meristems on the apex periphery. TERMINAL FLOWER 1, in turn, can inhibit the activity of meristem identity genes at the centre of the shoot apex in two ways; first by delaying their upregulation, and second, by preventing the meristem from responding to LEAFY or APETALA 1. We suggest that the wild-type pattern of TERMINAL FLOWER 1 and floral meristem identity gene expression depends on the relative timing of their upregulation. (+info)Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. (4/70946)
Homeotic genes are known to be involved in patterning morphological structures along the antero-posterior axis of insects and vertebrates. Because of their important roles in development, changes in the function and expression patterns of homeotic genes may have played a major role in the evolution of different body plans. For example, it has been proposed that during the evolution of several crustacean lineages, changes in the expression patterns of the homeotic genes Ultrabithorax and abdominal-A have played a role in transformation of the anterior thoracic appendages into mouthparts termed maxillipeds. This homeotic-like transformation is recapitulated at the late stages of the direct embryonic development of the crustacean Porcellio scaber (Oniscidea, Isopoda). Interestingly, this morphological change is associated with apparent novelties both in the transcriptional and post-transcriptional regulation of the Porcellio scaber ortholog of the Drosophila homeotic gene, Sex combs reduced (Scr). Specifically, we find that Scr mRNA is present in the second maxillary segment and the first pair of thoracic legs (T1) in early embryos, whereas protein accumulates only in the second maxillae. In later stages, however, high levels of SCR appear in the T1 legs, which correlates temporally with the transformation of these appendages into maxillipeds. Our observations provide further insight into the process of the homeotic leg-to-maxilliped transformation in the evolution of crustaceans and suggest a novel regulatory mechanism for this process in this group of arthropods. (+info)Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation. (5/70946)
The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3' untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3' untranslated region. (+info)The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. (6/70946)
The Drosophila kismet gene was identified in a screen for dominant suppressors of Polycomb, a repressor of homeotic genes. Here we show that kismet mutations suppress the Polycomb mutant phenotype by blocking the ectopic transcription of homeotic genes. Loss of zygotic kismet function causes homeotic transformations similar to those associated with loss-of-function mutations in the homeotic genes Sex combs reduced and Abdominal-B. kismet is also required for proper larval body segmentation. Loss of maternal kismet function causes segmentation defects similar to those caused by mutations in the pair-rule gene even-skipped. The kismet gene encodes several large nuclear proteins that are ubiquitously expressed along the anterior-posterior axis. The Kismet proteins contain a domain conserved in the trithorax group protein Brahma and related chromatin-remodeling factors, providing further evidence that alterations in chromatin structure are required to maintain the spatially restricted patterns of homeotic gene transcription. (+info)The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. (7/70946)
Left-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2. It is asymmetrically expressed in the left lateral plate mesoderm, tubular heart and early gut tube. Localized Pitx2 expression continues when these organs undergo asymmetric looping morphogenesis. Ectopic expression of Xnr1 in the right lateral plate induces Pitx2 transcription in Xenopus. Misexpression of Pitx2 affects situs and morphology of organs. These experiments suggest a role for Pitx2 in promoting looping of the linear heart and gut. (+info)A Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates. (8/70946)
The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates. (+info)Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.
Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.
In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.
It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.
See also: Cancer, Tumor
Word count: 190
There are several key features of inflammation:
1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.
Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.
There are several types of inflammation, including:
1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.
There are several ways to reduce inflammation, including:
1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.
It's important to note that chronic inflammation can lead to a range of health problems, including:
1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.
Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
There are different types of Breast Neoplasms such as:
1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.
2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.
3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.
4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.
5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.
Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.
Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.
It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.
Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.
Types of Neoplasms
There are many different types of neoplasms, including:
1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.
Causes and Risk Factors of Neoplasms
The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:
1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.
Signs and Symptoms of Neoplasms
The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:
1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.
Diagnosis and Treatment of Neoplasms
The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.
The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:
1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.
Prevention of Neoplasms
While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:
1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.
It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.
There are several risk factors for developing HCC, including:
* Cirrhosis, which can be caused by heavy alcohol consumption, viral hepatitis (such as hepatitis B and C), or fatty liver disease
* Family history of liver disease
* Chronic obstructive pulmonary disease (COPD)
* Diabetes
* Obesity
HCC can be challenging to diagnose, as the symptoms are non-specific and can be similar to those of other conditions. However, some common symptoms of HCC include:
* Yellowing of the skin and eyes (jaundice)
* Fatigue
* Loss of appetite
* Abdominal pain or discomfort
* Weight loss
If HCC is suspected, a doctor may perform several tests to confirm the diagnosis, including:
* Imaging tests, such as ultrasound, CT scan, or MRI, to look for tumors in the liver
* Blood tests to check for liver function and detect certain substances that are produced by the liver
* Biopsy, which involves removing a small sample of tissue from the liver to examine under a microscope
Once HCC is diagnosed, treatment options will depend on several factors, including the stage and location of the cancer, the patient's overall health, and their personal preferences. Treatment options may include:
* Surgery to remove the tumor or parts of the liver
* Ablation, which involves destroying the cancer cells using heat or cold
* Chemoembolization, which involves injecting chemotherapy drugs into the hepatic artery to reach the cancer cells
* Targeted therapy, which uses drugs or other substances to target specific molecules that are involved in the growth and spread of the cancer
Overall, the prognosis for HCC is poor, with a 5-year survival rate of approximately 20%. However, early detection and treatment can improve outcomes. It is important for individuals at high risk for HCC to be monitored regularly by a healthcare provider, and to seek medical attention if they experience any symptoms.
Some common effects of chromosomal deletions include:
1. Genetic disorders: Chromosomal deletions can lead to a variety of genetic disorders, such as Down syndrome, which is caused by a deletion of a portion of chromosome 21. Other examples include Prader-Willi syndrome (deletion of chromosome 15), and Williams syndrome (deletion of chromosome 7).
2. Birth defects: Chromosomal deletions can increase the risk of birth defects, such as heart defects, cleft palate, and limb abnormalities.
3. Developmental delays: Children with chromosomal deletions may experience developmental delays, learning disabilities, and intellectual disability.
4. Increased cancer risk: Some chromosomal deletions can increase the risk of developing certain types of cancer, such as chronic myelogenous leukemia (CML) and breast cancer.
5. Reproductive problems: Chromosomal deletions can lead to reproductive problems, such as infertility or recurrent miscarriage.
Chromosomal deletions can be diagnosed through a variety of techniques, including karyotyping (examination of the chromosomes), fluorescence in situ hybridization (FISH), and microarray analysis. Treatment options for chromosomal deletions depend on the specific effects of the deletion and may include medication, surgery, or other forms of therapy.
Erythroleukemia typically affects adults in their 50s and 60s, although it can occur at any age. Symptoms may include fever, night sweats, weight loss, and fatigue. The cancer cells can spread to other parts of the body, including the spleen, liver, and lymph nodes.
Erythroleukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore normal blood cell production. In some cases, a bone marrow transplant may be necessary. The prognosis for erythroleukemia is generally poor, with a five-year survival rate of about 20%.
Erythroleukemia is classified as an acute leukemia, meaning it progresses rapidly and can lead to life-threatening complications if left untreated. It is important for patients to receive prompt and appropriate treatment to improve their chances of survival and quality of life.
There are different types of anoxia, including:
1. Cerebral anoxia: This occurs when the brain does not receive enough oxygen, leading to cognitive impairment, confusion, and loss of consciousness.
2. Pulmonary anoxia: This occurs when the lungs do not receive enough oxygen, leading to shortness of breath, coughing, and chest pain.
3. Cardiac anoxia: This occurs when the heart does not receive enough oxygen, leading to cardiac arrest and potentially death.
4. Global anoxia: This is a complete lack of oxygen to the entire body, leading to widespread tissue damage and death.
Treatment for anoxia depends on the underlying cause and the severity of the condition. In some cases, hospitalization may be necessary to provide oxygen therapy, pain management, and other supportive care. In severe cases, anoxia can lead to long-term disability or death.
Prevention of anoxia is important, and this includes managing underlying medical conditions such as heart disease, diabetes, and respiratory problems. It also involves avoiding activities that can lead to oxygen deprivation, such as scuba diving or high-altitude climbing, without proper training and equipment.
In summary, anoxia is a serious medical condition that occurs when there is a lack of oxygen in the body or specific tissues or organs. It can cause cell death and tissue damage, leading to serious health complications and even death if left untreated. Early diagnosis and treatment are crucial to prevent long-term disability or death.
Malignant prostatic neoplasms are cancerous tumors that can be aggressive and spread to other parts of the body (metastasize). The most common type of malignant prostatic neoplasm is adenocarcinoma of the prostate, which accounts for approximately 95% of all prostate cancers. Other types of malignant prostatic neoplasms include sarcomas and small cell carcinomas.
Prostatic neoplasms can be diagnosed through a variety of tests such as digital rectal examination (DRE), prostate-specific antigen (PSA) test, imaging studies (ultrasound, CT scan or MRI), and biopsy. Treatment options for prostatic neoplasms depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health. Treatment options can include active surveillance, surgery (robotic-assisted laparoscopic prostatectomy or open prostatectomy), radiation therapy (external beam radiation therapy or brachytherapy), and hormone therapy.
In summary, Prostatic Neoplasms are tumors that occur in the prostate gland, which can be benign or malignant. The most common types of malignant prostatic neoplasms are adenocarcinoma of the prostate, and other types include sarcomas and small cell carcinomas. Diagnosis is done through a variety of tests, and treatment options depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health.
https://www.medicinenet.com › Medical Dictionary › G
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
Genetic Translocation | Definition & Facts | Britannica
https://www.britannica.com › science › Genetic-tr...
Genetic translocation, also called chromosomal translocation, a type of chromosomal aberration in which a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material. Genetic translocations are often found in cancer cells and may play a role in the development and progression of cancer.
Translocation, Genetic | health Encyclopedia - UPMC
https://www.upmc.com › health-library › gene...
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
Genetic Translocation | Genetics Home Reference - NIH
https://ghr.nlm.nih.gov › condition › ge...
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
In conclusion, Genetic Translocation is an abnormality in the number or arrangement of chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome, resulting in a gain or loss of genetic material that can have significant effects on the individual.
Liver neoplasms, also known as liver tumors or hepatic tumors, are abnormal growths of tissue in the liver. These growths can be benign (non-cancerous) or malignant (cancerous). Malignant liver tumors can be primary, meaning they originate in the liver, or metastatic, meaning they spread to the liver from another part of the body.
There are several types of liver neoplasms, including:
1. Hepatocellular carcinoma (HCC): This is the most common type of primary liver cancer and arises from the main cells of the liver (hepatocytes). HCC is often associated with cirrhosis and can be caused by viral hepatitis or alcohol abuse.
2. Cholangiocarcinoma: This type of cancer arises from the cells lining the bile ducts within the liver (cholangiocytes). Cholangiocarcinoma is rare and often diagnosed at an advanced stage.
3. Hemangiosarcoma: This is a rare type of cancer that originates in the blood vessels of the liver. It is most commonly seen in dogs but can also occur in humans.
4. Fibromas: These are benign tumors that arise from the connective tissue of the liver (fibrocytes). Fibromas are usually small and do not spread to other parts of the body.
5. Adenomas: These are benign tumors that arise from the glandular cells of the liver (hepatocytes). Adenomas are usually small and do not spread to other parts of the body.
The symptoms of liver neoplasms vary depending on their size, location, and whether they are benign or malignant. Common symptoms include abdominal pain, fatigue, weight loss, and jaundice (yellowing of the skin and eyes). Diagnosis is typically made through a combination of imaging tests such as CT scans, MRI scans, and ultrasound, and a biopsy to confirm the presence of cancer cells.
Treatment options for liver neoplasms depend on the type, size, location, and stage of the tumor, as well as the patient's overall health. Surgery may be an option for some patients with small, localized tumors, while others may require chemotherapy or radiation therapy to shrink the tumor before surgery can be performed. In some cases, liver transplantation may be necessary.
Prognosis for liver neoplasms varies depending on the type and stage of the cancer. In general, early detection and treatment improve the prognosis, while advanced-stage disease is associated with a poorer prognosis.
There are several types of melanoma, including:
1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.
The risk factors for developing melanoma include:
1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma
The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:
1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole
If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.
In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.
1. Tumor size and location: Larger tumors that have spread to nearby tissues or organs are generally considered more invasive than smaller tumors that are confined to the original site.
2. Cellular growth patterns: The way in which cancer cells grow and divide can also contribute to the overall invasiveness of a neoplasm. For example, cells that grow in a disorganized or chaotic manner may be more likely to invade surrounding tissues.
3. Mitotic index: The mitotic index is a measure of how quickly the cancer cells are dividing. A higher mitotic index is generally associated with more aggressive and invasive cancers.
4. Necrosis: Necrosis, or the death of cells, can be an indication of the level of invasiveness of a neoplasm. The presence of significant necrosis in a tumor is often a sign that the cancer has invaded surrounding tissues and organs.
5. Lymphovascular invasion: Cancer cells that have invaded lymphatic vessels or blood vessels are considered more invasive than those that have not.
6. Perineural invasion: Cancer cells that have invaded nerve fibers are also considered more invasive.
7. Histological grade: The histological grade of a neoplasm is a measure of how abnormal the cancer cells look under a microscope. Higher-grade cancers are generally considered more aggressive and invasive than lower-grade cancers.
8. Immunohistochemical markers: Certain immunohistochemical markers, such as Ki-67, can be used to evaluate the proliferative activity of cancer cells. Higher levels of these markers are generally associated with more aggressive and invasive cancers.
Overall, the degree of neoplasm invasiveness is an important factor in determining the likelihood of the cancer spreading to other parts of the body (metastasizing) and in determining the appropriate treatment strategy for the patient.
Some common types of eye abnormalities include:
1. Refractive errors: These are errors in the way the eye focuses light, causing blurry vision. Examples include myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia (age-related loss of near vision).
2. Amblyopia: This is a condition where the brain favors one eye over the other, causing poor vision in the weaker eye.
3. Cataracts: A cataract is a clouding of the lens in the eye that can cause blurry vision and increase the risk of glaucoma.
4. Glaucoma: This is a group of eye conditions that can damage the optic nerve and lead to vision loss.
5. Macular degeneration: This is a condition where the macula, the part of the retina responsible for central vision, deteriorates, leading to vision loss.
6. Diabetic retinopathy: This is a complication of diabetes that can damage the blood vessels in the retina and lead to vision loss.
7. Retinal detachment: This is a condition where the retina becomes separated from the underlying tissue, leading to vision loss.
8. Corneal abnormalities: These are irregularities in the shape or structure of the cornea, such as keratoconus, that can cause blurry vision.
9. Optic nerve disorders: These are conditions that affect the optic nerve, such as optic neuritis, that can cause vision loss.
10. Traumatic eye injuries: These are injuries to the eye or surrounding tissue that can cause vision loss or other eye abnormalities.
Eye abnormalities can be diagnosed through a comprehensive eye exam, which may include visual acuity tests, refraction tests, and imaging tests such as retinal photography or optical coherence tomography (OCT). Treatment for eye abnormalities depends on the specific condition and may include glasses or contact lenses, medication, surgery, or other therapies.
Neuroblastoma is caused by a genetic mutation that affects the development and growth of nerve cells. The cancerous cells are often sensitive to chemotherapy, but they can be difficult to remove surgically because they are deeply embedded in the nervous system.
There are several different types of neuroblastoma, including:
1. Infantile neuroblastoma: This type of neuroblastoma occurs in children under the age of one and is often more aggressive than other types of the cancer.
2. Juvenile neuroblastoma: This type of neuroblastoma occurs in children between the ages of one and five and tends to be less aggressive than infantile neuroblastoma.
3. Adult neuroblastoma: This type of neuroblastoma occurs in adults and is rare.
4. Metastatic neuroblastoma: This type of neuroblastoma has spread to other parts of the body, such as the bones or liver.
Symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include:
* Abdominal pain
* Fever
* Loss of appetite
* Weight loss
* Fatigue
* Bone pain
* Swelling in the abdomen or neck
* Constipation
* Increased heart rate
Diagnosis of neuroblastoma typically involves a combination of imaging tests, such as CT scans and MRI scans, and biopsies to confirm the presence of cancerous cells. Treatment for neuroblastoma usually involves a combination of chemotherapy, surgery, and radiation therapy. The prognosis for neuroblastoma varies depending on the type of cancer, the age of the child, and the stage of the disease. In general, the younger the child and the more aggressive the treatment, the better the prognosis.
Embryonal carcinoma is thought to be caused by genetic mutations that occur during fetal development. These mutations can disrupt the normal growth and development of cells, leading to the formation of abnormal tissue and eventually cancer.
Symptoms of embryonal carcinoma vary depending on the location of the tumor. They may include skin lesions, seizures, developmental delays, and gastrointestinal problems. Diagnosis is typically made through a combination of imaging tests such as ultrasound, CT scans, and MRI scans, as well as biopsy to confirm the presence of cancer cells.
Treatment for embryonal carcinoma usually involves surgery to remove the tumor, as well as chemotherapy and/or radiation therapy to destroy any remaining cancer cells. In some cases, bone marrow or stem cell transplantation may be necessary. Prognosis for this disease is generally poor, as it is often diagnosed at a late stage and can be difficult to treat effectively.
Embryonal carcinoma is different from other types of cancer in that it arises from embryonic tissue rather than adult tissue. It is also characterized by the presence of immature cells, which are not found in more advanced cancers. Overall, embryonal carcinoma is a rare and aggressive form of cancer that requires specialized treatment and management.
1. Activation of oncogenes: Some viruses contain genes that code for proteins that can activate existing oncogenes in the host cell, leading to uncontrolled cell growth.
2. Inactivation of tumor suppressor genes: Other viruses may contain genes that inhibit the expression of tumor suppressor genes, allowing cells to grow and divide uncontrollably.
3. Insertional mutagenesis: Some viruses can insert their own DNA into the host cell's genome, leading to disruptions in normal cellular function and potentially causing cancer.
4. Epigenetic changes: Viral infection can also cause epigenetic changes, such as DNA methylation or histone modification, that can lead to the silencing of tumor suppressor genes and the activation of oncogenes.
Viral cell transformation is a key factor in the development of many types of cancer, including cervical cancer caused by human papillomavirus (HPV), and liver cancer caused by hepatitis B virus (HBV). In addition, some viruses are specifically known to cause cancer, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus (MCV).
Early detection and treatment of viral infections can help prevent the development of cancer. Vaccines are also available for some viruses that are known to cause cancer, such as HPV and hepatitis B. Additionally, antiviral therapy can be used to treat existing infections and may help reduce the risk of cancer development.
There are several types of colonic neoplasms, including:
1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.
Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.
Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.
Examples of experimental liver neoplasms include:
1. Hepatocellular carcinoma (HCC): This is the most common type of primary liver cancer and can be induced experimentally by injecting carcinogens such as diethylnitrosamine (DEN) or dimethylbenz(a)anthracene (DMBA) into the liver tissue of animals.
2. Cholangiocarcinoma: This type of cancer originates in the bile ducts within the liver and can be induced experimentally by injecting chemical carcinogens such as DEN or DMBA into the bile ducts of animals.
3. Hepatoblastoma: This is a rare type of liver cancer that primarily affects children and can be induced experimentally by administering chemotherapy drugs to newborn mice or rats.
4. Metastatic tumors: These are tumors that originate in other parts of the body and spread to the liver through the bloodstream or lymphatic system. Experimental models of metastatic tumors can be studied by injecting cancer cells into the liver tissue of animals.
The study of experimental liver neoplasms is important for understanding the underlying mechanisms of liver cancer development and progression, as well as identifying potential therapeutic targets for the treatment of this disease. Animal models can be used to test the efficacy of new drugs or therapies before they are tested in humans, which can help to accelerate the development of new treatments for liver cancer.
There are several types of osteosarcomas, including:
1. High-grade osteosarcoma: This is the most common type of osteosarcoma and tends to grow quickly.
2. Low-grade osteosarcoma: This type of osteosarcoma grows more slowly than high-grade osteosarcoma.
3. Chondrosarcoma: This is a type of osteosarcoma that arises in the cartilage cells of the bone.
4. Ewing's family of tumors: These are rare types of osteosarcoma that can occur in any bone of the body.
The exact cause of osteosarcoma is not known, but certain risk factors may increase the likelihood of developing the disease. These include:
1. Previous radiation exposure
2. Paget's disease of bone
3. Li-Fraumeni syndrome (a genetic disorder that increases the risk of certain types of cancer)
4. Familial retinoblastoma (a rare inherited condition)
5. Exposure to certain chemicals, such as herbicides and industrial chemicals.
Symptoms of osteosarcoma may include:
1. Pain in the affected bone, which may be worse at night or with activity
2. Swelling and redness around the affected area
3. Limited mobility or stiffness in the affected limb
4. A visible lump or mass on the affected bone
5. Fractures or breaks in the affected bone
If osteosarcoma is suspected, a doctor may perform several tests to confirm the diagnosis and determine the extent of the disease. These may include:
1. Imaging studies, such as X-rays, CT scans, or MRI scans
2. Biopsy, in which a sample of tissue is removed from the affected bone and examined under a microscope for cancer cells
3. Blood tests to check for elevated levels of certain enzymes that are produced by osteosarcoma cells
4. Bone scans to look for areas of increased activity or metabolism in the bones.
There are several types of lung neoplasms, including:
1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.
Lung diseases can also be classified based on their cause, such as:
1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.
Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.
Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:
1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)
The symptoms of adenocarcinoma depend on the location of the cancer and can include:
1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)
The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.
Treatment options for adenocarcinoma depend on the location of the cancer and can include:
1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.
The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.
Medical Term: Cardiomegaly
Definition: An abnormal enlargement of the heart.
Symptoms: Difficulty breathing, shortness of breath, fatigue, swelling of legs and feet, chest pain, and palpitations.
Causes: Hypertension, cardiac valve disease, myocardial infarction (heart attack), congenital heart defects, and other conditions that affect the heart muscle or cardiovascular system.
Diagnosis: Physical examination, electrocardiogram (ECG), chest x-ray, echocardiography, and other diagnostic tests as necessary.
Treatment: Medications such as diuretics, vasodilators, and beta blockers, lifestyle changes such as exercise and diet modifications, surgery or other interventions in severe cases.
Note: Cardiomegaly is a serious medical condition that requires prompt diagnosis and treatment to prevent complications such as heart failure and death. If you suspect you or someone else may have cardiomegaly, seek medical attention immediately.
There are several different types of leukemia, including:
1. Acute Lymphoblastic Leukemia (ALL): This is the most common type of leukemia in children, but it can also occur in adults. It is characterized by an overproduction of immature white blood cells called lymphoblasts.
2. Acute Myeloid Leukemia (AML): This type of leukemia affects the bone marrow's ability to produce red blood cells, platelets, and other white blood cells. It can occur at any age but is most common in adults.
3. Chronic Lymphocytic Leukemia (CLL): This type of leukemia affects older adults and is characterized by the slow growth of abnormal white blood cells called lymphocytes.
4. Chronic Myeloid Leukemia (CML): This type of leukemia is caused by a genetic mutation in a gene called BCR-ABL. It can occur at any age but is most common in adults.
5. Hairy Cell Leukemia: This is a rare type of leukemia that affects older adults and is characterized by the presence of abnormal white blood cells called hairy cells.
6. Myelodysplastic Syndrome (MDS): This is a group of disorders that occur when the bone marrow is unable to produce healthy blood cells. It can lead to leukemia if left untreated.
Treatment for leukemia depends on the type and severity of the disease, but may include chemotherapy, radiation therapy, targeted therapy, or stem cell transplantation.
Disease progression can be classified into several types based on the pattern of worsening:
1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.
Disease progression can be influenced by various factors, including:
1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.
Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.
Ewing's sarcoma is a rare and aggressive type of cancer that affects the bones and soft tissues of the body. It primarily occurs in the pelvis, spine, and limbs. This malignancy usually develops in children and young adults between the ages of 10 and 30.
Ewing's sarcoma is caused by a genetic mutation in the EWS gene, which is responsible for regulating cell growth and division. The mutated gene leads to uncontrollable cell proliferation, resulting in the formation of a tumor.
The symptoms of Ewing's sarcoma vary depending on the location of the tumor but can include pain, swelling, limited mobility, and broken bones. Diagnosis is usually made through a combination of imaging tests such as X-rays, CT scans, and PET scans, along with a biopsy to confirm the presence of cancer cells.
Treatment for Ewing's sarcoma typically involves a combination of surgery, chemotherapy, and radiation therapy. Surgery is used to remove the tumor and any affected tissue, while chemotherapy and radiation therapy are used to kill any remaining cancer cells. The prognosis for Ewing's sarcoma varies depending on the stage and location of the cancer but can be improved with early diagnosis and appropriate treatment.
Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.
The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.
Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.
Examples of diseases with a known genetic predisposition:
1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.
Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."
There are several subtypes of carcinoma, including:
1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.
The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:
* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding
The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.
In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.
References:
1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from
There are several types of skin neoplasms, including:
1. Basal cell carcinoma (BCC): This is the most common type of skin cancer, and it usually appears as a small, fleshy bump or a flat, scaly patch. BCC is highly treatable, but if left untreated, it can grow and invade surrounding tissue.
2. Squamous cell carcinoma (SCC): This type of skin cancer is less common than BCC but more aggressive. It typically appears as a firm, flat, or raised bump on sun-exposed areas. SCC can spread to other parts of the body if left untreated.
3. Melanoma: This is the most serious type of skin cancer, accounting for only 1% of all skin neoplasms but responsible for the majority of skin cancer deaths. Melanoma can appear as a new or changing mole, and it's essential to recognize the ABCDE signs (Asymmetry, Border irregularity, Color variation, Diameter >6mm, Evolving size, shape, or color) to detect it early.
4. Sebaceous gland carcinoma: This rare type of skin cancer originates in the oil-producing glands of the skin and can appear as a firm, painless nodule on the forehead, nose, or other oily areas.
5. Merkel cell carcinoma: This is a rare and aggressive skin cancer that typically appears as a firm, shiny bump on the skin. It's more common in older adults and those with a history of sun exposure.
6. Cutaneous lymphoma: This type of cancer affects the immune system and can appear as a rash, nodules, or tumors on the skin.
7. Kaposi sarcoma: This is a rare type of skin cancer that affects people with weakened immune systems, such as those with HIV/AIDS. It typically appears as a flat, red or purple lesion on the skin.
While skin cancers are generally curable when detected early, it's important to be aware of your skin and notice any changes or unusual spots, especially if you have a history of sun exposure or other risk factors. If you suspect anything suspicious, see a dermatologist for an evaluation and potential biopsy. Remember, prevention is key to avoiding the harmful effects of UV radiation and reducing your risk of developing skin cancer.
Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.
Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.
Pathologic neovascularization can be seen in a variety of conditions, including cancer, diabetic retinopathy, and age-related macular degeneration. In cancer, for example, the formation of new blood vessels can help the tumor grow and spread to other parts of the body. In diabetic retinopathy, the growth of new blood vessels in the retina can cause vision loss and other complications.
There are several different types of pathologic neovascularization, including:
* Angiosarcoma: a type of cancer that arises from the cells lining blood vessels
* Hemangiomas: benign tumors that are composed of blood vessels
* Cavernous malformations: abnormal collections of blood vessels in the brain or other parts of the body
* Pyogenic granulomas: inflammatory lesions that can form in response to trauma or infection.
The diagnosis of pathologic neovascularization is typically made through a combination of physical examination, imaging studies (such as ultrasound, CT scans, or MRI), and biopsy. Treatment options vary depending on the underlying cause of the condition, but may include medications, surgery, or radiation therapy.
In summary, pathologic neovascularization is a process that occurs in response to injury or disease, and it can lead to serious complications. It is important for healthcare professionals to be aware of this condition and its various forms in order to provide appropriate diagnosis and treatment.
Also known as Burkitt's Lymphoma.
Myeloid leukemia can be classified into several subtypes based on the type of cell involved and the degree of maturity of the abnormal cells. The most common types of myeloid leukemia include:
1. Acute Myeloid Leukemia (AML): This is the most aggressive form of myeloid leukemia, characterized by a rapid progression of immature cells that do not mature or differentiate into normal cells. AML can be further divided into several subtypes based on the presence of certain genetic mutations or chromosomal abnormalities.
2. Chronic Myeloid Leukemia (CML): This is a slower-growing form of myeloid leukemia, characterized by the presence of a genetic abnormality known as the Philadelphia chromosome. CML is typically treated with targeted therapies or bone marrow transplantation.
3. Myelodysplastic Syndrome (MDS): This is a group of disorders characterized by the impaired development of immature blood cells in the bone marrow. MDS can progress to AML if left untreated.
4. Chronic Myelomonocytic Leukemia (CMML): This is a rare form of myeloid leukemia that is characterized by the accumulation of immature monocytes in the blood and bone marrow. CMML can be treated with chemotherapy or bone marrow transplantation.
The symptoms of myeloid leukemia can vary depending on the subtype and severity of the disease. Common symptoms include fatigue, weakness, fever, night sweats, and weight loss. Diagnosis is typically made through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment options for myeloid leukemia can include chemotherapy, targeted therapies, bone marrow transplantation, and supportive care to manage symptoms and prevent complications. The prognosis for myeloid leukemia varies depending on the subtype of the disease and the patient's overall health. With current treatments, many patients with myeloid leukemia can achieve long-term remission or even be cured.
Carcinogenesis is the process by which normal cells are transformed into cancer cells. This complex process involves a series of genetic and molecular changes that can take place over a long period of time. The term "carcinogenesis" is derived from the Greek words "carcinoma," meaning cancer, and "genesis," meaning origin or creation.
Carcinogenesis is a multistep process that involves several stages, including:
1. initiation: This stage involves the activation of oncogenes or the inactivation of tumor suppressor genes, leading to the formation of precancerous cells.
2. promotion: In this stage, the precancerous cells undergo further changes that allow them to grow and divide uncontrollably.
3. progression: This stage is characterized by the spread of cancer cells to other parts of the body (metastasis).
The process of carcinogenesis is influenced by a variety of factors, including genetics, environmental factors, and lifestyle choices. Some of the known risk factors for carcinogenesis include:
1. tobacco use
2. excessive alcohol consumption
3. exposure to certain chemicals and radiation
4. obesity and poor diet
5. lack of physical activity
6. certain viral infections
Understanding the process of carcinogenesis is important for developing effective cancer prevention and treatment strategies. By identifying the early stages of carcinogenesis, researchers may be able to develop interventions that can prevent or reverse the process before cancer develops.
Types of Craniofacial Abnormalities:
1. Cleft lip and palate: A congenital deformity that affects the upper jaw, nose, and mouth.
2. Premature fusion of skull bones: Can result in an abnormally shaped head or face.
3. Distraction osteogenesis: A condition where the bones fail to grow properly, leading to abnormal growth patterns.
4. Facial asymmetry: A condition where one side of the face is smaller or larger than the other.
5. Craniosynostosis: A condition where the skull bones fuse together too early, causing an abnormally shaped head.
6. Micrognathia: A condition where the lower jaw is smaller than normal, which can affect breathing and feeding.
7. Macroglossia: A condition where the tongue is larger than normal, which can cause difficulty swallowing and breathing.
8. Oculofacial dysostosis: A condition that affects the development of the eyes and face.
9. Treacher Collins syndrome: A rare genetic disorder that affects the development of the face, particularly the eyes, ears, and jaw.
Causes of Craniofacial Abnormalities:
1. Genetics: Many craniofacial abnormalities are inherited from one or both parents.
2. Environmental factors: Exposure to certain drugs, alcohol, or infections during pregnancy can increase the risk of craniofacial abnormalities.
3. Premature birth: Babies born prematurely are at a higher risk for craniofacial abnormalities.
4. Trauma: Head injuries or other traumatic events can cause craniofacial abnormalities.
5. Infections: Certain infections, such as meningitis or encephalitis, can cause craniofacial abnormalities.
Treatment of Craniofacial Abnormalities:
1. Surgery: Many craniofacial abnormalities can be treated with surgery to correct the underlying deformity.
2. Orthodontic treatment: Braces or other orthodontic devices can be used to align teeth and improve the appearance of the face.
3. Speech therapy: Certain craniofacial abnormalities, such as micrognathia, can affect speech development. Speech therapy can help improve communication skills.
4. Medication: In some cases, medication may be prescribed to manage symptoms associated with craniofacial abnormalities, such as pain or breathing difficulties.
5. Rehabilitation: Physical therapy and occupational therapy can help individuals with craniofacial abnormalities regain function and mobility after surgery or other treatments.
It is important to note that the treatment of craniofacial abnormalities varies depending on the specific condition and its severity. A healthcare professional, such as a pediatrician, orthodontist, or plastic surgeon, should be consulted for proper diagnosis and treatment.
It is also important to remember that craniofacial abnormalities can have a significant impact on an individual's quality of life, affecting their self-esteem, social relationships, and ability to function in daily activities. Therefore, it is essential to provide appropriate support and resources for individuals with these conditions, including psychological counseling, social support groups, and education about the condition.
There are several types of teratomas, including:
1. Mature teratoma: This type of teratoma is made up of well-differentiated tissues that resemble normal tissues. It can contain structures such as hair follicles, sweat glands, and sebaceous glands.
2. Immature teratoma: This type of teratoma is made up of poorly differentiated cells that do not resemble normal tissues. It can contain structures such as cartilage, bone, and nervous tissue.
3. Teratoid mesodermal tumor: This type of teratoma arises from the mesoderm, which is one of the three primary layers of cells in the embryo. It can contain structures such as muscle, bone, and connective tissue.
4. Teratoid endodermal tumor: This type of teratoma arises from the endoderm, which is another primary layer of cells in the embryo. It can contain structures such as glandular tissue and epithelial tissue.
Teratomas are usually benign, but they can sometimes be malignant. Malignant teratomas can spread to other parts of the body and cause serious complications. The treatment of teratomas depends on their type, size, and location, as well as the patient's overall health. Treatment options can include surgery, chemotherapy, and radiation therapy.
In summary, a teratoma is a type of tumor that contains abnormal cells that grow and multiply in an uncontrolled manner, often forming masses or lumps. There are several types of teratomas, and they can occur in various parts of the body. Treatment options depend on the type, size, location, and patient's overall health.
Teratocarcinomas can arise from any of the three layers of germ cells: the spermatogonia, the oögonia, or the primordial germ cells. These tumors are often characterized by a mixture of normal and abnormal tissue, including skin, gastrointestinal tract, and other organs. They can also contain teratomy, which is the presence of immature tissue resembling embryonic tissue.
The diagnosis of teratocarcinoma is based on a combination of clinical, radiological, and pathological findings. Treatment options for teratocarcinoma depend on the location, size, and aggressiveness of the tumor, as well as the patient's age and overall health. Surgery is usually the first line of treatment, followed by radiation therapy or chemotherapy if necessary.
In summary, teratocarcinoma is a rare and complex type of cancer that arises from germ cells and can be either malignant or benign. It is characterized by a mixture of normal and abnormal tissue and requires careful diagnosis and treatment planning to ensure the best possible outcome for the patient.
Insulinoma is a rare type of pancreatic tumor that produces excess insulin, leading to low blood sugar levels. These tumors are typically benign and can be treated with surgery or medication.
Insulinomas account for only about 5% of all pancreatic neuroendocrine tumors. They usually occur in the head of the pancreas and can cause a variety of symptoms, including:
1. Hypoglycemia (low blood sugar): The excess insulin produced by the tumor can cause blood sugar levels to drop too low, leading to symptoms such as shakiness, dizziness, confusion, and rapid heartbeat.
2. Hyperinsulinism (elevated insulin levels): In addition to hypoglycemia, insulinomas can also cause elevated insulin levels in the blood.
3. Abdominal pain: Insulinomas can cause abdominal pain and discomfort.
4. Weight loss: Patients with insulinomas may experience unexplained weight loss.
5. Nausea and vomiting: Some patients may experience nausea and vomiting due to the hypoglycemia or other symptoms caused by the tumor.
Insulinomas are usually diagnosed through a combination of imaging tests such as CT scans, MRI scans, and PET scans, and by measuring insulin and C-peptide levels in the blood. Treatment options for insulinomas include surgery to remove the tumor, medications to control hypoglycemia and hyperinsulinism, and somatostatin analogs to reduce hormone secretion.
Insulinoma is a rare and complex condition that requires careful management by a multidisciplinary team of healthcare professionals, including endocrinologists, surgeons, and radiologists. With appropriate treatment, most patients with insulinomas can experience long-term remission and improved quality of life.
1. Innate immunity: This is the body's first line of defense against infection, and it involves the recognition and elimination of pathogens by cells and proteins that are present from birth.
2. Acquired immunity: This type of immunity develops over time as a result of exposure to pathogens, and it involves the production of antibodies and other immune cells that can recognize and eliminate specific pathogens.
3. Cell-mediated immunity: This is a type of immunity that involves the activation of immune cells, such as T cells and macrophages, to fight off infection.
4. Genetic resistance: Some individuals may have a genetic predisposition to disease resistance, which can be influenced by their ancestry or genetic makeup.
5. Environmental factors: Exposure to certain environmental factors, such as sunlight, clean water, and good nutrition, can also contribute to disease resistance.
Disease resistance is an important concept in the medical field, as it helps to protect against infectious diseases and can reduce the risk of illness and death. Understanding how disease resistance works can help healthcare professionals develop effective strategies for preventing and treating infections, and it can also inform public health policies and interventions aimed at reducing the burden of infectious diseases on individuals and communities.
Physical Features:
* Delayed growth and short stature
* Broad forehead
* Long, narrow face with a wide mouth and full lips
* Wide-set eyes that are often blue or green
* Low-set ears
* Curly or wavy hair
Developmental Features:
* Intellectual disability or cognitive impairment
* Delayed speech and language development
* Difficulty with fine motor skills and hand-eye coordination
* Poor musical ability
Personality Profile:
* Friendly and outgoing personality
* High level of empathy and compassion for others
* Excellent social skills
* Love of music and dance
* Curiosity and playfulness
Causes and Inheritance:
Williams syndrome is caused by a deletion of genetic material from chromosome 7, specifically the q11.23 region. This deletion occurs spontaneously, without a known family history or environmental trigger. The disorder is not inherited in a Mendelian pattern, meaning that it does not follow traditional patterns of inheritance.
Diagnosis:
Williams syndrome can be diagnosed through a combination of physical and developmental assessments, as well as genetic testing. Physical features such as broad foreheads and wide mouths are often present at birth, while developmental delays and cognitive impairments may not become apparent until later in childhood. Genetic testing can confirm the diagnosis by identifying the deletion of genetic material on chromosome 7.
Treatment and Management:
There is no cure for Williams syndrome, but early intervention and specialized management can help individuals with the disorder reach their full potential. Treatment may include:
* Physical therapy to improve fine motor skills and coordination
* Speech and language therapy to improve communication skills
* Occupational therapy to develop daily living skills
* Special education programs tailored to individual needs
* Medications to manage cardiovascular problems, hypertension, and sleep disorders
Prognosis:
The prognosis for individuals with Williams syndrome varies depending on the severity of the symptoms. Some individuals may experience significant developmental delays and cognitive impairments, while others may have fewer or no symptoms. With early intervention and specialized management, many individuals with Williams syndrome can lead fulfilling lives and achieve their full potential.
Inheritance Pattern:
Williams syndrome is not inherited in a Mendelian pattern, meaning that it does not follow traditional patterns of inheritance. The disorder is caused by a spontaneous deletion of genetic material on chromosome 7, and there is no known family history or environmental trigger. Each child of an individual with Williams syndrome has a 50% chance of inheriting the deletion and developing the disorder.
Prenatal Testing:
Prenatal testing for Williams syndrome is available but not routine. The test is typically offered to pregnant women who have a family history of the disorder or who have had a previous child with Williams syndrome. Prenatal testing involves analyzing cells from the developing fetus, usually through chorionic villus sampling (CVS) or amniocentesis.
Genetic Counseling:
Genetic counseling is essential for individuals and families affected by Williams syndrome. A genetic counselor can provide information on the inheritance pattern of the disorder, discuss prenatal testing options, and offer guidance on managing the condition. Genetic counseling can also help families understand the risks and benefits of genetic testing and make informed decisions about their reproductive options.
In conclusion, Williams syndrome is a rare genetic disorder that affects approximately 1 in 10,000 individuals worldwide. It is caused by a spontaneous deletion of genetic material on chromosome 7 and is characterized by developmental delays, cognitive impairments, and cardiovascular problems. Early intervention and specialized management can significantly improve the prognosis for individuals with Williams syndrome. Prenatal testing and genetic counseling are available for families who have a risk of inheriting the disorder. With proper care and support, individuals with Williams syndrome can lead fulfilling lives and achieve their full potential.
The symptoms of microphthalmos may include:
* Small eyes with reduced visual acuity
* Difficulty with depth perception and peripheral vision
* Squinting or crossing of the eyes (strabismus)
* Poor eye movement
* Increased sensitivity to light (photophobia)
* Reduced pupillary reflexes
The causes of microphthalmos can include:
* Genetic mutations or chromosomal abnormalities
* Infections such as rubella, syphilis, or toxoplasmosis during pregnancy
* Maternal exposure to certain medications or chemicals during pregnancy
* Trauma or injury to the eye during fetal development
* Tumors or cysts in the eye or surrounding tissues
Diagnosis of microphthalmos typically involves a comprehensive eye exam, including measurements of the eye's size and visual acuity. Imaging tests such as ultrasound or MRI may also be used to evaluate the structure of the eye and surrounding tissues.
Treatment for microphthalmos depends on the underlying cause and severity of the condition. In some cases, corrective glasses or contact lenses may be sufficient to improve vision. Surgery may be necessary in more severe cases to realign the eyes or remove tumors or cysts. In cases where the microphthalmos is due to a genetic mutation, there may be no effective treatment other than managing the symptoms.
AML is a fast-growing and aggressive form of leukemia that can spread to other parts of the body through the bloodstream. It is most commonly seen in adults over the age of 60, but it can also occur in children.
There are several subtypes of AML, including:
1. Acute promyelocytic leukemia (APL): This is a subtype of AML that is characterized by the presence of a specific genetic abnormality called the PML-RARA fusion gene. It is usually responsive to treatment with chemotherapy and has a good prognosis.
2. Acute myeloid leukemia, not otherwise specified (NOS): This is the most common subtype of AML and does not have any specific genetic abnormalities. It can be more difficult to treat and has a poorer prognosis than other subtypes.
3. Chronic myelomonocytic leukemia (CMML): This is a subtype of AML that is characterized by the presence of too many immature white blood cells called monocytes in the blood and bone marrow. It can progress slowly over time and may require ongoing treatment.
4. Juvenile myeloid leukemia (JMML): This is a rare subtype of AML that occurs in children under the age of 18. It is characterized by the presence of too many immature white blood cells called blasts in the blood and bone marrow.
The symptoms of AML can vary depending on the subtype and the severity of the disease, but they may include:
* Fatigue
* Weakness
* Shortness of breath
* Pale skin
* Easy bruising or bleeding
* Swollen lymph nodes, liver, or spleen
* Bone pain
* Headache
* Confusion or seizures
AML is diagnosed through a combination of physical examination, medical history, and diagnostic tests such as:
1. Complete blood count (CBC): This test measures the number and types of cells in the blood, including red blood cells, white blood cells, and platelets.
2. Bone marrow biopsy: This test involves removing a small sample of bone marrow tissue from the hipbone or breastbone to examine under a microscope for signs of leukemia cells.
3. Genetic testing: This test can help identify specific genetic abnormalities that are associated with AML.
4. Immunophenotyping: This test uses antibodies to identify the surface proteins on leukemia cells, which can help diagnose the subtype of AML.
5. Cytogenetics: This test involves staining the bone marrow cells with dyes to look for specific changes in the chromosomes that are associated with AML.
Treatment for AML typically involves a combination of chemotherapy, targeted therapy, and in some cases, bone marrow transplantation. The specific treatment plan will depend on the subtype of AML, the patient's age and overall health, and other factors. Some common treatments for AML include:
1. Chemotherapy: This involves using drugs to kill cancer cells. The most commonly used chemotherapy drugs for AML are cytarabine (Ara-C) and anthracyclines such as daunorubicin (DaunoXome) and idarubicin (Idamycin).
2. Targeted therapy: This involves using drugs that specifically target the genetic abnormalities that are causing the cancer. Examples of targeted therapies used for AML include midostaurin (Rydapt) and gilteritinib (Xospata).
3. Bone marrow transplantation: This involves replacing the diseased bone marrow with healthy bone marrow from a donor. This is typically done after high-dose chemotherapy to destroy the cancer cells.
4. Supportive care: This includes treatments to manage symptoms and side effects of the disease and its treatment, such as anemia, infection, and bleeding. Examples of supportive care for AML include blood transfusions, antibiotics, and platelet transfusions.
5. Clinical trials: These are research studies that involve testing new treatments for AML. Participating in a clinical trial may give patients access to innovative therapies that are not yet widely available.
It's important to note that the treatment plan for AML is highly individualized, and the specific treatments used will depend on the patient's age, overall health, and other factors. Patients should work closely with their healthcare team to determine the best course of treatment for their specific needs.
There are four types of Waardenburg Syndrome:
Type 1: This is the mildest form of the disorder and is characterized by subtle changes in skin and hair pigmentation and slight hearing loss. Individuals with this type typically have blue or grey eyes and a small amount of white hair.
Type 2: This type is more severe than Type 1 and is characterized by more pronounced pigmentation abnormalities, such as white patches on the skin and hair, as well as significant hearing loss. Individuals with this type often have intense blue or grey eyes and may experience developmental delays.
Type 3: This type is also severe and is characterized by a range of physical symptoms including hearing loss, pigmentation abnormalities, and skeletal deformities such as short stature or joint contractures. Individuals with this type often have unique facial features, such as a broad forehead, narrow eyes, and a long nose.
Type 4: This is the most severe form of Waardenburg syndrome and is characterized by profound hearing loss, significant pigmentation abnormalities, and multiple congenital anomalies such as heart defects or digestive system problems. Individuals with this type often have a short life expectancy and may require extensive medical care throughout their lives.
Inheritance Pattern: Waardenburg syndrome is inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition. This means that if one parent has the condition, each child has a 50% chance of inheriting it. However, some forms of the condition may be more severe than others and may require specialized medical care.
Treatment and Management: There is no cure for Waardenburg syndrome, but various treatments can help manage its symptoms. Hearing aids or cochlear implants can help improve hearing, while surgery or physical therapy can help correct skeletal deformities. Regular monitoring by a medical professional is also important to ensure that any related health issues are addressed promptly.
In conclusion, Waardenburg syndrome is a rare genetic disorder that affects the development of pigmentation and hearing in individuals. It can range from mild to severe forms, each with distinct physical characteristics and medical needs. With proper management and care, individuals with Waardenburg syndrome can lead fulfilling lives despite the challenges posed by this condition.
Pancreatic adenocarcinoma is the most common type of malignant pancreatic neoplasm and accounts for approximately 85% of all pancreatic cancers. It originates in the glandular tissue of the pancreas and has a poor prognosis, with a five-year survival rate of less than 10%.
Pancreatic neuroendocrine tumors (PNETs) are less common but more treatable than pancreatic adenocarcinoma. These tumors originate in the hormone-producing cells of the pancreas and can produce excess hormones that cause a variety of symptoms, such as diabetes or high blood sugar. PNETs are classified into two main types: functional and non-functional. Functional PNETs produce excess hormones and are more aggressive than non-functional tumors.
Other rare types of pancreatic neoplasms include acinar cell carcinoma, ampullary cancer, and oncocytic pancreatic neuroendocrine tumors. These tumors are less common than pancreatic adenocarcinoma and PNETs but can be equally aggressive and difficult to treat.
The symptoms of pancreatic neoplasms vary depending on the type and location of the tumor, but they often include abdominal pain, weight loss, jaundice, and fatigue. Diagnosis is typically made through a combination of imaging tests such as CT scans, endoscopic ultrasound, and biopsy. Treatment options for pancreatic neoplasms depend on the type and stage of the tumor but may include surgery, chemotherapy, radiation therapy, or a combination of these.
Prognosis for patients with pancreatic neoplasms is generally poor, especially for those with advanced stages of disease. However, early detection and treatment can improve survival rates. Research into the causes and mechanisms of pancreatic neoplasms is ongoing, with a focus on developing new and more effective treatments for these devastating diseases.
There are many potential causes of dehydration, including:
* Not drinking enough fluids
* Diarrhea or vomiting
* Sweating excessively
* Diabetes (when the body cannot properly regulate blood sugar levels)
* Certain medications
* Poor nutrition
* Infections
* Poor sleep
To diagnose dehydration, a healthcare provider will typically perform a physical examination and ask questions about the patient's symptoms and medical history. They may also order blood tests or other diagnostic tests to rule out other conditions that may be causing the symptoms.
Treatment for dehydration usually involves drinking plenty of fluids, such as water or electrolyte-rich drinks like sports drinks. In severe cases, intravenous fluids may be necessary. If the underlying cause of the dehydration is a medical condition, such as diabetes or an infection, treatment will focus on managing that condition.
Preventing dehydration is important for maintaining good health. This can be done by:
* Drinking enough fluids throughout the day
* Avoiding caffeine and alcohol, which can act as diuretics and increase urine production
* Eating a balanced diet that includes plenty of fruits, vegetables, and whole grains
* Avoiding excessive sweating by dressing appropriately for the weather and taking breaks in cool, shaded areas when necessary
* Managing medical conditions like diabetes and kidney disease properly.
In severe cases of dehydration, complications can include seizures, organ failure, and even death. It is important to seek medical attention if symptoms persist or worsen over time.
There are several subtypes of lymphoma, B-cell, including:
1. Diffuse large B-cell lymphoma (DLBCL): This is the most common type of B-cell lymphoma and typically affects older adults.
2. Follicular lymphoma: This type of lymphoma grows slowly and often does not require treatment for several years.
3. Marginal zone lymphoma: This type of lymphoma develops in the marginal zone of the spleen or other lymphoid tissues.
4. Hodgkin lymphoma: This is a type of B-cell lymphoma that is characterized by the presence of Reed-Sternberg cells, which are abnormal cells that can be identified under a microscope.
The symptoms of lymphoma, B-cell can vary depending on the subtype and the location of the tumor. Common symptoms include swollen lymph nodes, fatigue, fever, night sweats, and weight loss.
Treatment for lymphoma, B-cell usually involves chemotherapy, which is a type of cancer treatment that uses drugs to kill cancer cells. Radiation therapy may also be used in some cases. In some cases, bone marrow or stem cell transplantation may be recommended.
Prognosis for lymphoma, B-cell depends on the subtype and the stage of the disease at the time of diagnosis. In general, the prognosis is good for patients with early-stage disease, but the cancer can be more difficult to treat if it has spread to other parts of the body.
Prevention of lymphoma, B-cell is not possible, as the exact cause of the disease is not known. However, avoiding exposure to certain risk factors, such as viral infections and pesticides, may help reduce the risk of developing the disease. Early detection and treatment can also improve outcomes for patients with lymphoma, B-cell.
Lymphoma, B-cell is a type of cancer that affects the immune system and can be treated with chemotherapy and other therapies. The prognosis varies depending on the subtype and stage of the disease at diagnosis. Prevention is not possible, but early detection and treatment can improve outcomes for patients with this condition.
There are several types of muscular atrophy, including:
1. Disuse atrophy: This type of atrophy occurs when a muscle is not used for a long period, leading to its degeneration.
2. Neurogenic atrophy: This type of atrophy occurs due to damage to the nerves that control muscles.
3. Dystrophic atrophy: This type of atrophy occurs due to inherited genetic disorders that affect muscle fibers.
4. Atrophy due to aging: As people age, their muscles can degenerate and lose mass and strength.
5. Atrophy due to disease: Certain diseases such as cancer, HIV/AIDS, and muscular dystrophy can cause muscular atrophy.
6. Atrophy due to infection: Infections such as polio and tetanus can cause muscular atrophy.
7. Atrophy due to trauma: Traumatic injuries can cause muscular atrophy, especially if the injury is severe and leads to prolonged immobilization.
Muscular atrophy can lead to a range of symptoms depending on the type and severity of the condition. Some common symptoms include muscle weakness, loss of motor function, muscle wasting, and difficulty performing everyday activities. Treatment for muscular atrophy depends on the underlying cause and may include physical therapy, medication, and lifestyle changes such as exercise and dietary modifications. In severe cases, surgery may be necessary to restore muscle function.
There are several types of hypertrophy, including:
1. Muscle hypertrophy: The enlargement of muscle fibers due to increased protein synthesis and cell growth, often seen in individuals who engage in resistance training exercises.
2. Cardiac hypertrophy: The enlargement of the heart due to an increase in cardiac workload, often seen in individuals with high blood pressure or other cardiovascular conditions.
3. Adipose tissue hypertrophy: The excessive growth of fat cells, often seen in individuals who are obese or have insulin resistance.
4. Neurological hypertrophy: The enlargement of neural structures such as brain or spinal cord due to an increase in the number of neurons or glial cells, often seen in individuals with neurodegenerative diseases such as Alzheimer's or Parkinson's.
5. Hepatic hypertrophy: The enlargement of the liver due to an increase in the number of liver cells, often seen in individuals with liver disease or cirrhosis.
6. Renal hypertrophy: The enlargement of the kidneys due to an increase in blood flow and filtration, often seen in individuals with kidney disease or hypertension.
7. Ovarian hypertrophy: The enlargement of the ovaries due to an increase in the number of follicles or hormonal imbalances, often seen in individuals with polycystic ovary syndrome (PCOS).
Hypertrophy can be diagnosed through various medical tests such as imaging studies (e.g., CT scans, MRI), biopsies, and blood tests. Treatment options for hypertrophy depend on the underlying cause and may include medications, lifestyle changes, and surgery.
In conclusion, hypertrophy is a growth or enlargement of cells, tissues, or organs in response to an excessive stimulus. It can occur in various parts of the body, including the brain, liver, kidneys, heart, muscles, and ovaries. Understanding the underlying causes and diagnosis of hypertrophy is crucial for effective treatment and management of related health conditions.
The symptoms of choriocarcinoma can vary depending on the location and size of the tumor, but they may include:
* Abnormal vaginal bleeding
* Pelvic pain
* Abdominal pain
* Weakness and fatigue
* Shortness of breath
* Nausea and vomiting
If choriocarcinoma is suspected, a variety of tests may be performed to confirm the diagnosis. These may include:
* Ultrasound: This imaging test uses high-frequency sound waves to create pictures of the uterus and ovaries. It can help doctors identify any abnormal growths or tumors in the area.
* Hysteroscopy: This procedure involves inserting a thin, lighted tube through the cervix to visualize the inside of the uterus. Doctors may use hysteroscopy to collect samples of tissue for testing.
* Laparoscopy: This procedure involves making small incisions in the abdomen and using a thin, lighted tube to visualize the inside of the pelvis. Doctors may use laparoscopy to collect samples of tissue for testing or to remove any tumors that are found.
* Biopsy: In this test, doctors take a small sample of tissue from the uterus and examine it under a microscope for cancer cells.
If choriocarcinoma is confirmed, treatment may involve a combination of surgery, chemotherapy, and radiation therapy. The specific treatment plan will depend on the stage and location of the cancer, as well as the patient's overall health.
Prognosis for choriocarcinoma varies depending on the stage of the cancer when it is diagnosed. In general, the prognosis is good if the cancer is caught early and treated promptly. However, if the cancer has spread to other parts of the body (metastasized), the prognosis may be poorer.
It's important for women who have had a molar pregnancy or choriocarcinoma to follow up with their healthcare provider regularly to ensure that any remaining tissue is removed and to monitor for any signs of recurrence.
PALL is a rare form of leukemia, accounting for only about 5-10% of all cases of acute leukemia. It is most commonly seen in adults between the ages of 40 and 60, although it can occur at any age.
The symptoms of PALL are similar to those of other types of leukemia and may include fatigue, fever, night sweats, weight loss, and an enlarged spleen. The diagnosis of PALL is typically made through a combination of physical examination, medical history, and laboratory tests, including a bone marrow biopsy.
Treatment for PALL usually involves chemotherapy, which can be effective in achieving a complete remission in many cases. In some instances, bone marrow transplantation may also be considered as a form of treatment. The prognosis for PALL is generally poor, with a five-year survival rate of about 20-30%. However, with prompt and appropriate treatment, many people with PALL can achieve long-term remission and a good quality of life.
GCM transcription factors
Winged-helix transcription factors
List of human transcription factors
GntR-like bacterial transcription factors
Transcription factor
Artificial transcription factor
Sp7 transcription factor
Sp8 transcription factor
Transcription factor DP
Gal4 transcription factor
Fluffy transcription factor
WRKY transcription factor
Octamer transcription factor
Sp3 transcription factor
Lim1 transcription factor
Sp4 transcription factor
Sp1 transcription factor
General transcription factor
Activating transcription factor
Sp2 transcription factor
COUP transcription factor
Transcription factor Jun
GATA transcription factor
AP-1 transcription factor
Transcription factor II B
Archaeal transcription factor B
RE1-silencing transcription factor
Transcription factor II E
Transcription factor II A
Apoptosis-antagonizing transcription factor
RFX6
Phage display
G1 phase
Norovirus
NFIX
PANO1
HOXD8
LXR
MODY 1
Hibernation
Brian R. Murphy
Coronavirus nucleocapsid protein
Sequence motif
Esta Sterneck
Caspase-activated DNase
The Indian Princess (play)
Shiladitya DasSarma
Death-associated protein 6
Halobacterium salinarum
Metabolism
Harold E. Palmer
Genomic imprinting
GNLY
Genome size
PSMD7
Commentarii de Bello Gallico
PIR (gene)
Catenin
SFRS6
HSPA1B
SREBPs: sterol-regulated transcription factors
How Transcription Factor KLF4 Influences Gene Expression
Structural basis for redox regulation of Yap1 transcription factor localization | Nature
REGULATOR: a database of metazoan transcription factors and maternal factors for developmental studies
GLIS3 Regulates Transcription of Thyroid Hormone Biosynthetic Genes in Coordination With Other Thyroid Transcription Factors
Nature Papers Present Cloud-Computing Analysis Approach, Transcription Factor With Role in Bacterial Genome Organization |...
Transcription elongation factor GreA (Streptococcus mutans UA159) | Protein Target - PubChem
The role of transcription factor Nrf2 in osteoarthritis
Regulation of Metabolic Programing in T Cells by STAT5 Transcription Factor Protein | NIAMS
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung | Clinical Science | Portland Press
Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9 |...
Precisely Defining Transcription Factor Binding Sites | NICHD - Eunice Kennedy Shriver National Institute of Child Health and...
British Library EThOS: Proinsulin C-peptide : activation of intracellular signalling pathways and modulation of transcription...
skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration...
The number of GAGA transcription factor molec - Fruit fly Drosophila melanogas - BNID 106846
Antagonistic role of the BTB-zinc finger transcription factors chinmo and broad-complex in the juvenile/pupal transition and in...
Expression and localisation of insulin receptor substrate 2 in normal intestine and colorectal tumours. Regulation by intestine...
Induction of apoptosis of human osteoclasts by the transcription factor decoy approach: relevance for the treatment of...
Genome-wide analysis of the human malaria parasite Plasmodium falciparum transcription factor PfNF-YB shows interaction with...
Search Results for "transcription factor" | joe
Subject: basic-leucine zipper transcription factors and Malus domestica - PubAg Search Results
Expression of transcription factor Yin Yang 1 in prostate cancer.
Distinct roles of transcription factors GR, KLF4, Krox20 and PPARg in adipogenesis | NIH Research Festival
"Transcription Factor 7-like 2 (TCF7L2) Gene Polymorphisms in Relation " by Ling Xu
Nuance Releases Speech Transcription SDK for iOS and Android Apps | The Factoring Blog
Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast. - Baker
The role of the transcription factor JAGGED in early floral organogenesis - UEA Digital Repository
Corrigendum to: "Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers" [EBioMedicine 8 ...
transcription factor
Expression analysis of TALE family transcription factors during avian development. - Nuffield Department of Population Health
Proteins9
- Transcription factors are proteins that bind to specific sequences of DNA and control the transcription of genetic information from DNA to RNA. (genengnews.com)
- Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. (ca.gov)
- These estimates are further supported by [his] own experience and that of many other biochemists who have purified additional endogenous transcription factors with similar yields to the proteins in Table 1. (harvard.edu)
- P.620 right column bottom paragraph: 'The data in Table 1 may be biased toward easily studied proteins, so the identification of transcription factors expressed at lower levels may identify better candidates for Coselective DNA Binding-based regulation. (harvard.edu)
- Such elements provide sites for specialized proteins (called transcription factors) to attach (bind) and either activate or repress the process by which the information from genes is turned into proteins (transcription). (medlineplus.gov)
- Enhancers provide binding sites for proteins that help activate transcription. (medlineplus.gov)
- Silencers provide binding sites for proteins that repress transcription. (medlineplus.gov)
- Insulators provide binding sites for proteins that control transcription in a number of ways. (medlineplus.gov)
- Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. (bvsalud.org)
Nuclear factor4
- Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a key modulator for the expression of multiple cellular stress-response genes such as glutathione S-transferase A4-4 (GSTA4-4), an important HNE detoxifying enzyme. (umontreal.ca)
- The protective effects of C-peptide were associated with activation of nuclear factor kB (NFkB) and increased expression of TNF receptor-associated factor 2, the product of an NFkB-dependent survival gene. (bl.uk)
- Interestingly, transcription factor decoy (TFD) oligonucleotides targeting nuclear factor κB (NF-kB) are able to induce apoptosis of human primary OCs. (minervamedica.it)
- The transcription factors nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1) have been shown to play key roles in gene promotion for inflammatory mediators, oncogenes, and growth factors. (cdc.gov)
Regulation of transcription1
- The behavioral regulation of transcription factor function in hippocampus, a brain region activated by novelty and important for information storage, has not been previously studied. (northwestern.edu)
Genes3
- Cells regulate the expression of their genes with transcription factors," said co-corresponding author Josephine C. Ferreon, PhD, assistant professor of pharmacology and chemical biology and member of the Dan L Duncan Comprehensive Cancer Center at Baylor. (genengnews.com)
- We propose that promoter elements of target genes critically involved in the storage of information are turned on by environmentally-activated transcription factors. (northwestern.edu)
- 6) The loss of RB1 deregulates acids called pRB, belonging to the pocket family, with ability transcriptional factors associated with transcriptional to regulate gene transcription and act as regulator of the activation of genes and triggers cellular apoptosis. (bvsalud.org)
Thyroid8
- also known as Nkx2.1, T/EBP (thyroid-specific-enhancer-binding protein) or TITF1] is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the thyroid, lung and ventral forebrain. (portlandpress.com)
- Utility of surfactant protein B precursor and thyroid transcription factor 1 in differentiating adenocarcinoma of the lung from malignant mesothelioma. (e-immunohistochemistry.info)
- Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. (e-immunohistochemistry.info)
- Immunoreactivity for thyroid transcription factor-1 in stage I non-small cell carcinomas of the lung. (e-immunohistochemistry.info)
- Kaufmann O & Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. (e-immunohistochemistry.info)
- Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. (e-immunohistochemistry.info)
- Immunostaining for thyroid transcription factor-1 and cytokeratin 20 aids in the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinoma. (e-immunohistochemistry.info)
- transcription factor recruitment during thyroid hormone receptor-mediated activation. (bvsalud.org)
BZIP1
- The basic leucine zipper (bZIP) family is one of the largest transcription factor (TF) families in plants, which play crucial roles in plant growth and development. (usda.gov)
Pathways2
Expression10
- Researchers led by scientists at the Baylor College of Medicine reports the discovery of a mechanism by which transcription factor KLF4 can help to organize chromatin, thus influencing gene expression. (genengnews.com)
- The study (" Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization "), published in Nature Communications , shows that the binding of KLF4 can cause DNA to condense into a separate liquid phase in a process called biomolecular condensation, which recruits other factors that influence gene expression. (genengnews.com)
- Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. (genengnews.com)
- In the current study, we focused on master transcription factor KLF4, which is known to selectively mediate gene expression and reprogramming that determines cell fate. (genengnews.com)
- Glucocorticoids, cAMP and TGF-β (transforming growth factor-β) have stimulatory effects on TTF-1 expression, whereas TNF-α (tumour necrosis factor-α) and ceramide have inhibitory effects on TTF-1 DNA-binding activity in lung cells. (portlandpress.com)
- Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. (ca.gov)
- The identity of the larval, pupal and adult stages depends on the sequential expression of the transcription factors chinmo , Br-C and E93 . (elifesciences.org)
- Taken together, our results suggest that the sequential expression of the transcription factors Chinmo, Br-C and E93 during larva, pupa an adult respectively, coordinate the formation of the different organs that constitute the adut organism. (elifesciences.org)
- Violin plots show distribution of expression levels for Transcription elongation factor spt6 (SMED30009175) in cells (dots) of each of the 12 neoblast clusters. (stowers.org)
- In a Polymerase Chain Reaction (PCR) array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of STAT3. (cdc.gov)
Forkhead2
- also known as FOXA (forkhead box A)], Sp (specificity protein) 1, Sp3, GATA-6 and HOXB3 (homeobox B3) transcription factors. (portlandpress.com)
- In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family , the Foxi family to their formation. (bvsalud.org)
REGULATOR2
- A central regulator of the response to oxidative stress in Saccharomyces cerevisiae is the Yap1 transcription factor. (nature.com)
- The type I IFN signaling pathway includes toll-like receptor 3 ( TLR3 ) and interferon regulator factor 7 ( IRF7 ). (cdc.gov)
Protein5
- Other transcription factors participate in biomolecular condensation through unstructured protein regions, but the researchers showed that KLF4 droplets form in cells even if its unstructured regions are not present. (genengnews.com)
- We conclude that brief, naturalistic stimulation can activate brain transcription factors in a time-delimited fashion, suggesting post-translational control of protein-DNA binding. (northwestern.edu)
- A homeodomain-containing nuclear transcription protein of the Nkx2 gene family. (e-immunohistochemistry.info)
- Promoters provide binding sites for the protein machinery that carries out transcription. (medlineplus.gov)
- Families of molecules such as those of Wnt, Hh (hedgehog), FGFs (Fibroblast Growth Factor) and BMPs (Bone Morphogenetic Protein, of TGFßs - Transforming Growth Factor family) have been identified, in different proportions and sites, with tissue-specific and stage-specific functions 1-2 . (bvsalud.org)
Chromatin4
- During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. (genengnews.com)
- Transcription factors such as KLF4 are involved in reorganizing the chromatin to provide access and facilitate gene transcription, but it is not clear how this is accomplished. (genengnews.com)
- When KLF4 interacts with specific chromatin regions, it forms a condensate that preferentially recruits other molecules that help open the chromatin and mediate gene transcription. (genengnews.com)
- Using a chromatin sedimentation assay and Hi-C, scientists from the University of Amsterdam and Heidelberg University find a transcription factor called Rok that forms large nucleoprotein complexes in the bacterium Bacillus subtilis . (genomeweb.com)
Genetic and environmental factors2
- In a study published in Nature Communications, researchers investigate what combination of genetic and environmental factors come into play to cause cleft lip/palate. (genomeweb.com)
- Most human diseases are caused by the interplay between numerous genetic and environmental factors, and infectious diseases are no exception. (cdc.gov)
Enhancers1
- Some prevent enhancers from aiding in transcription (enhancer-blocker insulators). (medlineplus.gov)
Abstract1
- primary source abstract:) '[Researchers] directly compare the affinity of GAF [GAGA transcription factor] for different sequence elements by immunoprecipitation and gel mobility shift analysis. (harvard.edu)
Tumor2
- C-peptide is able to protect against tumor necrosis factor-alpha- (TNF-a) induced proximal tubular cells toxicity. (bl.uk)
- Interleukin (IL)-9-producing subset called Th9 cell, Th22 cells which primarily secrete IL-22, IL-13 and tumor necrosis factor- and Th25 cells via producing IL-25 are believed to be important for initiating allergic reactions and developing airway inflammation. (cdc.gov)
Genetics1
- The discovery of a transcription factor involved in bacterial genome organization is detailed in Nature Genetics this week . (genomeweb.com)
Developmental1
- Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest , and developmental remodeling of the branchial arch ectoderm . (bvsalud.org)
Role2
- The role of foxi family transcription factors in the development of the ear and jaw. (bvsalud.org)
- Role of transcription factor NF-KB in asbestos -induced TNF-alpha response from macrophages. (cdc.gov)
Structural3
- These results reveal the structural basis of redox-dependent Yap1 localization and provide a previously unknown mechanism of transcription factor regulation by reversible intramolecular disulphide bond formation. (nature.com)
- Structural basis of the redox switch in the OxyR transcription factor. (nature.com)
- The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. (uea.ac.uk)
Family1
- Fajans et al,9,10 reported clinical factors that can be used family history in two or more generations, a young age at in distinguishing MODY from true type 2 diabetes and presentation and absence of obesity. (who.int)
Cells1
- By conducting experiments with cells grown in the lab, the researchers discovered that KLF4 forms droplets in the cell nucleus that recruit other transcription factors. (genengnews.com)
Enzyme1
- Au niveau transcriptionel, l'expression de cette enzyme est régulée par la transactivation du facteur de transcription Nrf2. (umontreal.ca)
Molecules1
- P.617 left column bottom paragraph: 'A survey of all credible published estimates that [Biggin] could find for four well studied species suggests that most animal transcription factors are expressed at 10,000-300,000 molecules per nucleus (Table 1). (harvard.edu)
Activation1
- Surface properties of crystalline silica are critical to the production of oxidant species, chemokines, inflammatory cytokines, and proliferative factors involved in the initiation and progression of silica -induced damage, inflammation, alveolar type II cell hyperplasia, fibroblast activation, and disease. (cdc.gov)
Lung1
- Predisposing factors in occupational lung cancer: inorganic minerals and chromium. (cdc.gov)
Environmental factors1
- The development of T2D involves complex interaction between environmental factors and genetic predisposition. (fiu.edu)
Sites1
- Multiple transcription start sites and alternative splicing produce mRNAs with heterogeneity at the 5′ end. (portlandpress.com)
Development2
- skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. (ca.gov)
- Home › About CIRM › Our Publications › Grantee publications › skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. (ca.gov)
Types1
- Reviews that compiled results of multiple, smaller studies have found some types of PI to be a potential risk factor for severe COVID-19 outcomes. (cdc.gov)
Show2
- Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. (genengnews.com)
- Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. (ca.gov)
Groups1
- Subgroup analysis revealed that significant associations were only found within higher intake groups of dietary factors for both SNPs. (fiu.edu)
Stress1
- Isoyama, T., Murayama, A., Nomoto, A. & Kuge, S. Nuclear import of the yeast AP-1-like transcription factor Yap1p is mediated by transport receptor Pse1p, and this import step is not affected by oxidative stress. (nature.com)
Production1
- TLR3 acts earlier in the pathway and recognizes double stranded viral RNA, while IRF7 is a transcription factor to initiate IFN production. (cdc.gov)