Toxoids: Preparations of pathogenic organisms or their derivatives made nontoxic and intended for active immunologic prophylaxis. They include deactivated toxins. Anatoxin toxoids are distinct from anatoxins that are TROPANES found in CYANOBACTERIA.Tetanus ToxoidDiphtheria Toxoid: The formaldehyde-inactivated toxin of Corynebacterium diphtheriae. It is generally used in mixtures with TETANUS TOXOID and PERTUSSIS VACCINE; (DTP); or with tetanus toxoid alone (DT for pediatric use and Td, which contains 5- to 10-fold less diphtheria toxoid, for other use). Diphtheria toxoid is used for the prevention of diphtheria; DIPHTHERIA ANTITOXIN is for treatment.Tetanus: A disease caused by tetanospasmin, a powerful protein toxin produced by CLOSTRIDIUM TETANI. Tetanus usually occurs after an acute injury, such as a puncture wound or laceration. Generalized tetanus, the most common form, is characterized by tetanic muscular contractions and hyperreflexia. Localized tetanus presents itself as a mild condition with manifestations restricted to muscles near the wound. It may progress to the generalized form.Staphylococcal ToxoidTetanus Antitoxin: An antitoxin used for the treatment of TETANUS.Diphtheria: A localized infection of mucous membranes or skin caused by toxigenic strains of CORYNEBACTERIUM DIPHTHERIAE. It is characterized by the presence of a pseudomembrane at the site of infection. DIPHTHERIA TOXIN, produced by C. diphtheriae, can cause myocarditis, polyneuritis, and other systemic toxic effects.Diphtheria-Tetanus Vaccine: A combined vaccine used to prevent infection with diphtheria and tetanus toxoid. This is used in place of DTP vaccine (DIPHTHERIA-TETANUS-PERTUSSIS VACCINE) when PERTUSSIS VACCINE is contraindicated.Diphtheria-Tetanus-acellular Pertussis Vaccines: Combined vaccines consisting of DIPHTHERIA TOXOID; TETANUS TOXOID; and an acellular form of PERTUSSIS VACCINE. At least five different purified antigens of B. pertussis have been used in various combinations in these vaccines.Diphtheria-Tetanus-Pertussis Vaccine: A vaccine consisting of DIPHTHERIA TOXOID; TETANUS TOXOID; and whole-cell PERTUSSIS VACCINE. The vaccine protects against diphtheria, tetanus, and whooping cough.Antibodies, Bacterial: Immunoglobulins produced in a response to BACTERIAL ANTIGENS.Antitoxins: Antisera from immunized animals that is purified and used as a passive immunizing agent against specific BACTERIAL TOXINS.Diphtheria Antitoxin: An antitoxin produced against the toxin of CORYNEBACTERIUM DIPHTHERIAE that is used for the treatment of DIPHTHERIA.Vaccines, Conjugate: Semisynthetic vaccines consisting of polysaccharide antigens from microorganisms attached to protein carrier molecules. The carrier protein is recognized by macrophages and T-cells thus enhancing immunity. Conjugate vaccines induce antibody formation in people not responsive to polysaccharide alone, induce higher levels of antibody, and show a booster response on repeated injection.Bacterial Vaccines: Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.Immunization: Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).New Guinea: Originally an island of the Malay Archipelago, the second largest island in the world. It divided, West New Guinea becoming part of Indonesia and East New Guinea becoming Papua New Guinea.Immunization, Secondary: Any immunization following a primary immunization and involving exposure to the same or a closely related antigen.Vaccines, Combined: Two or more vaccines in a single dosage form.Pertussis Vaccine: A suspension of killed Bordetella pertussis organisms, used for immunization against pertussis (WHOOPING COUGH). It is generally used in a mixture with diphtheria and tetanus toxoids (DTP). There is an acellular pertussis vaccine prepared from the purified antigenic components of Bordetella pertussis, which causes fewer adverse reactions than whole-cell vaccine and, like the whole-cell vaccine, is generally used in a mixture with diphtheria and tetanus toxoids. (From Dorland, 28th ed)Immunoglobulin G: The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.Whooping Cough: A respiratory infection caused by BORDETELLA PERTUSSIS and characterized by paroxysmal coughing ending in a prolonged crowing intake of breath.Clostridium tetani: The cause of TETANUS in humans and domestic animals. It is a common inhabitant of human and horse intestines as well as soil. Two components make up its potent exotoxin activity, a neurotoxin and a hemolytic toxin.Vaccination: Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.Haemophilus Vaccines: Vaccines or candidate vaccines containing antigenic polysaccharides from Haemophilus influenzae and designed to prevent infection. The vaccine can contain the polysaccharides alone or more frequently polysaccharides conjugated to carrier molecules. It is also seen as a combined vaccine with diphtheria-tetanus-pertussis vaccine.Immunization Schedule: Schedule giving optimum times usually for primary and/or secondary immunization.Polysaccharides, Bacterial: Polysaccharides found in bacteria and in capsules thereof.Antibody Formation: The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.Tetanus Toxin: Protein synthesized by CLOSTRIDIUM TETANI as a single chain of ~150 kDa with 35% sequence identity to BOTULINUM TOXIN that is cleaved to a light and a heavy chain that are linked by a single disulfide bond. Tetanolysin is the hemolytic and tetanospasmin is the neurotoxic principle. The toxin causes disruption of the inhibitory mechanisms of the CNS, thus permitting uncontrolled nervous activity, leading to fatal CONVULSIONS.Botulinum Antitoxin: Antiserum given therapeutically in BOTULISM.Poliovirus Vaccine, Inactivated: A suspension of formalin-inactivated poliovirus grown in monkey kidney cell tissue culture and used to prevent POLIOMYELITIS.Meningococcal Vaccines: Vaccines or candidate vaccines used to prevent infection with NEISSERIA MENINGITIDIS.Immunity, Maternally-Acquired: Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.Vaccines: Suspensions of killed or attenuated microorganisms (bacteria, viruses, fungi, protozoa), antigenic proteins, synthetic constructs, or other bio-molecular derivatives, administered for the prevention, amelioration, or treatment of infectious and other diseases.Adjuvants, Immunologic: Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity.Alum Compounds: Aluminum metal sulfate compounds used medically as astringents and for many industrial purposes. They are used in veterinary medicine for the treatment of ulcerative stomatitis, leukorrhea, conjunctivitis, pharyngitis, metritis, and minor wounds.Glutaral: One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative.Infant, Newborn, Diseases: Diseases of newborn infants present at birth (congenital) or developing within the first month of birth. It does not include hereditary diseases not manifesting at birth or within the first 30 days of life nor does it include inborn errors of metabolism. Both HEREDITARY DISEASES and METABOLISM, INBORN ERRORS are available as general concepts.Hemagglutination Tests: Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)Enzyme-Linked Immunosorbent Assay: An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.Enterotoxins: Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria.Enterotoxigenic Escherichia coli: Strains of ESCHERICHIA COLI that produce or contain at least one member of either heat-labile or heat-stable ENTEROTOXINS. The organisms colonize the mucosal surface of the small intestine and elaborate their enterotoxins causing DIARRHEA. They are mainly associated with tropical and developing countries and affect susceptible travelers to those places.Diphtheria Toxin: An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells.Botulinum Toxins: Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS.Toxins, Biological: Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS.Antibody Affinity: A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes.Escherichia coli Vaccines: Vaccines or candidate vaccines used to prevent or treat both enterotoxigenic and enteropathogenic Escherichia coli infections.Formaldehyde: A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717)Bordetella pertussis: A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath.Bacterial Capsules: An envelope of loose gel surrounding a bacterial cell which is associated with the virulence of pathogenic bacteria. Some capsules have a well-defined border, whereas others form a slime layer that trails off into the medium. Most capsules consist of relatively simple polysaccharides but there are some bacteria whose capsules are made of polypeptides.Botulism: A disease caused by potent protein NEUROTOXINS produced by CLOSTRIDIUM BOTULINUM which interfere with the presynaptic release of ACETYLCHOLINE at the NEUROMUSCULAR JUNCTION. Clinical features include abdominal pain, vomiting, acute PARALYSIS (including respiratory paralysis), blurred vision, and DIPLOPIA. Botulism may be classified into several subtypes (e.g., food-borne, infant, wound, and others). (From Adams et al., Principles of Neurology, 6th ed, p1208)Commonwealth of Independent StatesCholera Toxin: An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells, and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells.Immunoglobulin A: Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.Neisseria meningitidis, Serogroup C: Strains of Neisseria meningitidis responsible for most sporadic cases in teenagers and almost all outbreaks of disease in this age group. These strains are less common in infants.Cholera Vaccines: Vaccines or candidate vaccines used to prevent infection with VIBRIO CHOLERAE. The original cholera vaccine consisted of killed bacteria, but other kinds of vaccines now exist.Corynebacterium diphtheriae: A species of gram-positive, asporogenous bacteria in which three cultural types are recognized. These types (gravis, intermedius, and mitis) were originally given in accordance with the clinical severity of the cases from which the different strains were most frequently isolated. This species is the causative agent of DIPHTHERIA.Antigens, Bacterial: Substances elaborated by bacteria that have antigenic activity.Vibrio cholerae: The etiologic agent of CHOLERA.Vaccines, Synthetic: Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.Rabbits: The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.Antibody Specificity: The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.Cholera: An acute diarrheal disease endemic in India and Southeast Asia whose causative agent is VIBRIO CHOLERAE. This condition can lead to severe dehydration in a matter of hours unless quickly treated.Immunoglobulin M: A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.Haemophilus influenzae type b: A type of H. influenzae isolated most frequently from biotype I. Prior to vaccine availability, it was a leading cause of childhood meningitis.Streptococcal Vaccines: Vaccines or candidate vaccines used to prevent STREPTOCOCCAL INFECTIONS.Mice, Inbred BALB CLymphocyte Activation: Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.Cross Reactions: Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.Antigens: Substances that are recognized by the immune system and induce an immune reaction.Antibodies: Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Antigenicity of purified glutaraldehyde-treated cholera toxoid administered orally. (1/148)

The antigenicity of orally administered glutaraldehyde-treated cholera toxoid was investigated in healthy volunteers. Fourteen volunteers ingested two or three 2-mg doses of toxoid with saline, with the doses spaced at 28-day intervals. Thirteen other volunteers received comparable toxoid doses with NaHCO3 and milk to neutralize gastric acid. Increments in circulating antitoxin levels were used to assay the antigenicity of oral toxoid. Antitoxin was measured by adrenal cell, rabbit skin permeability factor, and passive hemagglutination assays in sera collected on days 0, 28, 35, 56, 63, and 84 after primary immunization. Adrenal cell and rabbit skin assays exhibited identical sensitivity in detecting antitoxin rises in the 27 vaccinees (19/27) and were significantly more sensitive than passive hemagglutination (11/27) (P less than 0.03). Volunteers who ingested toxoid with NaHCO3 and milk had a higher rate of seroconversion (77%) than those who received toxoid with saline (64%); they also had earlier rises in antitoxin titer and consistently higher geometric mean titers on all days tested. These studies demonstrate that purified cholera toxoid is antigenic in humans after oral administration. The possible role of oral toxoid in enhancing the protective effect of killed whole-cell vaccines can now be investigated.  (+info)

Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy. (2/148)

Recent reports have demonstrated that feeding small amounts of antigen conjugated to the B subunit of cholera toxin (CTB) suppress immune responses in experimental models of certain Th1-based autoimmune diseases. We have established a model of aerosol sensitization leading to Th2-mediated allergic immune responses in BALB/c mice. In the present study two different antigens, the dietary antigen ovalbumin (OVA) and the inhalant allergen Bet v 1 (the major birch pollen allergen), chemically coupled to recombinant CTB were tested for their potential to influence Th2-like immune responses. Intranasal administration of OVA-CTB prior to sensitization with OVA led to a significant decrease of antigen-specific IgE antibody levels, but a marked increase of OVA-specific IgG2a antibodies as compared to non-pretreated, sensitized animals. Antigen-specific lympho-proliferative responses in vitro were reduced by 65% in the pretreated group; IL-5 and IL-4, but not IFN-gamma, production were markedly decreased in responder cells of lungs and spleens of nasally pretreated mice. In contrast, mucosal administration of rBet v 1-CTB conjugates prior to sensitization led to an up-regulation of allergen-specific IgE, IgG1 and IgG2a, increased in vitro lympho-proliferative responses as well as augmented production of IL-5, IL-4, IL-10 and IFN-gamma. Intranasal administration prior to sensitization of unconjugated allergens showed also contrasting effects: OVA could not significantly influence antigen-specific antibody or cytokine production, whereas intranasal pretreatment with unconjugated Bet v 1 suppressed allergen-specific immune responses in vivo and in vitro. These results demonstrated that the two antigens--in conjugated as in unconjugated form--had different effects on the Th2 immune responses. We therefore conclude that the tolerogenic or immunogenic properties of CTB--and probably also other antigen-delivery systems--strongly depend on the nature of the coupled antigen-allergen.  (+info)

Protective effects of pertussis immunoglobulin (P-IGIV) in the aerosol challenge model. (3/148)

Pertussis in infants is often severe, resulting in prolonged hospitalization. Treatment is limited to supportive care. Antibiotics do not significantly alter the course of the disease unless administered during the catarrhal phase. Therapies directed at pertussis toxin, a major virulence factor of Bordetella pertussis, may be beneficial. This study uses the aerosol challenge model to further examine the protective effects of P-IGIV, a new intravenous immunoglobulin product, which has high levels of pertussis toxin antibodies. P-IGIV was prepared as a 4% immunoglobulin G (IgG) solution from the pooled donor plasma from donors immunized with inactivated pertussis toxoid. The IgG pertussis toxin antibody concentration in P-IGIV is >7-fold higher than conventional intravenous immunoglobulin products. In the aerosol challenge model, P-IGIV-treated mice exhibited a dose-dependent decrease in mortality when monitored for 28 days postchallenge. P-IGIV in doses of 2,800, 1,400, and 350 mg/kg significantly reduced mortality compared to saline (P < 0.01)- and human IGIV (P < 0.01)-treated controls. The 50% protective dose of pertussis toxin antibodies in P-IGIV was 147 microg/ml. Recovery of weight gain and normalization of leukocyte counts occurred in all P-IGIV-treated groups but did not exhibit dose-dependent characteristics. Even after 7 days of infection, P-IGIV reversed the effects of pertussis in mice. This study provides further evidence that pertussis toxin antibodies not only play a role in passive protection but can also reverse symptoms of established disease in mice. We feel that P-IGIV deserves further evaluation in children hospitalized with severe pertussis.  (+info)

Intranasal administration of a Schistosoma mansoni glutathione S-transferase-cholera toxoid conjugate vaccine evokes antiparasitic and antipathological immunity in mice. (4/148)

Mucosal administration of Ags linked to cholera toxin B subunit (CTB) can induce both strong mucosal secretory IgA immune responses and peripheral T cell hyporeactivity. In this study, intranasal (i.n. ) administration of CTB-conjugated Schistosoma mansoni 28-kDa GST (CTB-Sm28GST) was found to protect infected animals from schistosomiasis, especially from immunopathological complications associated with chronic inflammation. Worm burden and liver egg counts were reduced in infected animals treated with the CTB-Sm28GST conjugate as compared with mice infected only, or with mice treated with a control (CTB-OVA) conjugate. However, a more striking and consistent effect was that granuloma formations in liver and lungs of mice treated with CTB-Sm28GST were markedly suppressed. Such treatment was associated with reduced systemic delayed-type hypersensitivity and lymphocyte proliferative responses to Sm28GST. Production of IFN-gamma, IL-3, and IL-5 by liver cells was also markedly reduced after i.n. treatment of CTB-Sm28GST, whereas IL-4 production was not impaired. Intranasal treatment of infected mice with CTB-Sm28GST increased IgG1-, IgG2a-, IgA-, and IgE-Ab-forming cell responses in liver in comparison with treatment with CTB-OVA, or free Sm28GST. Most importantly, mucosal treatment with CTB-Sm28GST significantly reduced animal mortality when administered to chronically infected mice. Our results suggest that it may be possible to design a therapeutic vaccine against schistosomiasis that both limits infection and suppresses parasite-induced pathology.  (+info)

A randomized clinical trial of acellular pertussis vaccines in healthy adults: dose-response comparisons of 5 vaccines and implications for booster immunization. (5/148)

The safety and immunogenicity of 5 acellular pertussis vaccines (ACVs) were compared in a multicenter, randomized, double-blind trial. A total of 481 healthy adults were given a single intramuscular booster dose of ACV or placebo. Three different dose levels were tested for 4 ACVs: full strength (the dose level proposed for infant immunization), one-third strength, and one-tenth strength. For 1 multicomponent vaccine, only the pertussis toxoid dose level varied. Minor injection site reactions were common and similar in frequency among vaccinated groups. Late-onset injection site reactions were seen in all ACV groups. Dose-related increases in mean antibody titers against vaccine antigens were seen after immunization with all ACVs. Antibody responses against antigens not known to be present in the vaccines were detected after immunization with 4/5 ACVs. Antibody levels fell significantly during the year after immunization. These data support evaluation of ACVs for broader use among adolescents and adults.  (+info)

Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy. (6/148)

Recent reports have demonstrated that feeding small amounts of antigen conjugated to the B subunit of cholera toxin (CTB) suppress immune responses in experimental models of certain T(h)1-based autoimmune diseases. We have established a model of aerosol sensitization leading to T(h)2-mediated allergic immune responses in BALB/c mice. In the present study two different antigens, the dietary antigen ovalbumin (OVA) and the inhalant allergen Bet v 1 (the major birch pollen allergen), chemically coupled to recombinant CTB were tested for their potential to influence T(h)2-like immune responses. Intranasal administration of OVA-CTB prior to sensitization with OVA led to a significant decrease of antigen-specific IgE antibody levels, but a marked increase of OVA-specific IgG2a antibodies as compared to non-pretreated, sensitized animals. Antigen-specific lympho-proliferative responses in vitro were reduced by 65% in the pretreated group; IL-5 and IL-4 production were decreased in responder cells of lungs and spleens of nasally pretreated mice. In contrast, mucosal administration of rBet v 1-CTB conjugates prior to sensitization led to an up-regulation of allergen-specific IgE, IgG1 and IgG2a, increased in vitro lympho-proliferative responses as well as augmented production of IL-5, IL-4, IL-10 and IFN-gamma. Intranasal administration prior to sensitization of unconjugated allergens showed also contrasting effects: OVA could not significantly influence antigen-specific antibody or cytokine production, whereas intranasal pretreatment with unconjugated Bet v 1 suppressed allergen-specific immune responses in vivo and in vitro. These results demonstrated that the two antigens-in conjugated as in unconjugated form-had different effects on the T(h)2 immune responses. We therefore conclude that the tolerogenic or immunogenic properties of CTB-and probably also other antigen-delivery systems-strongly depend on the nature of the coupled antigen-allergen.  (+info)

Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome. (7/148)

Streptococcal pyrogenic exotoxin C (SPE C) is a superantigen produced by many strains of Streptococcus pyogenes that (along with streptococcal pyrogenic exotoxin A) is highly associated with streptococcal toxic shock syndrome (STSS) and other invasive streptococcal diseases. Based on the three-dimensional structure of SPE C, solvent-exposed residues predicted to be important for binding to the TCR or the MHC class II molecule, or important for dimerization, were generated. Based on decreased mitogenic activity of various single-site mutants, the double-site mutant Y15A/N38D and the triple-site mutant Y15A/H35A/N38D were constructed and analyzed for superantigenicity, toxicity (lethality), immunogenicity, and the ability to protect against wild-type SPE C-induced STSS. The Y15A/N38D and Y15A/H35A/N38D mutants were nonmitogenic for rabbit splenocytes and human PBMCs and nonlethal in two rabbit models of STSS, yet both mutants were highly immunogenic. Animals vaccinated with the Y15A/N38D or Y15A/H35A/N38D toxoids were protected from challenge with wild-type SPE C. Collectively, these data indicate that the Y15A/N38D and Y15A/H35A/N38D mutants may be useful as toxoid vaccine candidates.  (+info)

Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. (8/148)

Streptococcal pyrogenic exotoxins (SPEs) are superantigens that have been implicated in causing streptococcal toxic shock syndrome (STSS). Most notably, SPE serotype A is made by nearly all M-protein serotype 1 and 3 streptococci, the M types most associated with the illness (these strains contain one or more other SPEs, and those proteins are likely also to contribute to disease). We have prepared double-, triple-, and hexa-amino-acid mutants of SPE A by PCR and other mutagenesis procedures. The sites chosen for mutation were solvent-exposed residues thought to be important for T-cell receptor (TCR) or major histocompatibility complex (MHC) class II interaction. These mutants were nonsuperantigenic for human peripheral blood mononuclear cells and rabbit and mouse splenocytes and were nonlethal in two rabbit models of STSS. In addition, these mutants stimulated protective antibody responses. Interestingly, mutants that altered toxin binding to MHC class II were more immunogenic than mutants altering TCR binding. Collectively, these studies indicate that multiple-site mutants of SPE A are toxoids that may have use in protecting against the toxin's effects in STSS.  (+info)

  • The Global Staphylococcus toxoid Industry Report 2015 is a professional and in-depth study on the current state of the Staphylococcus toxoid industry. (cyberessays.com)
  • Bingham, director of the rheumatology clinics at John Hopkins University in Baltimore, reported that relative to patients treated with methotrexate only, patients who were given rituximab plus methotrexate mount a comparable recall response to tetanus toxoid , a measure of retained immunity. (thefreedictionary.com)
  • Although there is a decrease of tetanus infection worldwide due to immunisation programmes and the use of anti-tetanus toxoid, it is important for health workers to recognise the symptoms and signs of this disease and start treatment as soon as possible because of the high morbidity and mortality rate. (scielo.org.za)
  • There was no evidence that the patient had been given anti-tetanus toxoid in the emergency room. (scielo.org.za)
  • Full length protein corresponding to Tetanus Toxoid. (abcam.com)
  • In addition, an investigational tetravalent meningococcal serogroups A, C, W-135 and Y conjugate vaccine, using tetanus toxoid (TT) as carrier protein (MenACWY-TT) has been shown to be immunogenic and to have a clinically acceptable safety profile in toddlers, children, adolescents, and young adults. (pubmedcentralcanada.ca)
  • Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. (hud.ac.uk)
  • Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), "Conformation Zoning" and Wales-van Holde approaches showed a high degree of flexibility - at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. (hud.ac.uk)
  • The worst is tetanus, but a prophylactic injection of toxoid within a few days is protective. (ndtv.com)
  • Heating at 56°C. for 4 hours destroys the skin-sensitizing properties and results in almost quantitative conversion to a modified antitoxin which is capable of blocking the wheal and erythema reaction caused by injection of toxoid into sensitized skin. (rupress.org)
  • Although there have been no decreases in production of tetanus toxoid (TT), availability is low because of increased use during the Td shortage. (cdc.gov)
  • No cross reactivity to type A and type F toxoids. (novusbio.com)
  • While patients may sometimes complain of side effects after a vaccine, these are associated with the process of mounting an immune response and clearing the toxoid, not the direct effects of the toxoid. (wikipedia.org)
  • CyaA toxoids incorporating these antigens were able to restimulate T cells from more than 91% tuberculosis patients and healthy sensitized donors. (asm.org)