Use of infusions of FIBRINOLYTIC AGENTS to destroy or dissolve thrombi in blood vessels or bypass grafts.
Streptococcal fibrinolysin . An enzyme produced by hemolytic streptococci. It hydrolyzes amide linkages and serves as an activator of plasminogen. It is used in thrombolytic therapy and is used also in mixtures with streptodornase (STREPTODORNASE AND STREPTOKINASE). EC 3.4.-.
A proteolytic enzyme in the serine protease family found in many tissues which converts PLASMINOGEN to FIBRINOLYSIN. It has fibrin-binding activity and is immunologically different from UROKINASE-TYPE PLASMINOGEN ACTIVATOR. The primary sequence, composed of 527 amino acids, is identical in both the naturally occurring and synthetic proteases.
Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN.
NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION).
A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation.
An acylated inactive complex of streptokinase and human lysine-plasminogen. After injection, the acyl group is slowly hydrolyzed, producing an activator that converts plasminogen to plasmin, thereby initiating fibrinolysis. Its half-life is about 90 minutes compared to 5 minutes for TPA; (TISSUE PLASMINOGEN ACTIVATOR); 16 minutes for UROKINASE-TYPE PLASMINOGEN ACTIVATOR and 23 minutes for STREPTOKINASE. If treatment is initiated within 3 hours of onset of symptoms for acute myocardial infarction, the drug preserves myocardial tissue and left ventricular function and increases coronary artery patency. Bleeding complications are similar to other thrombolytic agents.
A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES.
A group of pathological conditions characterized by sudden, non-convulsive loss of neurological function due to BRAIN ISCHEMIA or INTRACRANIAL HEMORRHAGES. Stroke is classified by the type of tissue NECROSIS, such as the anatomic location, vasculature involved, etiology, age of the affected individual, and hemorrhagic vs. non-hemorrhagic nature. (From Adams et al., Principles of Neurology, 6th ed, pp777-810)
Blocking of the PULMONARY ARTERY or one of its branches by an EMBOLUS.
Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA.
Generally, restoration of blood supply to heart tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. Reperfusion can be induced to treat ischemia. Methods include chemical dissolution of an occluding thrombus, administration of vasodilator drugs, angioplasty, catheterization, and artery bypass graft surgery. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing MYOCARDIAL REPERFUSION INJURY.
Elements of limited time intervals, contributing to particular results or situations.
Surgical removal of an obstructing clot or foreign material which has been transported from a distant vessel by the bloodstream. Removal of a clot at its original site is called THROMBECTOMY.
Formation and development of a thrombus or blood clot in the blood vessel.
Disease having a short and relatively severe course.
The hospital unit in which patients with acute cardiac disorders receive intensive care.
The natural enzymatic dissolution of FIBRIN.
Laceration or tearing of cardiac tissues appearing after MYOCARDIAL INFARCTION.
Formation or presence of a blood clot (THROMBUS) in a blood vessel within the SKULL. Intracranial thrombosis can lead to thrombotic occlusions and BRAIN INFARCTION. The majority of the thrombotic occlusions are associated with ATHEROSCLEROSIS.
Bleeding or escape of blood from a vessel.
Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY.
Bleeding within the SKULL, including hemorrhages in the brain and the three membranes of MENINGES. The escape of blood often leads to the formation of HEMATOMA in the cranial epidural, subdural, and subarachnoid spaces.
Dilation of an occluded coronary artery (or arteries) by means of a balloon catheter to restore myocardial blood supply.
A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins.
Blood clot formation in any part of the CAROTID ARTERIES. This may produce CAROTID STENOSIS or occlusion of the vessel, leading to TRANSIENT ISCHEMIC ATTACK; CEREBRAL INFARCTION; or AMAUROSIS FUGAX.
The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Coagulation of blood in any of the CORONARY VESSELS. The presence of a blood clot (THROMBUS) often leads to MYOCARDIAL INFARCTION.
Radiography of the vascular system of the heart muscle after injection of a contrast medium.
Services specifically designed, staffed, and equipped for the emergency care of patients.
The return of a sign, symptom, or disease after a remission.
Embolism or thrombosis involving blood vessels which supply intracranial structures. Emboli may originate from extracranial or intracranial sources. Thrombosis may occur in arterial or venous structures.
Injections made into a vein for therapeutic or experimental purposes.
Proteins prepared by recombinant DNA technology.
The degree to which BLOOD VESSELS are not blocked or obstructed.
Situations or conditions requiring immediate intervention to avoid serious adverse results.
Regional infusion of drugs via an arterial catheter. Often a pump is used to impel the drug through the catheter. Used in therapy of cancer, upper gastrointestinal hemorrhage, infection, and peripheral vascular disease.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Blocking of a blood vessel in the SKULL by an EMBOLUS which can be a blood clot (THROMBUS) or other undissolved material in the blood stream. Most emboli are of cardiac origin and are associated with HEART DISEASES. Other non-cardiac sources of emboli are usually associated with VASCULAR DISEASES.
The formation or presence of a blood clot (THROMBUS) within a vein.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).
Use of HIRUDINS as an anticoagulant in the treatment of cardiological and hematological disorders.
First aid or other immediate intervention for accidents or medical conditions requiring immediate care and treatment before definitive medical and surgical management can be procured.
Agents that prevent clotting.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
Paramedical personnel trained to provide basic emergency care and life support under the supervision of physicians and/or nurses. These services may be carried out at the site of the emergency, in the ambulance, or in a health care institution.
Imaging of a ventricle of the heart after the injection of a radioactive contrast medium. The technique is less invasive than cardiac catheterization and is used to assess ventricular function.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
A vital statistic measuring or recording the rate of death from any cause in hospitalized populations.
Delivery of drugs into an artery.
Surgical removal of an obstructing clot or foreign material from a blood vessel at the point of its formation. Removal of a clot arising from a distant site is called EMBOLECTOMY.
Restoration of blood supply to tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. It is primarily a procedure for treating infarction or other ischemia, by enabling viable ischemic tissue to recover, thus limiting further necrosis. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing REPERFUSION INJURY.
Two small peptide chains removed from the N-terminal segment of the alpha chains of fibrinogen by the action of thrombin during the blood coagulation process. Each peptide chain contains 18 amino acid residues. In vivo, fibrinopeptide A is used as a marker to determine the rate of conversion of fibrinogen to fibrin by thrombin.
Radiography of the vascular system of the brain after injection of a contrast medium.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products.
A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot.
Intraocular hemorrhage from the vessels of various tissues of the eye.
Criteria and standards used for the determination of the appropriateness of the inclusion of patients with specific conditions in proposed treatment plans and the criteria used for the inclusion of subjects in various clinical trials and other research protocols.
Province of Canada consisting of the island of Newfoundland and an area of Labrador. Its capital is St. John's.
Disease-related laceration or tearing of tissues of the heart, including the free-wall MYOCARDIUM; HEART SEPTUM; PAPILLARY MUSCLES; CHORDAE TENDINEAE; and any of the HEART VALVES. Pathological rupture usually results from myocardial infarction (HEART RUPTURE, POST-INFARCTION).
Works about clinical trials that involve at least one test treatment and one control treatment, concurrent enrollment and follow-up of the test- and control-treated groups, and in which the treatments to be administered are selected by a random process, such as the use of a random-numbers table.
Insertion of a catheter into a peripheral artery, vein, or airway for diagnostic or therapeutic purposes.
A mixture of the enzymes (streptokinase and streptodornase) produced by hemolytic streptococci. It is used topically on surface lesions and by instillation in closed body cavities to remove clotted blood or fibrinous or purulent accumulations. It is also used as a skin test antigen in evaluating generalized cell-mediated immunodeficiency. (Dorland, 27th ed) EC 3.-.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
The prototypical analgesic used in the treatment of mild to moderate pain. It has anti-inflammatory and antipyretic properties and acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5)
Radiography of blood vessels after injection of a contrast medium.
Extravasation of blood into the skin, resulting in a nonelevated, rounded or irregular, blue or purplish patch, larger than a petechia.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
NECROSIS occurring in the MIDDLE CEREBRAL ARTERY distribution system which brings blood to the entire lateral aspects of each CEREBRAL HEMISPHERE. Clinical signs include impaired cognition; APHASIA; AGRAPHIA; weak and numbness in the face and arms, contralaterally or bilaterally depending on the infarction.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
A spectrum of pathological conditions of impaired blood flow in the brain. They can involve vessels (ARTERIES or VEINS) in the CEREBRUM, the CEREBELLUM, and the BRAIN STEM. Major categories include INTRACRANIAL ARTERIOVENOUS MALFORMATIONS; BRAIN ISCHEMIA; CEREBRAL HEMORRHAGE; and others.
Therapy with two or more separate preparations given for a combined effect.
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency.
Soluble protein fragments formed by the proteolytic action of plasmin on fibrin or fibrinogen. FDP and their complexes profoundly impair the hemostatic process and are a major cause of hemorrhage in intravascular coagulation and fibrinolysis.
Institutions with permanent facilities and organized medical staff which provide the full range of hospital services primarily to a neighborhood area.
Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures.
Shock resulting from diminution of cardiac output in heart disease.
Laceration or tearing of the VENTRICULAR SEPTUM, usually caused by MYOCARDIAL INFARCTION.
Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent.
NECROSIS occurring in the ANTERIOR CEREBRAL ARTERY system, including branches such as Heubner's artery. These arteries supply blood to the medial and superior parts of the CEREBRAL HEMISPHERE, Infarction in the anterior cerebral artery usually results in sensory and motor impairment in the lower body.
The systems and processes involved in the establishment, support, management, and operation of registers, e.g., disease registers.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
A set of techniques used when variation in several variables has to be studied simultaneously. In statistics, multivariate analysis is interpreted as any analytic method that allows simultaneous study of two or more dependent variables.
A vein on either side of the body which is formed by the union of the external and internal iliac veins and passes upward to join with its fellow of the opposite side to form the inferior vena cava.
The process which spontaneously arrests the flow of BLOOD from vessels carrying blood under pressure. It is accomplished by contraction of the vessels, adhesion and aggregation of formed blood elements (eg. ERYTHROCYTE AGGREGATION), and the process of BLOOD COAGULATION.
Mechanical devices inserted in the inferior vena cava that prevent the migration of blood clots from deep venous thrombosis of the leg.
Single-chain polypeptides of about 65 amino acids (7 kDa) from LEECHES that have a neutral hydrophobic N terminus, an acidic hydrophilic C terminus, and a compact, hydrophobic core region. Recombinant hirudins lack tyr-63 sulfation and are referred to as 'desulfato-hirudins'. They form a stable non-covalent complex with ALPHA-THROMBIN, thereby abolishing its ability to cleave FIBRINOGEN.
Inflammation of a vein associated with a blood clot (THROMBUS).
A branch of medicine concerned with the total health of the individual within the home environment and in the community, and with the application of comprehensive care to the prevention and treatment of illness in the entire community.
Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system.
Blocking of a blood vessel by an embolus which can be a blood clot or other undissolved material in the blood stream.
A condition in which the RIGHT VENTRICLE of the heart was functionally impaired. This condition usually leads to HEART FAILURE or MYOCARDIAL INFARCTION, and other cardiovascular complications. Diagnosis is made by measuring the diminished ejection fraction and a depressed level of motility of the right ventricular wall.
The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance.
Pathological conditions involving the HEART including its structural and functional abnormalities.
The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume.
Obstruction of a blood vessel (embolism) by a blood clot (THROMBUS) in the blood stream.
The circulation of blood through the CORONARY VESSELS of the HEART.
Impaired conduction of cardiac impulse that can occur anywhere along the conduction pathway, such as between the SINOATRIAL NODE and the right atrium (SA block) or between atria and ventricles (AV block). Heart blocks can be classified by the duration, frequency, or completeness of conduction block. Reversibility depends on the degree of structural or functional defects.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Hospital department responsible for the administration and provision of immediate medical or surgical care to the emergency patient.
Agents that prevent fibrinolysis or lysis of a blood clot or thrombus. Several endogenous antiplasmins are known. The drugs are used to control massive hemorrhage and in other coagulation disorders.
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
The confinement of a patient in a hospital.
Use of a balloon catheter for dilation of an occluded artery. It is used in treatment of arterial occlusive diseases, including renal artery stenosis and arterial occlusions in the leg. For the specific technique of BALLOON DILATION in coronary arteries, ANGIOPLASTY, BALLOON, CORONARY is available.
The number of new cases of a given disease during a given period in a specified population. It also is used for the rate at which new events occur in a defined population. It is differentiated from PREVALENCE, which refers to all cases, new or old, in the population at a given time.
Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor.
A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material.
A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment.
Counterpulsation in which a pumping unit synchronized with the patient's electrocardiogram rapidly fills a balloon in the aorta with helium or carbon dioxide in early diastole and evacuates the balloon at the onset of systole. As the balloon inflates, it raises aortic diastolic pressure, and as it deflates, it lowers aortic systolic pressure. The result is a decrease in left ventricular work and increased myocardial and peripheral perfusion.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
The veins and arteries of the HEART.
Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A measurement of the time needed for FIBRINOLYSIS to occur.
A measure of the quality of health care by assessment of unsuccessful results of management and procedures used in combating disease, in individual cases or series.
Non-invasive method of vascular imaging and determination of internal anatomy without injection of contrast media or radiation exposure. The technique is used especially in CEREBRAL ANGIOGRAPHY as well as for studies of other vascular structures.
The use of focused, high-frequency sound waves to produce local hyperthermia in certain diseased or injured parts of the body or to destroy the diseased tissue.
Factors that can cause or prevent the outcome of interest, are not intermediate variables, and are not associated with the factor(s) under investigation. They give rise to situations in which the effects of two processes are not separated, or the contribution of causal factors cannot be separated, or the measure of the effect of exposure or risk is distorted because of its association with other factors influencing the outcome of the study.
A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image.
Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience.
A non-invasive technique using ultrasound for the measurement of cerebrovascular hemodynamics, particularly cerebral blood flow velocity and cerebral collateral flow. With a high-intensity, low-frequency pulse probe, the intracranial arteries may be studied transtemporally, transorbitally, or from below the foramen magnum.
An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN.
The largest of the cerebral arteries. It trifurcates into temporal, frontal, and parietal branches supplying blood to most of the parenchyma of these lobes in the CEREBRAL CORTEX. These are the areas involved in motor, sensory, and speech activities.
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic.
The period of confinement of a patient to a hospital or other health facility.
An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used.
Surgical therapy of ischemic coronary artery disease achieved by grafting a section of saphenous vein, internal mammary artery, or other substitute between the aorta and the obstructed coronary artery distal to the obstructive lesion.
Unstable isotopes of thallium that decay or disintegrate emitting radiation. Tl atoms with atomic weights 198-202, 204, and 206-210 are thallium radioisotopes.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS.
A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION.
The utilization of drugs as reported in individual hospital studies, FDA studies, marketing, or consumption, etc. This includes drug stockpiling, and patient drug profiles.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.
The condition of an anatomical structure's being constricted beyond normal dimensions.
Patterns of practice related to diagnosis and treatment as especially influenced by cost of the service requested and provided.
A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.
Devices that provide support for tubular structures that are being anastomosed or for body cavities during skin grafting.
The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988)
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
A selective adrenergic beta-1 blocking agent that is commonly used to treat ANGINA PECTORIS; HYPERTENSION; and CARDIAC ARRHYTHMIAS.

Optimal thrombolytic strategies for acute myocardial infarction--bolus administration. (1/2653)

Optimal strategies for thrombolysis in myocardial infarction (TIMI) are still being sought because the TIMI 3 flow rates achievable using standard regimens average approximately 60%. Double bolus administration of recombinant tissue plasminogen activator (tPA) is a novel approach with potential for earlier patency combined with ease of administration. We reviewed total patency rates, TIMI 3 patency rates, mortality, stroke and intracranial haemorrhage rates in the major trials of accelerated infusion tPA/bolus tPA/reteplase in acute myocardial infarction. A direct comparison was performed with results of two recent trials of double bolus (two 50 mg boli, 30 min apart) vs. accelerated infusion tPA: the Double Bolus Lytic Efficacy Trial (DBLE), an angiographic study, and the COBALT Trial, a mortality study. The DBLE trial showed equivalent patency rates for accelerated infusion and double bolus administration of tPA. Reviewing other angiographic trials, total patency and TIMI 3 patency rates achievable with double bolus tPA were comparable to those with accelerated infusion tPA or bolus reteplase administration. The COBALT study demonstrated a 30-day mortality of 7.53% in patients treated with accelerated infusion tPA compared with 7.98% for double bolus tPA treated patients. The small excess in mortality with double bolus treatment was confined to the elderly; in those < or = 75 years, mortality rates were 5.6% and 5.7%, for double bolus and accelerated infusion, respectively, and rates for death or non-fatal stroke were 6.35% and 6.3%, respectively. Comparison with other trials demonstrated mortality, stroke and intracranial haemorrhage rates with double bolus treatment similar to those associated with either accelerated infusion tPA or bolus reteplase treatment. Double bolus administration of tPA to patients with acute myocardial infarction is associated with total patency, TIMI 3 patency, mortality, stroke and intracranial haemorrhage rates similar to those associated with either accelerated infusion of tPA or bolus reteplase.  (+info)

Age-related outcome for peripheral thrombolysis. (2/2653)

OBJECTIVES: To investigate the age-related outcome of peripheral thrombolysis and determine for which patient group this treatment is worthwhile. DESIGN AND METHODS: A combined retrospective and prospective analysis of consecutive patients undergoing thrombolysis for acute lower-limb ischaemia was made with respect to age-related outcome and other risk factors. RESULTS: One hundred and two patients underwent thrombolysis for acute limb ischaemia. In the under 60 age group there was a 40% amputation rate. Seventy-three per cent of this group smoked. In the over 80 age group, the amputation rate was 15% and only 8% were smokers. CONCLUSION: Advancing age is not an adverse risk factor for thrombolysis which appears to be safe and effective in this patient group. There is a high incidence of smoking in the younger age group (< 60 years), in whom failed thrombolysis frequently leads to amputation.  (+info)

Delayed increase in infarct volume after cerebral ischemia: correlations with thrombolytic treatment and clinical outcome. (3/2653)

BACKGROUND AND PURPOSE: Growing experimental evidence indicates that the development of cerebral ischemic damage is slower than previously believed. The aims of this work were (1) to study the evolution of CT hypoattenuation between 24 to 36 hours and 7 days in ischemic stroke patients; (2) to evaluate whether thrombolytic treatment given within 6 hours of stroke affects delayed infarction evolution; and (3) to investigate possible correlations between lesion volume changes over time and clinical outcome. METHODS: Of 620 patients included in the European Cooperative Acute Stroke Study 1 (ECASS1), we selected 450 patients whose control CT scans at day 1 (CT1) and day 7 (CT7) were available. They had been randomly divided into 2 groups: 206 patients had been treated with rtPA and 244 with placebo. CT1 and CT7 were classified according to the location of the infarct. The volume of CT hypoattenuation was measured using the formula AxBxC/2 for irregular volumes. The 95% confidence interval of inter- and intrarater variability was used to determine whether significant changes in lesion volume had occurred between CT1 and CT7. Clinical severity was evaluated by means of the Scandinavian Stroke Scale (SSS) at entry (SSS0) and at day 30 (SSS30). RESULTS: Mean lesion volumes were significantly (P<0.0001) higher at day 7 than at day 1 in all the subgroups of patients and particularly in patients with a subcortical lesion. Of the 450 patients studied, 287 (64%) did not show any significant change in lesion volume between CT1 and CT7, 143 (32%) showed a significant increase and the remaining 20 (4%) a significant decrease. No significant correlation was observed between treatment and lesion evolution between CT1 and CT7. Both clinical scores (SSS0 and SSS30) and degree of neurological recovery were significantly (P<0.05) lower in the subgroup of patients with a significant lesion volume increase than in the other 2 groups. CONCLUSIONS: In approximately two thirds of patients, infarct size is established 24 to 36 hours after stroke onset, whereas in the remaining one third, changes in lesion volume may occur later than the first 24 to 36 hours. Many factors may be responsible for delayed infarct enlargement and for a lower degree of clinical recovery, both of which may occur despite early recombinant tissue plasminogen activator treatment.  (+info)

Thrombolysis with tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain. (4/2653)

BACKGROUND AND PURPOSE: We tested the hypothesis that treatment of embolic stroke with recombinant human tissue plasminogen activator (rhtPA) alters cerebral expression of adhesion molecules. METHODS: Male Wistar rats were subjected to middle cerebral artery occlusion by a single fibrin-rich clot. P-selectin, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) immunoreactivity was measured at 6 or 24 hours after embolic stroke in control rats and in rats treated with rhtPA at 1 or 4 hours after stroke. To examine the therapeutic efficacy of combined rhtPA and anti-ICAM-1 antibody treatment at 4 hours after embolization, ischemic lesion volumes were measured in rats treated with rhtPA alone, rats treated with rhtPA and anti-ICAM-1 antibody, and nontreated rats. RESULTS: Administration of rhtPA at 1 hour after embolization resulted in a significant reduction of adhesion molecule vascular immunoreactivity after embolization in the ipsilateral hemisphere compared with corresponding control rats. However, when rhtPA was administered to rats at 4 hours after embolization, significant increases of adhesion molecule immunoreactivity in the ipsilateral hemisphere were detected. A significant increase of ICAM-1 immunoreactivity was also detected in the contralateral hemisphere at 24 hours after ischemia. A significant reduction in lesion volume was found in rats treated with the combination of rhtPA and anti-ICAM-1 antibody compared with rats treated only with rhtPA. CONCLUSIONS: The present study suggests that the time of initiation of thrombolytic therapy alters vascular immunoreactivity of inflammatory adhesion molecules in the ischemic brain and that therapeutic benefit can be obtained by combining rhtPA and anti-ICAM-1 antibody treatment 4 hours after stroke.  (+info)

Carotid endarterectomy and intracranial thrombolysis: simultaneous and staged procedures in ischemic stroke. (5/2653)

PURPOSE: The feasibility and safety of combining carotid surgery and thrombolysis for occlusions of the internal carotid artery (ICA) and the middle cerebral artery (MCA), either as a simultaneous or as a staged procedure in acute ischemic strokes, was studied. METHODS: A nonrandomized clinical pilot study, which included patients who had severe hemispheric carotid-related ischemic strokes and acute occlusions of the MCA, was performed between January 1994 and January 1998. Exclusion criteria were cerebral coma and major infarction established by means of cerebral computed tomography scan. Clinical outcome was assessed with the modified Rankin scale. RESULTS: Carotid reconstruction and thrombolysis was performed in 14 of 845 patients (1.7%). The ICA was occluded in 11 patients; occlusions of the MCA (mainstem/major branches/distal branch) or the anterior cerebral artery (ACA) were found in 14 patients. In three of the 14 patients, thrombolysis was performed first, followed by carotid enarterectomy (CEA) after clinical improvement (6 to 21 days). In 11 of 14 patients, 0.15 to 1 mIU urokinase was administered intraoperatively, ie, emergency CEA for acute ischemic stroke (n = 5) or surgical reexploration after elective CEA complicated by perioperative intracerebral embolism (n = 6). Thirteen of 14 intracranial embolic occlusions and 10 of 11 ICA occlusions were recanalized successfully (confirmed with angiography or transcranial Doppler studies). Four patients recovered completely (Rankin 0), six patients sustained a minor stroke (Rankin 2/3), two patients had a major stroke (Rankin 4/5), and two patients died. In one patient, hemorrhagic transformation of an ischemic infarction was detectable postoperatively. CONCLUSION: Combining carotid surgery with thrombolysis (simultaneous or staged procedure) offers a new therapeutic approach in the emergency management of an acute carotid-related stroke. Its efficacy should be evaluated in interdisciplinary studies.  (+info)

The surgical management of acute limb ischaemia due to native vessel occlusion. (6/2653)

OBJECTIVES: Data from the STILE study have indicated that for patients with subacute limb ischaemia due to native vessel occlusion, surgery is both more effective, and durable than thrombolysis. The purpose of this study was to evaluate the outcome of an aggressive surgical approach in patients presenting with acute limb-threatening ischaemia. DESIGN: Details of patients presenting with salvageable acute limb ischaemia due to native artery occlusion over a 6-year period in a University hospital vascular unit setting were obtained from the vascular audit and the outcome of the surgical management of these patients was analysed. RESULTS: One hundred and seventy-four consecutive patients underwent surgery for acute native vessel limb ischaemia (76% lower, 24% upper limb). Fogarty thrombectomy or embolectomy was initially performed in 153 (89%) patients. Of these, 37 (24%) immediately underwent a further procedure: 28 (18%) had on-table thrombolysis and 14 (9%) underwent vascular reconstruction. Twenty-six patients (15%) underwent further limb salvage surgery within 30 days. Life table analysis demonstrated a limb salvage rate of 88% and 76% at 30 days and 2 years, respectively. Patient survival was 75% and 48% at the same time intervals. CONCLUSIONS: These results demonstrate that a role for aggressive surgical intervention still exists, resulting in high limb salvage rates.  (+info)

Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. (7/2653)

BACKGROUND: We investigated whether administration of a soluble recombinant P-selectin glycoprotein ligand-1 chimera (rPSGL-Ig) in conjunction with thrombolytic therapy would enhance thrombolysis by preventing ongoing interactions of leukocytes with platelets and the injured arterial wall. METHODS AND RESULTS: An occlusive thrombus was formed in an internal iliac artery of Yorkshire pigs by placement of a copper coil in the artery under fluoroscopic guidance. Pigs then received heparin and, 15 minutes later, either vehicle or rPSGL-Ig followed by infusion with 25 mg tissue plasminogen activator according to the 90-minute regimen. Blood flow through the artery was monitored by angiography and scored on a scale of 0 to 3. Lysis of the thrombus was accelerated by 70% in pigs treated with rPSGL-Ig 250 microg/kg compared with control (13.3+/-5.0 versus 44. 4+/-13.3 minutes; n=9 each). Eight of 9 control pigs reoccluded in 13.8+/-16.9 minutes after the end of tissue plasminogen activator infusion, whereas no reocclusion was observed in 8 of 9 pigs in the rPSGL-Ig group. When the dose of rPSGL-Ig was increased to 500 microg/kg, time to lysis was shortened by 61% from control (18.0+/-8. 4 versus 46.0+/-8.9 minutes). Reocclusion occurred in 6.0+/-15.2 minutes in control but not in any rPSGL-Ig-treated pig (n=5 each). In addition, near-normal flow (score 2 or 3) after thrombolysis was achieved 59% and 58% faster in the 2 rPSGL-Ig groups than in their respective controls. CONCLUSIONS: Inhibition of leukocyte accumulation at the site of thrombosis with rPSGL-Ig may represent a safe therapeutic intervention that could be important in accelerating thrombolysis, achieving optimal reperfusion, and reducing incidence of acute reocclusion.  (+info)

Primary angioplasty versus systemic thrombolysis in anterior myocardial infarction. (8/2653)

OBJECTIVES: This study compares the efficacy of primary angioplasty and systemic thrombolysis with t-PA in reducing the in-hospital mortality of patients with anterior AMI. BACKGROUND: Controversy still exists about the relative benefit of primary angioplasty over thrombolysis as treatment for AMI. METHODS: Two-hundred and twenty patients with anterior AMI were randomly assigned in our institution to primary angioplasty (109 patients) or systemic thrombolysis with accelerated t-PA (111 patients) within the first five hours from the onset of symptoms. RESULTS: Baseline characteristics were similar in both groups. Primary angioplasty was independently associated with a lower in-hospital mortality (2.8% vs. 10.8%, p = 0.02, adjusted odds ratio 0.23, 95% confidence interval 0.06 to 0.85). During hospitalization, patients treated by angioplasty had a lower frequency of postinfarction angina or positive stress test (11.9% vs. 25.2%, p = 0.01) and less frequently underwent percutaneous or surgical revascularization after the initial treatment (22.0% vs. 47.7%, p < 0.001) than did patients treated by t-PA. At six month follow-up, patients treated by angioplasty had a lower cumulative rate of death (4.6% vs. 11.7%, p = 0.05) and revascularization (31.2% vs. 55.9%, p < 0.001) than those treated by t-PA. CONCLUSIONS: In centers with an experienced and readily available interventional team, primary angioplasty is superior to t-PA for the treatment of anterior AMI.  (+info)

Thrombolytic therapy, also known as thrombolysis, is a medical treatment that uses medications called thrombolytics or fibrinolytics to dissolve or break down blood clots (thrombi) in blood vessels. These clots can obstruct the flow of blood to vital organs such as the heart, lungs, or brain, leading to serious conditions like myocardial infarction (heart attack), pulmonary embolism, or ischemic stroke.

The goal of thrombolytic therapy is to restore blood flow as quickly and efficiently as possible to prevent further damage to the affected organ and potentially save lives. Commonly used thrombolytic drugs include alteplase (tPA), reteplase, and tenecteplase. It's essential to administer these medications as soon as possible after the onset of symptoms for optimal treatment outcomes. However, there are risks associated with thrombolytic therapy, such as an increased chance of bleeding complications, which must be carefully weighed against its benefits in each individual case.

Streptokinase is a thrombolytic or clot-busting enzyme produced by certain strains of streptococcus bacteria. It functions by converting plasminogen to plasmin, which then degrades fibrin, a protein that forms the structural framework of blood clots. This activity helps in dissolving blood clots and restoring blood flow in areas obstructed by them. In a medical context, streptokinase is often used as a medication to treat conditions associated with abnormal blood clotting, such as heart attacks, pulmonary embolisms, and deep vein thromboses. However, its use carries the risk of bleeding complications due to excessive fibrinolysis or clot dissolution.

Tissue Plasminogen Activator (tPA) is a thrombolytic enzyme, which means it dissolves blood clots. It is naturally produced by the endothelial cells that line the interior surface of blood vessels. tPA activates plasminogen, a zymogen, to convert it into plasmin, a protease that breaks down fibrin, the structural protein in blood clots. This enzyme is used medically as a thrombolytic drug under various brand names, such as Activase and Alteplase, to treat conditions like acute ischemic stroke, pulmonary embolism, and deep vein thrombosis by dissolving the clots and restoring blood flow.

Fibrinolytic agents are medications that dissolve or break down blood clots by activating plasminogen, which is converted into plasmin. Plasmin is a proteolytic enzyme that degrades fibrin, the structural protein in blood clots. Fibrinolytic agents are used medically to treat conditions such as acute ischemic stroke, deep vein thrombosis, pulmonary embolism, and myocardial infarction (heart attack) by restoring blood flow in occluded vessels. Examples of fibrinolytic agents include alteplase, reteplase, and tenecteplase. It is important to note that these medications carry a risk of bleeding complications and should be administered with caution.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

Plasminogen activators are a group of enzymes that play a crucial role in the body's fibrinolytic system, which is responsible for breaking down and removing blood clots. These enzymes activate plasminogen, a zymogen (inactive precursor) found in circulation, converting it into plasmin - a protease that degrades fibrin, the insoluble protein mesh that forms the structural basis of a blood clot.

There are two main types of plasminogen activators:

1. Tissue Plasminogen Activator (tPA): This is a serine protease primarily produced by endothelial cells lining blood vessels. tPA has a higher affinity for fibrin-bound plasminogen and is therefore more specific in activating plasmin at the site of a clot, helping to localize fibrinolysis and minimize bleeding risks.
2. Urokinase Plasminogen Activator (uPA): This is another serine protease found in various tissues and body fluids, including urine. uPA can be produced by different cell types, such as macrophages and fibroblasts. Unlike tPA, uPA does not have a strong preference for fibrin-bound plasminogen and can activate plasminogen in a more general manner, which might contribute to its role in processes like tissue remodeling and cancer progression.

Plasminogen activators are essential for maintaining vascular homeostasis by ensuring the proper removal of blood clots and preventing excessive fibrin accumulation. They have also been implicated in various pathological conditions, including thrombosis, hemorrhage, and tumor metastasis.

Anistreplase is a thrombolytic or fibrinolytic agent, which is a type of medication that dissolves blood clots. It is a form of plasminogen activator, a enzyme that converts plasminogen to plasmin, which then breaks down the fibrin protein in blood clots. Anistreplase is used in the treatment of acute myocardial infarction (heart attack) and is administered through intravenous injection.

The medical definition of 'Anistreplase' is: "A thrombolytic agent that is a form of streptokinase-streptodornase complex, used in the management of acute myocardial infarction." (Source: Dorland's Illustrated Medical Dictionary)

Urokinase-type plasminogen activator (uPA) is a serine protease enzyme that plays a crucial role in the degradation of the extracellular matrix and cell migration. It catalyzes the conversion of plasminogen to plasmin, which then breaks down various proteins in the extracellular matrix, leading to tissue remodeling and repair.

uPA is synthesized as a single-chain molecule, pro-uPA, which is activated by cleavage into two chains, forming the mature and active enzyme. uPA binds to its specific receptor, uPAR, on the cell surface, where it exerts its proteolytic activity.

Abnormal regulation of uPA and uPAR has been implicated in various pathological conditions, including cancer, where they contribute to tumor invasion and metastasis. Therefore, uPA is a potential target for therapeutic intervention in cancer and other diseases associated with excessive extracellular matrix degradation.

A stroke, also known as cerebrovascular accident (CVA), is a serious medical condition that occurs when the blood supply to part of the brain is interrupted or reduced, leading to deprivation of oxygen and nutrients to brain cells. This can result in the death of brain tissue and cause permanent damage or temporary impairment to cognitive functions, speech, memory, movement, and other body functions controlled by the affected area of the brain.

Strokes can be caused by either a blockage in an artery that supplies blood to the brain (ischemic stroke) or the rupture of a blood vessel in the brain (hemorrhagic stroke). A transient ischemic attack (TIA), also known as a "mini-stroke," is a temporary disruption of blood flow to the brain that lasts only a few minutes and does not cause permanent damage.

Symptoms of a stroke may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; severe headache with no known cause; and confusion or disorientation. Immediate medical attention is crucial for stroke patients to receive appropriate treatment and prevent long-term complications.

A pulmonary embolism (PE) is a medical condition that occurs when a blood clot, often formed in the deep veins of the legs (deep vein thrombosis), breaks off and travels to the lungs, blocking one or more pulmonary arteries. This blockage can lead to various symptoms such as shortness of breath, chest pain, rapid heart rate, and coughing up blood. In severe cases, it can cause life-threatening complications like low oxygen levels, hypotension, and even death if not promptly diagnosed and treated with anticoagulant medications or thrombolytic therapy to dissolve the clot.

Brain ischemia is the medical term used to describe a reduction or interruption of blood flow to the brain, leading to a lack of oxygen and glucose delivery to brain tissue. This can result in brain damage or death of brain cells, known as infarction. Brain ischemia can be caused by various conditions such as thrombosis (blood clot formation), embolism (obstruction of a blood vessel by a foreign material), or hypoperfusion (reduced blood flow). The severity and duration of the ischemia determine the extent of brain damage. Symptoms can range from mild, such as transient ischemic attacks (TIAs or "mini-strokes"), to severe, including paralysis, speech difficulties, loss of consciousness, and even death. Immediate medical attention is required for proper diagnosis and treatment to prevent further damage and potential long-term complications.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Heparin is defined as a highly sulfated glycosaminoglycan (a type of polysaccharide) that is widely present in many tissues, but is most commonly derived from the mucosal tissues of mammalian lungs or intestinal mucosa. It is an anticoagulant that acts as an inhibitor of several enzymes involved in the blood coagulation cascade, primarily by activating antithrombin III which then neutralizes thrombin and other clotting factors.

Heparin is used medically to prevent and treat thromboembolic disorders such as deep vein thrombosis, pulmonary embolism, and certain types of heart attacks. It can also be used during hemodialysis, cardiac bypass surgery, and other medical procedures to prevent the formation of blood clots.

It's important to note that while heparin is a powerful anticoagulant, it does not have any fibrinolytic activity, meaning it cannot dissolve existing blood clots. Instead, it prevents new clots from forming and stops existing clots from growing larger.

A cerebral hemorrhage, also known as an intracranial hemorrhage or intracerebral hemorrhage, is a type of stroke that results from bleeding within the brain tissue. It occurs when a weakened blood vessel bursts and causes localized bleeding in the brain. This bleeding can increase pressure in the skull, damage nearby brain cells, and release toxic substances that further harm brain tissues.

Cerebral hemorrhages are often caused by chronic conditions like hypertension (high blood pressure) or cerebral amyloid angiopathy, which weakens the walls of blood vessels over time. Other potential causes include trauma, aneurysms, arteriovenous malformations, illicit drug use, and brain tumors. Symptoms may include sudden headache, weakness, numbness, difficulty speaking or understanding speech, vision problems, loss of balance, and altered level of consciousness. Immediate medical attention is required to diagnose and manage cerebral hemorrhage through imaging techniques, supportive care, and possible surgical interventions.

Myocardial reperfusion is the restoration of blood flow to the heart muscle (myocardium), usually after a period of ischemia or reduced oxygen supply, such as during a myocardial infarction (heart attack). This can be achieved through various medical interventions, including thrombolytic therapy, percutaneous coronary intervention (PCI), or coronary artery bypass surgery (CABG). The goal of myocardial reperfusion is to salvage the jeopardized myocardium, preserve cardiac function, and reduce the risk of complications like heart failure or arrhythmias. However, it's important to note that while reperfusion is crucial for treating ischemic heart disease, it can also lead to additional injury to the heart muscle, known as reperfusion injury.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

An embolectomy is a surgical procedure to remove an embolus, which is a blockage in a blood vessel caused by a clot or air bubble that has traveled from another part of the body. During an embolectomy, the surgeon makes an incision in the affected blood vessel and removes the embolus using specialized surgical instruments. This procedure is often performed as an emergency treatment to restore blood flow and prevent tissue damage in the affected area of the body.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a clot forms in an artery, it can cut off the supply of oxygen and nutrients to the tissues served by that artery, leading to damage or tissue death. If a thrombus forms in the heart, it can cause a heart attack. If a thrombus breaks off and travels through the bloodstream, it can lodge in a smaller vessel, causing blockage and potentially leading to damage in the organ that the vessel supplies. This is known as an embolism.

Thrombosis can occur due to various factors such as injury to the blood vessel wall, abnormalities in blood flow, or changes in the composition of the blood. Certain medical conditions, medications, and lifestyle factors can increase the risk of thrombosis. Treatment typically involves anticoagulant or thrombolytic therapy to dissolve or prevent further growth of the clot, as well as addressing any underlying causes.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Coronary Care Units (CCUs) are specialized hospital wards that provide intensive care to patients with severe, life-threatening heart conditions. These units are equipped with advanced monitoring and treatment technologies to continuously monitor a patient's cardiac function and provide immediate medical interventions when necessary. Common conditions treated in CCUs include acute myocardial infarction (heart attack), unstable angina, cardiac arrhythmias, and heart failure. The primary goal of a CCU is to stabilize the patient's condition, prevent further complications, and facilitate recovery.

Fibrinolysis is the natural process in the body that leads to the dissolution of blood clots. It is a vital part of hemostasis, the process that regulates bleeding and wound healing. Fibrinolysis occurs when plasminogen activators convert plasminogen to plasmin, an enzyme that breaks down fibrin, the insoluble protein mesh that forms the structure of a blood clot. This process helps to prevent excessive clotting and maintains the fluidity of the blood. In medical settings, fibrinolysis can also refer to the therapeutic use of drugs that stimulate this process to dissolve unwanted or harmful blood clots, such as those that cause deep vein thrombosis or pulmonary embolism.

Post-infarction heart rupture is a serious and potentially fatal complication that can occur after a myocardial infarction (heart attack). It is defined as the disruption or tearing of the heart muscle (myocardium) in the area that was damaged by the heart attack. This condition typically occurs within 1 to 7 days following a heart attack, and it's more common in elderly patients and those with large infarctions.

There are three main types of post-infarction heart rupture:

1. Ventricular free wall rupture: This is the most common type, where there is a tear in the left ventricular wall, leading to rapid bleeding into the pericardial sac (the space surrounding the heart). This can cause cardiac tamponade, which is a life-threatening situation characterized by increased pressure in the pericardial sac, compromising cardiac filling and reducing cardiac output.

2. Ventricular septal rupture: In this case, there is a tear in the interventricular septum (the wall separating the left and right ventricles), leading to a communication between the two chambers. This results in a shunt of blood from the high-pressure left ventricle to the low-pressure right ventricle, causing a sudden increase in pulmonary congestion and reduced systemic output.

3. Papillary muscle rupture: The papillary muscles are finger-like projections that attach the heart valves (mitral and tricuspid) to the ventricular walls. Rupture of these muscles can lead to severe mitral or tricuspid regurgitation, causing acute pulmonary edema and reduced cardiac output.

Symptoms of post-infarction heart rupture may include chest pain, shortness of breath, palpitations, hypotension, tachycardia, and signs of cardiogenic shock (such as cold sweats, weak pulse, and altered mental status). Diagnosis is typically made using echocardiography, CT angiography, or MRI. Treatment usually involves emergency surgical intervention to repair the rupture and stabilize the patient's hemodynamic condition.

Intracranial thrombosis refers to the formation of a blood clot (thrombus) within the intracranial vessels, which supply blood to the brain. This condition can occur in any of the cerebral arteries or veins and can lead to serious complications such as ischemic stroke, transient ischemic attack (TIA), or venous sinus thrombosis.

The formation of an intracranial thrombus can be caused by various factors, including atherosclerosis, cardiac embolism, vasculitis, sickle cell disease, hypercoagulable states, and head trauma. Symptoms may vary depending on the location and extent of the thrombosis but often include sudden onset of headache, weakness or numbness in the face or limbs, difficulty speaking or understanding speech, vision changes, and loss of balance or coordination.

Diagnosis of intracranial thrombosis typically involves imaging studies such as computed tomography (CT) angiography, magnetic resonance angiography (MRA), or digital subtraction angiography (DSA). Treatment options may include anticoagulation therapy, thrombolysis, endovascular intervention, or surgical intervention, depending on the underlying cause and severity of the condition.

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

Electrocardiography (ECG or EKG) is a medical procedure that records the electrical activity of the heart. It provides a graphic representation of the electrical changes that occur during each heartbeat. The resulting tracing, called an electrocardiogram, can reveal information about the heart's rate and rhythm, as well as any damage to its cells or abnormalities in its conduction system.

During an ECG, small electrodes are placed on the skin of the chest, arms, and legs. These electrodes detect the electrical signals produced by the heart and transmit them to a machine that amplifies and records them. The procedure is non-invasive, painless, and quick, usually taking only a few minutes.

ECGs are commonly used to diagnose and monitor various heart conditions, including arrhythmias, coronary artery disease, heart attacks, and electrolyte imbalances. They can also be used to evaluate the effectiveness of certain medications or treatments.

Intracranial hemorrhage (ICH) is a type of stroke caused by bleeding within the brain or its surrounding tissues. It's a serious medical emergency that requires immediate attention and treatment. The bleeding can occur in various locations:

1. Epidural hematoma: Bleeding between the dura mater (the outermost protective covering of the brain) and the skull. This is often caused by trauma, such as a head injury.
2. Subdural hematoma: Bleeding between the dura mater and the brain's surface, which can also be caused by trauma.
3. Subarachnoid hemorrhage: Bleeding in the subarachnoid space, which is filled with cerebrospinal fluid (CSF) and surrounds the brain. This type of ICH is commonly caused by the rupture of an intracranial aneurysm or arteriovenous malformation.
4. Intraparenchymal hemorrhage: Bleeding within the brain tissue itself, which can be caused by hypertension (high blood pressure), amyloid angiopathy, or trauma.
5. Intraventricular hemorrhage: Bleeding into the brain's ventricular system, which contains CSF and communicates with the subarachnoid space. This type of ICH is often seen in premature infants but can also be caused by head trauma or aneurysm rupture in adults.

Symptoms of intracranial hemorrhage may include sudden severe headache, vomiting, altered consciousness, confusion, seizures, weakness, numbness, or paralysis on one side of the body, vision changes, or difficulty speaking or understanding speech. Rapid diagnosis and treatment are crucial to prevent further brain damage and potential long-term disabilities or death.

Coronary balloon angioplasty is a minimally invasive medical procedure used to widen narrowed or obstructed coronary arteries (the blood vessels that supply oxygen-rich blood to the heart muscle) and improve blood flow to the heart. This procedure is typically performed in conjunction with the insertion of a stent, a small mesh tube that helps keep the artery open.

During coronary balloon angioplasty, a thin, flexible catheter with a deflated balloon at its tip is inserted into a blood vessel, usually through a small incision in the groin or arm. The catheter is then guided to the narrowed or obstructed section of the coronary artery. Once in position, the balloon is inflated to compress the plaque against the artery wall and widen the lumen (the inner space) of the artery. This helps restore blood flow to the heart muscle.

The procedure is typically performed under local anesthesia and conscious sedation to minimize discomfort. Coronary balloon angioplasty is a relatively safe and effective treatment for many people with coronary artery disease, although complications such as bleeding, infection, or re-narrowing of the artery (restenosis) can occur in some cases.

Fibrinolysin is defined as a proteolytic enzyme that dissolves or breaks down fibrin, a protein involved in the clotting of blood. This enzyme is produced by certain cells, such as endothelial cells that line the interior surface of blood vessels, and is an important component of the body's natural mechanism for preventing excessive blood clotting and maintaining blood flow.

Fibrinolysin works by cleaving specific bonds in the fibrin molecule, converting it into soluble degradation products that can be safely removed from the body. This process is known as fibrinolysis, and it helps to maintain the balance between clotting and bleeding in the body.

In medical contexts, fibrinolysin may be used as a therapeutic agent to dissolve blood clots that have formed in the blood vessels, such as those that can occur in deep vein thrombosis or pulmonary embolism. It is often administered in combination with other medications that help to enhance its activity and specificity for fibrin.

Carotid artery thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) inside the carotid artery, which is one of the major blood vessels that supplies oxygenated blood to the head and neck. This condition can lead to serious complications such as a stroke or transient ischemic attack (TIA), also known as a "mini-stroke," if the clot dislodges and travels to the brain, blocking the flow of blood and oxygen.

Carotid artery thrombosis can result from various factors, including atherosclerosis (the buildup of fats, cholesterol, and other substances in the artery walls), hypertension (high blood pressure), diabetes, smoking, and genetic predisposition. Symptoms may include neck pain or stiffness, weakness or numbness in the face or limbs, difficulty speaking or understanding speech, vision problems, and sudden severe headaches. Diagnosis typically involves imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include anticoagulant or antiplatelet medications, endovascular procedures to remove the clot, or surgery to clean out the artery (carotid endarterectomy).

Intravenous (IV) infusion is a medical procedure in which liquids, such as medications, nutrients, or fluids, are delivered directly into a patient's vein through a needle or a catheter. This route of administration allows for rapid absorption and distribution of the infused substance throughout the body. IV infusions can be used for various purposes, including resuscitation, hydration, nutrition support, medication delivery, and blood product transfusion. The rate and volume of the infusion are carefully controlled to ensure patient safety and efficacy of treatment.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Coronary thrombosis is a medical condition that refers to the formation of a blood clot (thrombus) inside a coronary artery, which supplies oxygenated blood to the heart muscle. The development of a thrombus can partially or completely obstruct blood flow, leading to insufficient oxygen supply to the heart muscle. This can cause chest pain (angina) or a heart attack (myocardial infarction), depending on the severity and duration of the blockage.

Coronary thrombosis often results from the rupture of an atherosclerotic plaque, a buildup of cholesterol, fat, calcium, and other substances in the inner lining (endothelium) of the coronary artery. The ruptured plaque exposes the underlying tissue to the bloodstream, triggering the coagulation cascade and resulting in the formation of a thrombus.

Immediate medical attention is crucial for managing coronary thrombosis, as timely treatment can help restore blood flow, prevent further damage to the heart muscle, and reduce the risk of complications such as heart failure or life-threatening arrhythmias. Treatment options may include medications, such as antiplatelet agents, anticoagulants, and thrombolytic drugs, or interventional procedures like angioplasty and stenting to open the blocked artery. In some cases, surgical intervention, such as coronary artery bypass grafting (CABG), may be necessary.

Coronary angiography is a medical procedure that uses X-ray imaging to visualize the coronary arteries, which supply blood to the heart muscle. During the procedure, a thin, flexible catheter is inserted into an artery in the arm or groin and threaded through the blood vessels to the heart. A contrast dye is then injected through the catheter, and X-ray images are taken as the dye flows through the coronary arteries. These images can help doctors diagnose and treat various heart conditions, such as blockages or narrowing of the arteries, that can lead to chest pain or heart attacks. It is also known as coronary arteriography or cardiac catheterization.

Emergency Medical Services (EMS) is a system that provides immediate and urgent medical care, transportation, and treatment to patients who are experiencing an acute illness or injury that poses an immediate threat to their health, safety, or life. EMS is typically composed of trained professionals, such as emergency medical technicians (EMTs), paramedics, and first responders, who work together to assess a patient's condition, administer appropriate medical interventions, and transport the patient to a hospital or other medical facility for further treatment.

The goal of EMS is to quickly and effectively stabilize patients in emergency situations, prevent further injury or illness, and ensure that they receive timely and appropriate medical care. This may involve providing basic life support (BLS) measures such as cardiopulmonary resuscitation (CPR), controlling bleeding, and managing airway obstructions, as well as more advanced interventions such as administering medications, establishing intravenous lines, and performing emergency procedures like intubation or defibrillation.

EMS systems are typically organized and managed at the local or regional level, with coordination and oversight provided by public health agencies, hospitals, and other healthcare organizations. EMS providers may work for private companies, non-profit organizations, or government agencies, and they may be dispatched to emergencies via 911 or other emergency response systems.

In summary, Emergency Medical Services (EMS) is a critical component of the healthcare system that provides urgent medical care and transportation to patients who are experiencing acute illnesses or injuries. EMS professionals work together to quickly assess, stabilize, and transport patients to appropriate medical facilities for further treatment.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

1. Intracranial Embolism: This is a medical condition that occurs when a blood clot or other particle (embolus) formed elsewhere in the body, travels through the bloodstream and lodges itself in the intracranial blood vessels, blocking the flow of blood to a part of the brain. This can lead to various neurological symptoms such as weakness, numbness, speech difficulties, or even loss of consciousness, depending on the severity and location of the blockage.

2. Intracranial Thrombosis: This is a medical condition that occurs when a blood clot (thrombus) forms within the intracranial blood vessels. The clot can partially or completely obstruct the flow of blood, leading to various symptoms such as headache, confusion, seizures, or neurological deficits, depending on the severity and location of the thrombosis. Intracranial thrombosis can occur due to various factors including atherosclerosis, hypertension, diabetes, and other medical conditions that increase the risk of blood clot formation.

Intravenous injections are a type of medical procedure where medication or fluids are administered directly into a vein using a needle and syringe. This route of administration is also known as an IV injection. The solution injected enters the patient's bloodstream immediately, allowing for rapid absorption and onset of action. Intravenous injections are commonly used to provide quick relief from symptoms, deliver medications that are not easily absorbed by other routes, or administer fluids and electrolytes in cases of dehydration or severe illness. It is important that intravenous injections are performed using aseptic technique to minimize the risk of infection.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Vascular patency is a term used in medicine to describe the state of a blood vessel (such as an artery or vein) being open, unobstructed, and allowing for the normal flow of blood. It is an important concept in the treatment and management of various cardiovascular conditions, such as peripheral artery disease, coronary artery disease, and deep vein thrombosis.

Maintaining vascular patency can help prevent serious complications like tissue damage, organ dysfunction, or even death. This may involve medical interventions such as administering blood-thinning medications to prevent clots, performing procedures to remove blockages, or using devices like stents to keep vessels open. Regular monitoring of vascular patency is also crucial for evaluating the effectiveness of treatments and adjusting care plans accordingly.

An emergency is a sudden, unexpected situation that requires immediate medical attention to prevent serious harm, permanent disability, or death. Emergencies can include severe injuries, trauma, cardiac arrest, stroke, difficulty breathing, severe allergic reactions, and other life-threatening conditions. In such situations, prompt medical intervention is necessary to stabilize the patient's condition, diagnose the underlying problem, and provide appropriate treatment.

Emergency medical services (EMS) are responsible for providing emergency care to patients outside of a hospital setting, such as in the home, workplace, or public place. EMS personnel include emergency medical technicians (EMTs), paramedics, and other first responders who are trained to assess a patient's condition, provide basic life support, and transport the patient to a hospital for further treatment.

In a hospital setting, an emergency department (ED) is a specialized unit that provides immediate care to patients with acute illnesses or injuries. ED staff includes physicians, nurses, and other healthcare professionals who are trained to handle a wide range of medical emergencies. The ED is equipped with advanced medical technology and resources to provide prompt diagnosis and treatment for critically ill or injured patients.

Overall, the goal of emergency medical care is to stabilize the patient's condition, prevent further harm, and provide timely and effective treatment to improve outcomes and save lives.

Intra-arterial infusion is a medical procedure in which a liquid medication or fluid is delivered directly into an artery. This technique is used to deliver drugs directly to a specific organ or region of the body, bypassing the usual systemic circulation and allowing for higher concentrations of the drug to reach the target area. It is often used in cancer treatment to deliver chemotherapeutic agents directly to tumors, as well as in other conditions such as severe infections or inflammation.

Intra-arterial infusions are typically administered through a catheter that is inserted into an artery, usually under the guidance of imaging techniques such as fluoroscopy, CT, or MRI. The procedure requires careful monitoring and precise control to ensure proper placement of the catheter and accurate delivery of the medication.

It's important to note that intra-arterial infusions are different from intra venous (IV) infusions, where medications are delivered into a vein instead of an artery. The choice between intra-arterial and intra-venous infusion depends on various factors such as the type of medication being used, the location of the target area, and the patient's overall medical condition.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

An intracranial embolism is a medical condition that occurs when a blood clot or other foreign material (embolus) forms elsewhere in the body and travels to the blood vessels within the brain. This embolus then blocks the flow of blood in the cerebral arteries, leading to potential damage or death of brain tissue. Common sources of intracranial emboli include heart conditions such as atrial fibrillation, valvular heart disease, or following a heart attack; or from large-vessel atherosclerosis in the carotid arteries. Symptoms can vary depending on the location and size of the obstruction, but may include sudden weakness or numbness, confusion, difficulty speaking, vision loss, severe headache, or even loss of consciousness. Immediate medical attention is required to diagnose and treat intracranial embolism, often involving anticoagulation therapy, endovascular procedures, or surgery.

Venous thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) in the deep veins, often in the legs (deep vein thrombosis or DVT), but it can also occur in other parts of the body such as the arms, pelvis, or lungs (pulmonary embolism).

The formation of a venous thrombus can be caused by various factors, including injury to the blood vessel wall, changes in blood flow, and alterations in the composition of the blood. These factors can lead to the activation of clotting factors and platelets, which can result in the formation of a clot that blocks the vein.

Symptoms of venous thrombosis may include swelling, pain, warmth, and redness in the affected area. In some cases, the clot can dislodge and travel to other parts of the body, causing potentially life-threatening complications such as pulmonary embolism.

Risk factors for venous thrombosis include advanced age, obesity, smoking, pregnancy, use of hormonal contraceptives or hormone replacement therapy, cancer, recent surgery or trauma, prolonged immobility, and a history of previous venous thromboembolism. Treatment typically involves the use of anticoagulant medications to prevent further clotting and dissolve existing clots.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

Hirudin therapy, also known as leech therapy, is a type of treatment that uses the saliva of medicinal leeches (Hirudo medicinalis) to alleviate symptoms and promote healing. The saliva of these leeches contains various bioactive compounds, including hirudin, which is a potent anticoagulant that prevents blood clotting.

In hirudin therapy, leeches are applied to specific areas of the body, usually on congested tissues or sites of stasis, where they feed on the patient's blood and release their saliva into the bite site. The hirudin in the saliva helps to dissolve blood clots, improve circulation, reduce swelling, and relieve pain.

Hirudin therapy is used in various medical conditions, such as arterial and venous insufficiency, skin ulcers, joint diseases, and post-surgical recovery, particularly after reconstructive surgery or organ transplantation. It can also be used to treat thrombophlebitis, varicose veins, and other circulatory disorders.

It is essential to note that hirudin therapy should only be performed by trained medical professionals in a controlled environment due to the potential risks associated with infection transmission and bleeding complications.

Emergency treatment refers to the urgent medical interventions and care provided to individuals who are experiencing a severe injury, illness, or life-threatening condition. The primary aim of emergency treatment is to stabilize the patient's condition, prevent further harm, and provide immediate medical attention to save the patient's life or limb.

Emergency treatment may include various medical procedures, such as cardiopulmonary resuscitation (CPR), airway management, administering medications, controlling bleeding, treating burns, immobilizing fractures, and providing pain relief. The specific emergency treatment provided will depend on the nature and severity of the patient's condition.

Emergency treatment is typically delivered in an emergency department (ED) or a similar setting, such as an urgent care center, ambulance, or helicopter transport. Healthcare professionals who provide emergency treatment include emergency physicians, nurses, paramedics, and other specialists trained in emergency medicine.

It's important to note that emergency treatment is different from routine medical care, which is usually provided on a scheduled basis and focuses on preventing, diagnosing, and managing chronic or ongoing health conditions. Emergency treatment, on the other hand, is provided in response to an acute event or crisis that requires immediate attention and action.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

Emergency Medical Technicians (EMTs) are healthcare professionals who provide emergency medical services to critically ill or injured individuals. They are trained to assess a patient's condition, manage respiratory, cardiac, and trauma emergencies, and administer basic life support care. EMTs may also perform emergency procedures such as spinal immobilization, automated external defibrillation, and administer medications under certain circumstances.

EMTs typically work in ambulances, fire departments, hospitals, and other emergency medical settings. They must be able to work in high-stress situations, make quick decisions, and communicate effectively with other healthcare providers. EMTs are required to obtain certification and maintain continuing education to ensure they are up-to-date on the latest practices and protocols in emergency medicine.

Radionuclide ventriculography (RVG), also known as multiple-gated acquisition scan (MUGA) or nuclear ventriculography, is a non-invasive diagnostic test used to evaluate the function and pumping efficiency of the heart's lower chambers (ventricles). The test involves the use of radioactive tracers (radionuclides) that are injected into the patient's bloodstream. A specialized camera then captures images of the distribution of the radionuclide within the heart, which allows for the measurement of ventricular volumes and ejection fraction (EF), an important indicator of cardiac function.

During the test, the patient lies on a table while the camera takes pictures of their heart as it beats. The images are captured in "gates" or intervals, corresponding to different phases of the cardiac cycle. This allows for the calculation of ventricular volumes and EF at each phase of the cycle, providing detailed information about the heart's pumping ability.

RVG is commonly used to assess patients with known or suspected heart disease, including those who have had a heart attack, heart failure, valvular heart disease, or cardiomyopathy. It can also be used to monitor the effectiveness of treatment and to evaluate changes in cardiac function over time.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Hospital mortality is a term used to describe the number or rate of deaths that occur in a hospital setting during a specific period. It is often used as a measure of the quality of healthcare provided by a hospital, as a higher hospital mortality rate may indicate poorer care or more complex cases being treated. However, it's important to note that hospital mortality rates can be influenced by many factors, including the severity of illness of the patients being treated, patient demographics, and the availability of resources and specialized care. Therefore, hospital mortality rates should be interpreted with caution and in the context of other quality metrics.

Intra-arterial injection is a type of medical procedure where a medication or contrast agent is delivered directly into an artery. This technique is used for various therapeutic and diagnostic purposes.

For instance, intra-arterial chemotherapy may be used to deliver cancer drugs directly to the site of a tumor, while intra-arterial thrombolysis involves the administration of clot-busting medications to treat arterial blockages caused by blood clots. Intra-arterial injections are also used in diagnostic imaging procedures such as angiography, where a contrast agent is injected into an artery to visualize the blood vessels and identify any abnormalities.

It's important to note that intra-arterial injections require precise placement of the needle or catheter into the artery, and are typically performed by trained medical professionals using specialized equipment.

A thrombectomy is a medical procedure that involves the removal of a blood clot (thrombus) from a blood vessel. This is typically performed to restore blood flow in cases where the clot is causing significant blockage, which can lead to serious complications such as tissue damage or organ dysfunction.

During a thrombectomy, a surgeon makes an incision and accesses the affected blood vessel, often with the help of imaging guidance. Specialized tools are then used to extract the clot, after which the blood vessel is usually repaired. Thrombectomies can be performed on various blood vessels throughout the body, including those in the brain, heart, lungs, and limbs.

This procedure may be recommended for patients with deep vein thrombosis (DVT), pulmonary embolism (PE), or certain types of stroke, depending on the specific circumstances and the patient's overall health. It is generally considered when anticoagulation therapy or clot-dissolving medications are not sufficient or appropriate to treat the blood clot.

Reperfusion, in medical terms, refers to the restoration of blood flow to tissues or organs that have been deprived of adequate oxygen supply, usually as a result of ischemia (lack of blood flow). This process is often initiated through therapeutic interventions such as thrombolysis (breaking up blood clots), angioplasty (opening narrowed or blocked blood vessels using a balloon or stent), or surgical procedures.

Reperfusion aims to salvage the affected tissues and prevent further damage; however, it can also lead to reperfusion injury. This injury occurs when the return of oxygen-rich blood to previously ischemic tissues results in the overproduction of free radicals and inflammatory mediators, which can cause additional cellular damage and organ dysfunction.

Managing reperfusion injury involves using various strategies such as antioxidants, anti-inflammatory agents, and other protective treatments to minimize its negative impact on the recovering tissues or organs.

Fibrinopeptide A is a small protein molecule that is cleaved and released from the larger fibrinogen protein during the blood clotting process. Specifically, it is removed by the enzyme thrombin as part of the conversion of fibrinogen to fibrin, which is the main structural component of a blood clot. The measurement of Fibrinopeptide A in the blood can be used as a marker for ongoing thrombin activation and fibrin formation, which are key events in coagulation and hemostasis. Increased levels of Fibrinopeptide A may indicate abnormal or excessive blood clotting, such as in disseminated intravascular coagulation (DIC) or deep vein thrombosis (DVT).

Cerebral angiography is a medical procedure that involves taking X-ray images of the blood vessels in the brain after injecting a contrast dye into them. This procedure helps doctors to diagnose and treat various conditions affecting the blood vessels in the brain, such as aneurysms, arteriovenous malformations, and stenosis (narrowing of the blood vessels).

During the procedure, a catheter is inserted into an artery in the leg and threaded through the body to the blood vessels in the neck or brain. The contrast dye is then injected through the catheter, and X-ray images are taken to visualize the blood flow through the brain's blood vessels.

Cerebral angiography provides detailed images of the blood vessels in the brain, allowing doctors to identify any abnormalities or blockages that may be causing symptoms or increasing the risk of stroke. Based on the results of the cerebral angiography, doctors can develop a treatment plan to address these issues and prevent further complications.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Fibrinogen is a soluble protein present in plasma, synthesized by the liver. It plays an essential role in blood coagulation. When an injury occurs, fibrinogen gets converted into insoluble fibrin by the action of thrombin, forming a fibrin clot that helps to stop bleeding from the injured site. Therefore, fibrinogen is crucial for hemostasis, which is the process of stopping bleeding and starting the healing process after an injury.

Fibrin is defined as a protein that is formed from fibrinogen during the clotting of blood. It plays an essential role in the formation of blood clots, also known as a clotting or coagulation cascade. When an injury occurs and bleeding starts, fibrin threads form a net-like structure that entraps platelets and red blood cells to create a stable clot, preventing further loss of blood.

The process of forming fibrin from fibrinogen is initiated by thrombin, another protein involved in the coagulation cascade. Thrombin cleaves fibrinogen into fibrin monomers, which then polymerize to form long strands of fibrin. These strands cross-link with each other through a process catalyzed by factor XIIIa, forming a stable clot that protects the wound and promotes healing.

It is important to note that abnormalities in fibrin formation or breakdown can lead to bleeding disorders or thrombotic conditions, respectively. Proper regulation of fibrin production and degradation is crucial for maintaining healthy hemostasis and preventing excessive clotting or bleeding.

An eye hemorrhage, also known as subconjunctival hemorrhage, is a condition where there is bleeding in the eye, specifically under the conjunctiva which is the clear membrane that covers the white part of the eye (sclera). This membrane has tiny blood vessels that can rupture and cause blood to accumulate, leading to a visible red patch on the surface of the eye.

Eye hemorrhages are usually painless and harmless, and they often resolve on their own within 1-2 weeks without any treatment. However, if they occur frequently or are accompanied by other symptoms such as vision changes, pain, or sensitivity to light, it is important to seek medical attention as they could indicate a more serious underlying condition. Common causes of eye hemorrhages include trauma, high blood pressure, blood thinners, and aging.

Patient selection, in the context of medical treatment or clinical research, refers to the process of identifying and choosing appropriate individuals who are most likely to benefit from a particular medical intervention or who meet specific criteria to participate in a study. This decision is based on various factors such as the patient's diagnosis, stage of disease, overall health status, potential risks, and expected benefits. The goal of patient selection is to ensure that the selected individuals will receive the most effective and safe care possible while also contributing to meaningful research outcomes.

I'm sorry for any confusion, but "Newfoundland and Labrador" is not a medical term or concept. It is a geographical term referring to a province on the eastern coast of Canada. The name refers to the island of Newfoundland and the mainland region of Labrador, which together make up the tenth provincial division of Canada. If you have any medical questions or terms that you would like defined, I'd be happy to help!

A heart rupture, also known as cardiac rupture, is a serious and life-threatening condition that occurs when there is a tear or hole in the muscle wall of the heart. This can happen as a result of a severe injury to the heart, such as from a car accident or a fall, or it can occur as a complication of a heart attack.

During a heart attack, blood flow to a portion of the heart is blocked, causing the heart muscle to become damaged and die. If the damage is extensive, the weakened heart muscle may rupture, leading to bleeding into the pericardial sac (the space surrounding the heart) or into one of the heart chambers.

A heart rupture can cause sudden cardiac arrest and death if not treated immediately. Symptoms of a heart rupture may include chest pain, shortness of breath, rapid heartbeat, and loss of consciousness. Treatment typically involves emergency surgery to repair or replace the damaged portion of the heart.

A randomized controlled trial (RCT) is a type of clinical study in which participants are randomly assigned to receive either the experimental intervention or the control condition, which may be a standard of care, placebo, or no treatment. The goal of an RCT is to minimize bias and ensure that the results are due to the intervention being tested rather than other factors. This design allows for a comparison between the two groups to determine if there is a significant difference in outcomes. RCTs are often considered the gold standard for evaluating the safety and efficacy of medical interventions, as they provide a high level of evidence for causal relationships between the intervention and health outcomes.

Peripheral catheterization is a medical procedure that involves the insertion of a thin, flexible tube (catheter) into a peripheral vein, which is a blood vessel located outside of the chest and abdomen. This type of catheterization is typically performed to administer medications, fluids, or nutritional support, or to monitor various physiological parameters such as central venous pressure.

Peripheral catheters are usually inserted into veins in the hands or arms, although they can also be placed in other peripheral veins. The procedure is typically performed using aseptic technique to minimize the risk of infection. Once the catheter is in place, it may be secured with a dressing or suture to prevent movement and dislodgement.

Peripheral catheterization is a relatively safe and common procedure that is routinely performed in hospitals, clinics, and other healthcare settings. However, like any medical procedure, it carries a small risk of complications such as infection, bleeding, or damage to the vein or surrounding tissues.

Streptodornase: Also known as streptococcal DNase, is an enzyme produced by certain strains of Streptococcus bacteria. It has the ability to degrade DNA, which makes it useful in some medical applications such as reducing the viscosity of purulent exudates (thick pus) in wounds and respiratory secretions, facilitating their removal and promoting tissue healing.

Streptokinase: Is a protein produced by various streptococcus species. It functions as a thrombolytic agent, which means it can dissolve blood clots. Streptokinase does this by binding to plasminogen, an inactive form of the enzyme plasmin, and converting it into its active form. Activated plasmin then breaks down fibrin, a protein that forms the structural framework of blood clots, leading to their dissolution. Streptokinase is used medically as a treatment for conditions associated with blood clots such as deep vein thrombosis, pulmonary embolism, and myocardial infarction (heart attack).

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Aspirin is the common name for acetylsalicylic acid, which is a medication used to relieve pain, reduce inflammation, and lower fever. It works by inhibiting the activity of an enzyme called cyclooxygenase (COX), which is involved in the production of prostaglandins, hormone-like substances that cause inflammation and pain. Aspirin also has an antiplatelet effect, which means it can help prevent blood clots from forming. This makes it useful for preventing heart attacks and strokes.

Aspirin is available over-the-counter in various forms, including tablets, capsules, and chewable tablets. It is also available in prescription strengths for certain medical conditions. As with any medication, aspirin should be taken as directed by a healthcare provider, and its use should be avoided in children and teenagers with viral infections due to the risk of Reye's syndrome, a rare but serious condition that can affect the liver and brain.

Angiography is a medical procedure in which an x-ray image is taken to visualize the internal structure of blood vessels, arteries, or veins. This is done by injecting a radiopaque contrast agent (dye) into the blood vessel using a thin, flexible catheter. The dye makes the blood vessels visible on an x-ray image, allowing doctors to diagnose and treat various medical conditions such as blockages, narrowing, or malformations of the blood vessels.

There are several types of angiography, including:

* Cardiac angiography (also called coronary angiography) - used to examine the blood vessels of the heart
* Cerebral angiography - used to examine the blood vessels of the brain
* Peripheral angiography - used to examine the blood vessels in the limbs or other parts of the body.

Angiography is typically performed by a radiologist, cardiologist, or vascular surgeon in a hospital setting. It can help diagnose conditions such as coronary artery disease, aneurysms, and peripheral arterial disease, among others.

Ecchymosis is a medical term that refers to a discoloration of the skin caused by the leakage of blood from ruptured blood vessels into the tissues beneath. It is typically caused by trauma or injury to the affected area, which results in the escape of blood from the damaged blood vessels. The escaped blood collects under the skin, causing a bruise or a purple, blue, or blackish patch on the skin's surface.

Ecchymosis can occur anywhere on the body and can vary in size and shape depending on the extent of the injury. While ecchymosis is generally harmless and resolves on its own within a few days to a week, it can be a sign of an underlying medical condition, such as a bleeding disorder or a blood vessel abnormality. In these cases, further evaluation and treatment may be necessary.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Middle Cerebral Artery (MCA) infarction is a type of ischemic stroke that occurs when there is an obstruction in the blood supply to the middle cerebral artery, which is one of the major blood vessels that supplies oxygenated blood to the brain. The MCA supplies blood to a large portion of the brain, including the motor and sensory cortex, parts of the temporal and parietal lobes, and the basal ganglia.

An infarction is the death of tissue due to the lack of blood supply, which can lead to damage or loss of function in the affected areas of the brain. Symptoms of MCA infarction may include weakness or numbness on one side of the body, difficulty speaking or understanding speech, vision problems, and altered levels of consciousness.

MCA infarctions can be caused by various factors, including embolism (a blood clot that travels to the brain from another part of the body), thrombosis (a blood clot that forms in the MCA itself), or stenosis (narrowing of the artery due to atherosclerosis or other conditions). Treatment for MCA infarction may include medications to dissolve blood clots, surgery to remove the obstruction, or rehabilitation to help regain lost function.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Cerebrovascular disorders are a group of medical conditions that affect the blood vessels of the brain. These disorders can be caused by narrowing, blockage, or rupture of the blood vessels, leading to decreased blood flow and oxygen supply to the brain. The most common types of cerebrovascular disorders include:

1. Stroke: A stroke occurs when a blood vessel in the brain becomes blocked or bursts, causing a lack of oxygen and nutrients to reach brain cells. This can lead to permanent damage or death of brain tissue.
2. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA occurs when blood flow to the brain is temporarily blocked, often by a blood clot. Symptoms may last only a few minutes to a few hours and typically resolve on their own. However, a TIA is a serious warning sign that a full-blown stroke may occur in the future.
3. Aneurysm: An aneurysm is a weakened or bulging area in the wall of a blood vessel. If left untreated, an aneurysm can rupture and cause bleeding in the brain.
4. Arteriovenous malformation (AVM): An AVM is a tangled mass of abnormal blood vessels that connect arteries and veins. This can lead to bleeding in the brain or stroke.
5. Carotid stenosis: Carotid stenosis occurs when the carotid arteries, which supply blood to the brain, become narrowed or blocked due to plaque buildup. This can increase the risk of stroke.
6. Vertebrobasilar insufficiency: This condition occurs when the vertebral and basilar arteries, which supply blood to the back of the brain, become narrowed or blocked. This can lead to symptoms such as dizziness, vertigo, and difficulty swallowing.

Cerebrovascular disorders are a leading cause of disability and death worldwide. Risk factors for these conditions include age, high blood pressure, smoking, diabetes, high cholesterol, and family history. Treatment may involve medications, surgery, or lifestyle changes to reduce the risk of further complications.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Arterial occlusive diseases are medical conditions characterized by the blockage or narrowing of the arteries, which can lead to a reduction in blood flow to various parts of the body. This reduction in blood flow can cause tissue damage and may result in serious complications such as tissue death (gangrene), organ dysfunction, or even death.

The most common cause of arterial occlusive diseases is atherosclerosis, which is the buildup of plaque made up of fat, cholesterol, calcium, and other substances in the inner lining of the artery walls. Over time, this plaque can harden and narrow the arteries, restricting blood flow. Other causes of arterial occlusive diseases include blood clots, emboli (tiny particles that travel through the bloodstream and lodge in smaller vessels), inflammation, trauma, and certain inherited conditions.

Symptoms of arterial occlusive diseases depend on the location and severity of the blockage. Common symptoms include:

* Pain, cramping, or fatigue in the affected limb, often triggered by exercise and relieved by rest (claudication)
* Numbness, tingling, or weakness in the affected limb
* Coldness or discoloration of the skin in the affected area
* Slow-healing sores or wounds on the toes, feet, or legs
* Erectile dysfunction in men

Treatment for arterial occlusive diseases may include lifestyle changes such as quitting smoking, exercising regularly, and eating a healthy diet. Medications to lower cholesterol, control blood pressure, prevent blood clots, or manage pain may also be prescribed. In severe cases, surgical procedures such as angioplasty, stenting, or bypass surgery may be necessary to restore blood flow.

Fibrin(ogen) degradation products (FDPs) are a group of proteins that result from the breakdown of fibrinogen and fibrin, which are key components of blood clots. This process occurs during the normal physiological process of fibrinolysis, where clots are dissolved to maintain blood flow.

FDPs can be measured in the blood as a marker for the activation of the coagulation and fibrinolytic systems. Elevated levels of FDPs may indicate the presence of a disorder that causes abnormal clotting or bleeding, such as disseminated intravascular coagulation (DIC), deep vein thrombosis (DVT), pulmonary embolism (PE), or certain types of cancer.

It is important to note that FDPs are not specific to any particular disorder and their measurement should be interpreted in conjunction with other clinical and laboratory findings.

Community hospitals are healthcare facilities that provide a range of medical services to the local population in a given geographic area. They are typically smaller than major teaching or tertiary care hospitals and offer a more personalized level of care. The services provided by community hospitals may include general medical, surgical, obstetrical, and pediatric care, as well as diagnostic and therapeutic services such as laboratory testing, imaging, and rehabilitation.

Community hospitals often play an important role in providing access to healthcare for underserved populations and may offer specialized programs to address the specific health needs of the communities they serve. They may also collaborate with other healthcare providers, such as primary care physicians, specialists, and long-term care facilities, to provide coordinated care and improve outcomes for patients.

Overall, community hospitals are an essential component of the healthcare system and play a vital role in providing high-quality, accessible care to local populations.

Cardiac catheterization is a medical procedure used to diagnose and treat cardiovascular conditions. In this procedure, a thin, flexible tube called a catheter is inserted into a blood vessel in the arm or leg and threaded up to the heart. The catheter can be used to perform various diagnostic tests, such as measuring the pressure inside the heart chambers and assessing the function of the heart valves.

Cardiac catheterization can also be used to treat certain cardiovascular conditions, such as narrowed or blocked arteries. In these cases, a balloon or stent may be inserted through the catheter to open up the blood vessel and improve blood flow. This procedure is known as angioplasty or percutaneous coronary intervention (PCI).

Cardiac catheterization is typically performed in a hospital cardiac catheterization laboratory by a team of healthcare professionals, including cardiologists, radiologists, and nurses. The procedure may be done under local anesthesia with sedation or general anesthesia, depending on the individual patient's needs and preferences.

Overall, cardiac catheterization is a valuable tool in the diagnosis and treatment of various heart conditions, and it can help improve symptoms, reduce complications, and prolong life for many patients.

Cardiogenic shock is a serious condition characterized by the inability of the heart to pump enough blood to meet the body's needs. It is a type of shock that originates from a primary cardiac dysfunction, such as severe heart muscle damage (myocardial infarction or heart attack), abnormal heart rhythms (arrhythmias), or acute valvular insufficiency.

In cardiogenic shock, the low cardiac output leads to inadequate tissue perfusion and oxygenation, resulting in multiple organ dysfunction and failure. Symptoms of cardiogenic shock include severe hypotension (low blood pressure), cool extremities, decreased urine output, altered mental status, and signs of congestive heart failure such as shortness of breath, cough, and peripheral edema.

Cardiogenic shock is a medical emergency that requires prompt diagnosis and immediate treatment, which may include medications to support blood pressure and heart function, mechanical assist devices, or even emergency heart transplantation in some cases.

Ventricular Septal Rupture (VSR) is a serious and potentially life-threatening condition that occurs when there is a hole or tear in the ventricular septum, which is the muscular wall that separates the left and right ventricles of the heart. This separation is crucial for maintaining the proper flow of blood through the heart and lungs.

In VSR, blood from the high-pressure left ventricle flows into the low-pressure right ventricle through the abnormal opening, causing a mixing of oxygenated and deoxygenated blood. As a result, the body may not receive enough oxygen-rich blood to meet its needs, leading to symptoms such as shortness of breath, fatigue, and fluid buildup in the lungs and other parts of the body.

Ventricular septal rupture is most commonly seen as a complication of acute myocardial infarction (heart attack), where the muscle tissue of the ventricular septum becomes necrotic and weakened, leading to the formation of a hole or tear. Other causes of VSR include congenital heart defects, trauma, and certain infections such as endocarditis.

Treatment for VSR typically involves surgical repair of the defect, often using a patch or other materials to close the opening. In some cases, medication may be used to help manage symptoms and improve cardiac function while awaiting surgery. The prognosis for patients with VSR depends on various factors, including the size and location of the rupture, the patient's overall health and age, and the timeliness and success of treatment.

Plasminogen is a glycoprotein that is present in human plasma, and it is the inactive precursor of the enzyme plasmin. Plasmin is a serine protease that plays a crucial role in the dissolution of blood clots by degrading fibrin, one of the major components of a blood clot.

Plasminogen can be activated to form plasmin through the action of various activators, such as tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Once activated, plasmin can break down fibrin and other proteins, helping to prevent excessive clotting and promoting the normal turnover of extracellular matrix components.

Abnormalities in plasminogen activation have been implicated in various diseases, including thrombosis, fibrosis, and cancer. Therefore, understanding the regulation and function of plasminogen is important for developing therapies to treat these conditions.

Anterior cerebral artery infarction refers to the death of brain tissue (also known as an infarct) in the territory supplied by the anterior cerebral artery (ACA) due to insufficient blood flow. The ACA supplies oxygenated blood to the frontal lobes of the brain, which are responsible for higher cognitive functions such as reasoning, problem-solving, and decision-making, as well as motor control of the lower extremities.

An infarction in this territory can result from various causes, including atherosclerosis, embolism, thrombosis, or vasospasm. Symptoms of an ACA infarction may include weakness or paralysis on one side of the body (usually the lower extremities), difficulty with coordination and balance, urinary incontinence, changes in personality or behavior, and impaired cognitive function. The severity of symptoms depends on the extent and location of the infarct. Immediate medical attention is necessary to prevent further damage and improve the chances of recovery.

A registry in the context of medicine is a collection or database of standardized information about individuals who share a certain condition or attribute, such as a disease, treatment, exposure, or demographic group. These registries are used for various purposes, including:

* Monitoring and tracking the natural history of diseases and conditions
* Evaluating the safety and effectiveness of medical treatments and interventions
* Conducting research and generating hypotheses for further study
* Providing information to patients, clinicians, and researchers
* Informing public health policy and decision-making

Registries can be established for a wide range of purposes, including disease-specific registries (such as cancer or diabetes registries), procedure-specific registries (such as joint replacement or cardiac surgery registries), and population-based registries (such as birth defects or cancer registries). Data collected in registries may include demographic information, clinical data, laboratory results, treatment details, and outcomes.

Registries can be maintained by a variety of organizations, including hospitals, clinics, academic medical centers, professional societies, government agencies, and industry. Participation in registries is often voluntary, although some registries may require informed consent from participants. Data collected in registries are typically de-identified to protect the privacy of individuals.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Multivariate analysis is a statistical method used to examine the relationship between multiple independent variables and a dependent variable. It allows for the simultaneous examination of the effects of two or more independent variables on an outcome, while controlling for the effects of other variables in the model. This technique can be used to identify patterns, associations, and interactions among multiple variables, and is commonly used in medical research to understand complex health outcomes and disease processes. Examples of multivariate analysis methods include multiple regression, factor analysis, cluster analysis, and discriminant analysis.

The iliac veins are a pair of large veins in the human body that carry deoxygenated blood from the lower extremities and the pelvic area back to the heart. They are formed by the union of the common iliac veins, which receive blood from the lower abdomen and legs, at the level of the fifth lumbar vertebra.

The combined iliac vein is called the inferior vena cava, which continues upward to the right atrium of the heart. The iliac veins are located deep within the pelvis, lateral to the corresponding iliac arteries, and are accompanied by the iliac lymphatic vessels.

The left common iliac vein is longer than the right because it must cross the left common iliac artery to join the right common iliac vein. The external and internal iliac veins are the two branches of the common iliac vein, with the external iliac vein carrying blood from the lower limbs and the internal iliac vein carrying blood from the pelvic organs.

It is essential to maintain proper blood flow in the iliac veins to prevent deep vein thrombosis (DVT), a condition that can lead to serious complications such as pulmonary embolism.

Hemostasis is the physiological process that occurs to stop bleeding (bleeding control) when a blood vessel is damaged. This involves the interaction of platelets, vasoconstriction, and blood clotting factors leading to the formation of a clot. The ultimate goal of hemostasis is to maintain the integrity of the vascular system while preventing excessive blood loss.

Vena cava filters are medical devices that are implanted into the inferior vena cava, which is the largest vein in the body that returns blood from the lower half of the body to the heart. These filters are designed to trap blood clots that form in the deep veins of the legs (deep vein thrombosis or DVT) and prevent them from traveling to the lungs (pulmonary embolism or PE), which can be a life-threatening condition.

The filter is typically implanted using a catheter-based procedure, and it has legs or arms that extend out to trap the blood clots as they flow through the vein. Over time, the trapped clots may dissolve on their own or become organized and incorporated into the wall of the vein.

Vena cava filters are typically used in patients who are at high risk for PE but cannot take anticoagulation medication or have failed anticoagulation therapy. However, there is some controversy surrounding the use of these devices due to concerns about their long-term safety and effectiveness.

Hirudin is not a medical term itself, but it is a specific substance with medical relevance. Hirudin is a naturally occurring anticoagulant that is found in the saliva of certain species of leeches (such as Hirudo medicinalis). This compound works by inhibiting the activity of thrombin, a key enzyme in the coagulation cascade, which ultimately results in preventing blood clot formation.

Medically, hirudin has been used in some research and therapeutic settings for its anticoagulant properties. For instance, recombinant hirudin (also known as lepirudin) is available for clinical use as an injectable anticoagulant to treat or prevent blood clots in specific medical conditions, such as heparin-induced thrombocytopenia (HIT).

In summary, Hirudins are a group of anticoagulant substances, primarily derived from leeches, that inhibit the activity of thrombin and have potential medical applications in preventing or treating blood clots.

Thrombophlebitis is a medical condition characterized by the inflammation and clotting of blood in a vein, usually in the legs. The term thrombophlebitis comes from two words: "thrombo" which means blood clot, and "phlebitis" which refers to inflammation of the vein.

The condition can occur in superficial or deep veins. Superficial thrombophlebitis affects the veins just below the skin's surface, while deep vein thrombophlebitis (DVT) occurs in the deeper veins. DVT is a more serious condition as it can lead to complications such as pulmonary embolism if the blood clot breaks off and travels to the lungs.

Symptoms of thrombophlebitis may include redness, warmth, pain, swelling, or discomfort in the affected area. In some cases, there may be visible surface veins that are hard, tender, or ropy to touch. If left untreated, thrombophlebitis can lead to chronic venous insufficiency and other long-term complications. Treatment typically involves medications such as anticoagulants, antiplatelet agents, or thrombolytics, along with compression stockings and other supportive measures.

Community medicine, also known as social medicine or public health medicine, is a branch of medical science that deals with the health of populations and communities rather than individual patients. It focuses on preventing diseases and promoting health through organized community efforts, including education, advocacy, and policy development. Community medicine aims to improve the overall health status of a population by addressing the social determinants of health, such as poverty, housing, education, and access to healthcare services. It involves collaboration between various stakeholders, including healthcare professionals, community members, policical leaders, and organizations, to identify and address the health needs of the community.

Platelet aggregation inhibitors are a class of medications that prevent platelets (small blood cells involved in clotting) from sticking together and forming a clot. These drugs work by interfering with the ability of platelets to adhere to each other and to the damaged vessel wall, thereby reducing the risk of thrombosis (blood clot formation).

Platelet aggregation inhibitors are often prescribed for people who have an increased risk of developing blood clots due to various medical conditions such as atrial fibrillation, coronary artery disease, peripheral artery disease, stroke, or a history of heart attack. They may also be used in patients undergoing certain medical procedures, such as angioplasty and stenting, to prevent blood clot formation in the stents.

Examples of platelet aggregation inhibitors include:

1. Aspirin: A nonsteroidal anti-inflammatory drug (NSAID) that irreversibly inhibits the enzyme cyclooxygenase, which is involved in platelet activation and aggregation.
2. Clopidogrel (Plavix): A P2Y12 receptor antagonist that selectively blocks ADP-induced platelet activation and aggregation.
3. Prasugrel (Effient): A third-generation thienopyridine P2Y12 receptor antagonist, similar to clopidogrel but with faster onset and greater potency.
4. Ticagrelor (Brilinta): A direct-acting P2Y12 receptor antagonist that does not require metabolic activation and has a reversible binding profile.
5. Dipyridamole (Persantine): An antiplatelet agent that inhibits platelet aggregation by increasing cyclic adenosine monophosphate (cAMP) levels in platelets, which leads to decreased platelet reactivity.
6. Iloprost (Ventavis): A prostacyclin analogue that inhibits platelet aggregation and causes vasodilation, often used in the treatment of pulmonary arterial hypertension.
7. Cilostazol (Pletal): A phosphodiesterase III inhibitor that increases cAMP levels in platelets, leading to decreased platelet activation and aggregation, as well as vasodilation.
8. Ticlopidine (Ticlid): An older P2Y12 receptor antagonist with a slower onset of action and more frequent side effects compared to clopidogrel or prasugrel.

An embolism is a medical condition that occurs when a substance, such as a blood clot or an air bubble, blocks a blood vessel. This can happen in any part of the body, but it is particularly dangerous when it affects the brain (causing a stroke) or the lungs (causing a pulmonary embolism). Embolisms can cause serious harm by preventing oxygen and nutrients from reaching the tissues and organs that need them. They are often the result of underlying medical conditions, such as heart disease or deep vein thrombosis, and may require immediate medical attention to prevent further complications.

Right ventricular dysfunction is a condition characterized by the impaired ability of the right ventricle (one of the two pumping chambers in the heart) to fill with blood during the diastolic phase or eject blood during the systolic phase. This results in reduced cardiac output from the right ventricle, which can lead to various complications such as fluid accumulation in the body, particularly in the abdomen and lower extremities, and ultimately congestive heart failure if left untreated.

Right ventricular dysfunction can be caused by various factors, including damage to the heart muscle due to a heart attack, high blood pressure in the lungs (pulmonary hypertension), chronic lung diseases, congenital heart defects, viral infections, and certain medications. Symptoms of right ventricular dysfunction may include shortness of breath, fatigue, swelling in the legs, ankles, or abdomen, and a decreased tolerance for physical activity.

Diagnosis of right ventricular dysfunction typically involves a combination of medical history, physical examination, imaging tests such as echocardiography, cardiac MRI, or CT scan, and other diagnostic procedures such as electrocardiogram (ECG) or cardiac catheterization. Treatment options depend on the underlying cause but may include medications to reduce fluid buildup, improve heart function, and manage symptoms, as well as lifestyle modifications such as reducing salt intake and increasing physical activity levels. In severe cases, more invasive treatments such as surgery or implantable devices like pacemakers or ventricular assist devices may be necessary.

Left ventricular function refers to the ability of the left ventricle (the heart's lower-left chamber) to contract and relax, thereby filling with and ejecting blood. The left ventricle is responsible for pumping oxygenated blood to the rest of the body. Its function is evaluated by measuring several parameters, including:

1. Ejection fraction (EF): This is the percentage of blood that is pumped out of the left ventricle with each heartbeat. A normal ejection fraction ranges from 55% to 70%.
2. Stroke volume (SV): The amount of blood pumped by the left ventricle in one contraction. A typical SV is about 70 mL/beat.
3. Cardiac output (CO): The total volume of blood that the left ventricle pumps per minute, calculated as the product of stroke volume and heart rate. Normal CO ranges from 4 to 8 L/minute.

Assessment of left ventricular function is crucial in diagnosing and monitoring various cardiovascular conditions such as heart failure, coronary artery disease, valvular heart diseases, and cardiomyopathies.

Heart disease is a broad term for a class of diseases that involve the heart or blood vessels. It's often used to refer to conditions that include:

1. Coronary artery disease (CAD): This is the most common type of heart disease. It occurs when the arteries that supply blood to the heart become hardened and narrowed due to the buildup of cholesterol and other substances, which can lead to chest pain (angina), shortness of breath, or a heart attack.

2. Heart failure: This condition occurs when the heart is unable to pump blood efficiently to meet the body's needs. It can be caused by various conditions, including coronary artery disease, high blood pressure, and cardiomyopathy.

3. Arrhythmias: These are abnormal heart rhythms, which can be too fast, too slow, or irregular. They can lead to symptoms such as palpitations, dizziness, and fainting.

4. Valvular heart disease: This involves damage to one or more of the heart's four valves, which control blood flow through the heart. Damage can be caused by various conditions, including infection, rheumatic fever, and aging.

5. Cardiomyopathy: This is a disease of the heart muscle that makes it harder for the heart to pump blood efficiently. It can be caused by various factors, including genetics, viral infections, and drug abuse.

6. Pericardial disease: This involves inflammation or other problems with the sac surrounding the heart (pericardium). It can cause chest pain and other symptoms.

7. Congenital heart defects: These are heart conditions that are present at birth, such as a hole in the heart or abnormal blood vessels. They can range from mild to severe and may require medical intervention.

8. Heart infections: The heart can become infected by bacteria, viruses, or parasites, leading to various symptoms and complications.

It's important to note that many factors can contribute to the development of heart disease, including genetics, lifestyle choices, and certain medical conditions. Regular check-ups and a healthy lifestyle can help reduce the risk of developing heart disease.

Stroke volume is a term used in cardiovascular physiology and medicine. It refers to the amount of blood that is pumped out of the left ventricle of the heart during each contraction (systole). Specifically, it is the difference between the volume of blood in the left ventricle at the end of diastole (when the ventricle is filled with blood) and the volume at the end of systole (when the ventricle has contracted and ejected its contents into the aorta).

Stroke volume is an important measure of heart function, as it reflects the ability of the heart to pump blood effectively to the rest of the body. A low stroke volume may indicate that the heart is not pumping efficiently, while a high stroke volume may suggest that the heart is working too hard. Stroke volume can be affected by various factors, including heart disease, high blood pressure, and physical fitness level.

The formula for calculating stroke volume is:

Stroke Volume = End-Diastolic Volume - End-Systolic Volume

Where end-diastolic volume (EDV) is the volume of blood in the left ventricle at the end of diastole, and end-systolic volume (ESV) is the volume of blood in the left ventricle at the end of systole.

Thromboembolism is a medical condition that refers to the obstruction of a blood vessel by a thrombus (blood clot) that has formed elsewhere in the body and then been transported by the bloodstream to a narrower vessel, where it becomes lodged. This process can occur in various parts of the body, leading to different types of thromboembolisms:

1. Deep Vein Thrombosis (DVT): A thrombus forms in the deep veins, usually in the legs or pelvis, and then breaks off and travels to the lungs, causing a pulmonary embolism.
2. Pulmonary Embolism (PE): A thrombus formed elsewhere, often in the deep veins of the legs, dislodges and travels to the lungs, blocking one or more pulmonary arteries. This can lead to shortness of breath, chest pain, and potentially life-threatening complications if not treated promptly.
3. Cerebral Embolism: A thrombus formed in another part of the body, such as the heart or carotid artery, dislodges and travels to the brain, causing a stroke or transient ischemic attack (TIA).
4. Arterial Thromboembolism: A thrombus forms in an artery and breaks off, traveling to another part of the body and blocking blood flow to an organ or tissue, leading to potential damage or loss of function. Examples include mesenteric ischemia (intestinal damage due to blocked blood flow) and retinal artery occlusion (vision loss due to blocked blood flow in the eye).

Prevention, early detection, and appropriate treatment are crucial for managing thromboembolism and reducing the risk of severe complications.

Coronary circulation refers to the circulation of blood in the coronary vessels, which supply oxygenated blood to the heart muscle (myocardium) and drain deoxygenated blood from it. The coronary circulation system includes two main coronary arteries - the left main coronary artery and the right coronary artery - that branch off from the aorta just above the aortic valve. These arteries further divide into smaller branches, which supply blood to different regions of the heart muscle.

The left main coronary artery divides into two branches: the left anterior descending (LAD) artery and the left circumflex (LCx) artery. The LAD supplies blood to the front and sides of the heart, while the LCx supplies blood to the back and sides of the heart. The right coronary artery supplies blood to the lower part of the heart, including the right ventricle and the bottom portion of the left ventricle.

The veins that drain the heart muscle include the great cardiac vein, the middle cardiac vein, and the small cardiac vein, which merge to form the coronary sinus. The coronary sinus empties into the right atrium, allowing deoxygenated blood to enter the right side of the heart and be pumped to the lungs for oxygenation.

Coronary circulation is essential for maintaining the health and function of the heart muscle, as it provides the necessary oxygen and nutrients required for proper contraction and relaxation of the myocardium. Any disruption or blockage in the coronary circulation system can lead to serious consequences, such as angina, heart attack, or even death.

Heart block is a cardiac condition characterized by the interruption of electrical impulse transmission from the atria (the upper chambers of the heart) to the ventricles (the lower chambers of the heart). This disruption can lead to abnormal heart rhythms, including bradycardia (a slower-than-normal heart rate), and in severe cases, can cause the heart to stop beating altogether. Heart block is typically caused by damage to the heart's electrical conduction system due to various factors such as aging, heart disease, or certain medications.

There are three types of heart block: first-degree, second-degree, and third-degree (also known as complete heart block). Each type has distinct electrocardiogram (ECG) findings and symptoms. Treatment for heart block depends on the severity of the condition and may include monitoring, medication, or implantation of a pacemaker to regulate the heart's electrical activity.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

An emergency service in a hospital is a department that provides immediate medical or surgical care for individuals who are experiencing an acute illness, injury, or severe symptoms that require immediate attention. The goal of an emergency service is to quickly assess, stabilize, and treat patients who require urgent medical intervention, with the aim of preventing further harm or death.

Emergency services in hospitals typically operate 24 hours a day, 7 days a week, and are staffed by teams of healthcare professionals including physicians, nurses, physician assistants, nurse practitioners, and other allied health professionals. These teams are trained to provide rapid evaluation and treatment for a wide range of medical conditions, from minor injuries to life-threatening emergencies such as heart attacks, strokes, and severe infections.

In addition to providing emergency care, hospital emergency services also serve as a key point of entry for patients who require further hospitalization or specialized care. They work closely with other departments within the hospital, such as radiology, laboratory, and critical care units, to ensure that patients receive timely and appropriate treatment. Overall, the emergency service in a hospital plays a crucial role in ensuring that patients receive prompt and effective medical care during times of crisis.

Antifibrinolytic agents are a class of medications that inhibit the breakdown of blood clots. They work by blocking the action of enzymes called plasminogen activators, which convert plasminogen to plasmin, the main enzyme responsible for breaking down fibrin, a protein that forms the framework of a blood clot.

By preventing the conversion of plasminogen to plasmin, antifibrinolytic agents help to stabilize existing blood clots and prevent their premature dissolution. These medications are often used in clinical settings where excessive bleeding is a concern, such as during or after surgery, childbirth, or trauma.

Examples of antifibrinolytic agents include tranexamic acid, aminocaproic acid, and epsilon-aminocaproic acid. While these medications can be effective in reducing bleeding, they also carry the risk of thromboembolic events, such as deep vein thrombosis or pulmonary embolism, due to their pro-coagulant effects. Therefore, they should be used with caution and only under the close supervision of a healthcare provider.

Catheterization is a medical procedure in which a catheter (a flexible tube) is inserted into the body to treat various medical conditions or for diagnostic purposes. The specific definition can vary depending on the area of medicine and the particular procedure being discussed. Here are some common types of catheterization:

1. Urinary catheterization: This involves inserting a catheter through the urethra into the bladder to drain urine. It is often performed to manage urinary retention, monitor urine output in critically ill patients, or assist with surgical procedures.
2. Cardiac catheterization: A procedure where a catheter is inserted into a blood vessel, usually in the groin or arm, and guided to the heart. This allows for various diagnostic tests and treatments, such as measuring pressures within the heart chambers, assessing blood flow, or performing angioplasty and stenting of narrowed coronary arteries.
3. Central venous catheterization: A catheter is inserted into a large vein, typically in the neck, chest, or groin, to administer medications, fluids, or nutrition, or to monitor central venous pressure.
4. Peritoneal dialysis catheterization: A catheter is placed into the abdominal cavity for individuals undergoing peritoneal dialysis, a type of kidney replacement therapy.
5. Neurological catheterization: In some cases, a catheter may be inserted into the cerebrospinal fluid space (lumbar puncture) or the brain's ventricular system (ventriculostomy) to diagnose or treat various neurological conditions.

These are just a few examples of catheterization procedures in medicine. The specific definition and purpose will depend on the medical context and the particular organ or body system involved.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Hospitalization is the process of admitting a patient to a hospital for the purpose of receiving medical treatment, surgery, or other health care services. It involves staying in the hospital as an inpatient, typically under the care of doctors, nurses, and other healthcare professionals. The length of stay can vary depending on the individual's medical condition and the type of treatment required. Hospitalization may be necessary for a variety of reasons, such as to receive intensive care, to undergo diagnostic tests or procedures, to recover from surgery, or to manage chronic illnesses or injuries.

Angioplasty, balloon refers to a medical procedure used to widen narrowed or obstructed blood vessels, particularly the coronary arteries that supply blood to the heart muscle. This procedure is typically performed using a catheter-based technique, where a thin, flexible tube called a catheter is inserted into an artery, usually through the groin or wrist, and guided to the site of the narrowing or obstruction in the coronary artery.

Once the catheter reaches the affected area, a small balloon attached to the tip of the catheter is inflated, which compresses the plaque against the artery wall and stretches the artery, thereby restoring blood flow. The balloon is then deflated and removed, along with the catheter.

Balloon angioplasty is often combined with the placement of a stent, a small metal mesh tube that helps to keep the artery open and prevent it from narrowing again. This procedure is known as percutaneous coronary intervention (PCI) or coronary angioplasty and stenting.

Overall, balloon angioplasty is a relatively safe and effective treatment for coronary artery disease, although complications such as bleeding, infection, or re-narrowing of the artery can occur in some cases.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Logistic models, specifically logistic regression models, are a type of statistical analysis used in medical and epidemiological research to identify the relationship between the risk of a certain health outcome or disease (dependent variable) and one or more independent variables, such as demographic factors, exposure variables, or other clinical measurements.

In contrast to linear regression models, logistic regression models are used when the dependent variable is binary or dichotomous in nature, meaning it can only take on two values, such as "disease present" or "disease absent." The model uses a logistic function to estimate the probability of the outcome based on the independent variables.

Logistic regression models are useful for identifying risk factors and estimating the strength of associations between exposures and health outcomes, adjusting for potential confounders, and predicting the probability of an outcome given certain values of the independent variables. They can also be used to develop clinical prediction rules or scores that can aid in decision-making and patient care.

A heart valve prosthesis is a medical device that is implanted in the heart to replace a damaged or malfunctioning heart valve. The prosthetic valve can be made of biological tissue (such as from a pig or cow) or artificial materials (such as carbon or polyester). Its function is to allow for the proper directional flow of blood through the heart, opening and closing with each heartbeat to prevent backflow of blood.

There are several types of heart valve prostheses, including:

1. Mechanical valves: These are made entirely of artificial materials and have a longer lifespan than biological valves. However, they require the patient to take blood-thinning medication for the rest of their life to prevent blood clots from forming on the valve.
2. Bioprosthetic valves: These are made of biological tissue and typically last 10-15 years before needing replacement. They do not require the patient to take blood-thinning medication, but there is a higher risk of reoperation due to degeneration of the tissue over time.
3. Homografts or allografts: These are human heart valves that have been donated and preserved for transplantation. They have similar longevity to bioprosthetic valves and do not require blood-thinning medication.
4. Autografts: In this case, the patient's own pulmonary valve is removed and used to replace the damaged aortic valve. This procedure is called the Ross procedure and has excellent long-term results, but it requires advanced surgical skills and is not widely available.

The choice of heart valve prosthesis depends on various factors, including the patient's age, overall health, lifestyle, and personal preferences.

The double-blind method is a study design commonly used in research, including clinical trials, to minimize bias and ensure the objectivity of results. In this approach, both the participants and the researchers are unaware of which group the participants are assigned to, whether it be the experimental group or the control group. This means that neither the participants nor the researchers know who is receiving a particular treatment or placebo, thus reducing the potential for bias in the evaluation of outcomes. The assignment of participants to groups is typically done by a third party not involved in the study, and the codes are only revealed after all data have been collected and analyzed.

Intra-aortic balloon pumping (IABP) is a form of short-term mechanical circulatory support that is used in patients with cardiogenic shock or acute complications of coronary artery disease, such as acute mitral regurgitation or papillary muscle rupture. It involves the insertion of a specialized catheter into the aorta, which contains a sausage-shaped balloon at its tip.

The IABP is synchronized with the patient's ECG and inflates the balloon during diastole (when the heart relaxes) and deflates it during systole (when the heart contracts). By inflating the balloon during diastole, the IABP increases the diastolic pressure in the aorta, which improves coronary perfusion and myocardial oxygen supply. By deflating the balloon during systole, the IABP reduces afterload, which decreases the work of the left ventricle and improves cardiac output.

Overall, IABP can help to stabilize patients with acute heart failure or cardiogenic shock while more definitive treatments are being planned or implemented. However, it is not a long-term solution and carries risks such as infection, bleeding, and limb ischemia.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Clinical trials are research studies that involve human participants and are designed to evaluate the safety and efficacy of new medical treatments, drugs, devices, or behavioral interventions. The purpose of clinical trials is to determine whether a new intervention is safe, effective, and beneficial for patients, as well as to compare it with currently available treatments. Clinical trials follow a series of phases, each with specific goals and criteria, before a new intervention can be approved by regulatory authorities for widespread use.

Clinical trials are conducted according to a protocol, which is a detailed plan that outlines the study's objectives, design, methodology, statistical analysis, and ethical considerations. The protocol is developed and reviewed by a team of medical experts, statisticians, and ethicists, and it must be approved by an institutional review board (IRB) before the trial can begin.

Participation in clinical trials is voluntary, and participants must provide informed consent before enrolling in the study. Informed consent involves providing potential participants with detailed information about the study's purpose, procedures, risks, benefits, and alternatives, as well as their rights as research subjects. Participants can withdraw from the study at any time without penalty or loss of benefits to which they are entitled.

Clinical trials are essential for advancing medical knowledge and improving patient care. They help researchers identify new treatments, diagnostic tools, and prevention strategies that can benefit patients and improve public health. However, clinical trials also pose potential risks to participants, including adverse effects from experimental interventions, time commitment, and inconvenience. Therefore, it is important for researchers to carefully design and conduct clinical trials to minimize risks and ensure that the benefits outweigh the risks.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Fibrin clot lysis time, also known as fibrinolytic time, is the measurement of the amount of time it takes for a blood clot to dissolve or lyse. This is typically measured in a laboratory setting using specialized tests such as the thromboelastography (TEG) or rotational thromboelastometry (ROTEM) assays. These tests measure the viscoelastic properties of a clot and can provide information about the rate of fibrinolysis, which is the natural process by which the body breaks down and removes blood clots.

Increased fibrin clot lysis time may indicate an impaired fibrinolytic system, which can lead to an increased risk of thrombosis or blood clot formation. Decreased fibrin clot lysis time may indicate an overactive fibrinolytic system, which can lead to an increased risk of bleeding.

It's important to note that the fibrin clot lysis time is just one factor among many that are considered when evaluating a patient's coagulation status and risk of thrombosis or bleeding. Other factors, such as platelet function, coagulation factor levels, and the presence of inhibitors or anticoagulants, must also be taken into account.

Treatment failure is a term used in medicine to describe the situation when a prescribed treatment or intervention is not achieving the desired therapeutic goals or objectives. This may occur due to various reasons, such as:

1. Development of drug resistance by the pathogen or disease being treated.
2. Inadequate dosage or frequency of the medication.
3. Poor adherence or compliance to the treatment regimen by the patient.
4. The presence of underlying conditions or comorbidities that may affect the efficacy of the treatment.
5. The severity or progression of the disease despite appropriate treatment.

When treatment failure occurs, healthcare providers may need to reassess the patient's condition and modify the treatment plan accordingly, which may include adjusting the dosage, changing the medication, adding new medications, or considering alternative treatments.

Magnetic Resonance Angiography (MRA) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to create detailed images of the blood vessels or arteries within the body. It is a type of Magnetic Resonance Imaging (MRI) that focuses specifically on the circulatory system.

MRA can be used to diagnose and evaluate various conditions related to the blood vessels, such as aneurysms, stenosis (narrowing of the vessel), or the presence of plaques or tumors. It can also be used to plan for surgeries or other treatments related to the vascular system. The procedure does not use radiation and is generally considered safe, although people with certain implants like pacemakers may not be able to have an MRA due to safety concerns.

Ultrasonic therapy, also known as therapeutic ultrasound, is a treatment method used in physical therapy and rehabilitation that utilizes sound waves with frequencies higher than the upper limit of human hearing. In most cases, the frequency ranges from 800,000 to 2,000,000 Hz (cycles per second).

During ultrasonic therapy, a small device called a transducer is placed in direct contact with the patient's skin. The transducer emits ultrasonic waves that are primarily absorbed by soft tissues directly beneath the skin's surface, including muscles, tendons, and ligaments. These sound waves cause microscopic vibrations in the tissue molecules, which can produce various therapeutic effects:

1. Deep heating: The vibration of tissue molecules generates heat within the treated area, increasing local blood flow, reducing muscle tension, and promoting healing. This effect is particularly beneficial for treating chronic pain, muscle spasms, joint stiffness, and soft tissue injuries.
2. Cavitation: High-intensity ultrasonic waves can create tiny gas bubbles in the fluid surrounding the tissue cells. When these bubbles collapse (a process called cavitation), they generate intense localized pressure that may help break down scar tissue, reduce adhesions, and improve tissue mobility.
3. Non-thermal effects: Low-intensity ultrasonic waves can stimulate cellular processes without causing significant heating. These non-thermal effects include enhanced metabolism, increased collagen production, and improved nutrient exchange in the treated tissues, which may contribute to faster healing and tissue regeneration.

Ultrasonic therapy is generally considered safe when performed by a trained healthcare professional. However, it should be avoided in certain situations, such as over areas with malignant tumors, infected tissues, or near metal implants (due to the risk of heating). Pregnant women should also avoid therapeutic ultrasound, especially during the first trimester, due to potential risks to fetal development.

Emission-Computed Tomography, Single-Photon (SPECT) is a type of nuclear medicine imaging procedure that generates detailed, three-dimensional images of the distribution of radioactive pharmaceuticals within the body. It uses gamma rays emitted by a radiopharmaceutical that is introduced into the patient's body, and a specialized gamma camera to detect these gamma rays and create tomographic images. The data obtained from the SPECT imaging can be used to diagnose various medical conditions, evaluate organ function, and guide treatment decisions. It is commonly used to image the heart, brain, and bones, among other organs and systems.

A "Drug Administration Schedule" refers to the plan for when and how a medication should be given to a patient. It includes details such as the dose, frequency (how often it should be taken), route (how it should be administered, such as orally, intravenously, etc.), and duration (how long it should be taken) of the medication. This schedule is often created and prescribed by healthcare professionals, such as doctors or pharmacists, to ensure that the medication is taken safely and effectively. It may also include instructions for missed doses or changes in the dosage.

Transcranial Doppler ultrasonography is a non-invasive diagnostic technique that uses high-frequency sound waves to visualize and measure the velocity of blood flow in the cerebral arteries located in the skull. This imaging modality employs the Doppler effect, which describes the change in frequency of sound waves as they reflect off moving red blood cells. By measuring the frequency shift of the reflected ultrasound waves, the velocity and direction of blood flow can be determined.

Transcranial Doppler ultrasonography is primarily used to assess cerebrovascular circulation and detect abnormalities such as stenosis (narrowing), occlusion (blockage), or embolism (obstruction) in the intracranial arteries. It can also help monitor patients with conditions like sickle cell disease, vasospasm following subarachnoid hemorrhage, and evaluate the effectiveness of treatments such as thrombolysis or angioplasty. The procedure is typically performed by placing a transducer on the patient's skull after applying a coupling gel, and it does not involve radiation exposure or contrast agents.

Thrombin is a serine protease enzyme that plays a crucial role in the coagulation cascade, which is a complex series of biochemical reactions that leads to the formation of a blood clot (thrombus) to prevent excessive bleeding during an injury. Thrombin is formed from its precursor protein, prothrombin, through a process called activation, which involves cleavage by another enzyme called factor Xa.

Once activated, thrombin converts fibrinogen, a soluble plasma protein, into fibrin, an insoluble protein that forms the structural framework of a blood clot. Thrombin also activates other components of the coagulation cascade, such as factor XIII, which crosslinks and stabilizes the fibrin network, and platelets, which contribute to the formation and growth of the clot.

Thrombin has several regulatory mechanisms that control its activity, including feedback inhibition by antithrombin III, a plasma protein that inactivates thrombin and other serine proteases, and tissue factor pathway inhibitor (TFPI), which inhibits the activation of factor Xa, thereby preventing further thrombin formation.

Overall, thrombin is an essential enzyme in hemostasis, the process that maintains the balance between bleeding and clotting in the body. However, excessive or uncontrolled thrombin activity can lead to pathological conditions such as thrombosis, atherosclerosis, and disseminated intravascular coagulation (DIC).

The Middle Cerebral Artery (MCA) is one of the main blood vessels that supplies oxygenated blood to the brain. It arises from the internal carotid artery and divides into several branches, which supply the lateral surface of the cerebral hemisphere, including the frontal, parietal, and temporal lobes.

The MCA is responsible for providing blood flow to critical areas of the brain, such as the primary motor and sensory cortices, Broca's area (associated with speech production), Wernicke's area (associated with language comprehension), and the visual association cortex.

Damage to the MCA or its branches can result in a variety of neurological deficits, depending on the specific location and extent of the injury. These may include weakness or paralysis on one side of the body, sensory loss, language impairment, and visual field cuts.

Echocardiography is a medical procedure that uses sound waves to produce detailed images of the heart's structure, function, and motion. It is a non-invasive test that can help diagnose various heart conditions, such as valve problems, heart muscle damage, blood clots, and congenital heart defects.

During an echocardiogram, a transducer (a device that sends and receives sound waves) is placed on the chest or passed through the esophagus to obtain images of the heart. The sound waves produced by the transducer bounce off the heart structures and return to the transducer, which then converts them into electrical signals that are processed to create images of the heart.

There are several types of echocardiograms, including:

* Transthoracic echocardiography (TTE): This is the most common type of echocardiogram and involves placing the transducer on the chest.
* Transesophageal echocardiography (TEE): This type of echocardiogram involves passing a specialized transducer through the esophagus to obtain images of the heart from a closer proximity.
* Stress echocardiography: This type of echocardiogram is performed during exercise or medication-induced stress to assess how the heart functions under stress.
* Doppler echocardiography: This type of echocardiogram uses sound waves to measure blood flow and velocity in the heart and blood vessels.

Echocardiography is a valuable tool for diagnosing and managing various heart conditions, as it provides detailed information about the structure and function of the heart. It is generally safe, non-invasive, and painless, making it a popular choice for doctors and patients alike.

"Length of Stay" (LOS) is a term commonly used in healthcare to refer to the amount of time a patient spends receiving care in a hospital, clinic, or other healthcare facility. It is typically measured in hours, days, or weeks and can be used as a metric for various purposes such as resource planning, quality assessment, and reimbursement. The length of stay can vary depending on the type of illness or injury, the severity of the condition, the patient's response to treatment, and other factors. It is an important consideration in healthcare management and can have significant implications for both patients and providers.

Coronary artery disease, often simply referred to as coronary disease, is a condition in which the blood vessels that supply oxygen-rich blood to the heart become narrowed or blocked due to the buildup of fatty deposits called plaques. This can lead to chest pain (angina), shortness of breath, or in severe cases, a heart attack.

The medical definition of coronary artery disease is:

A condition characterized by the accumulation of atheromatous plaques in the walls of the coronary arteries, leading to decreased blood flow and oxygen supply to the myocardium (heart muscle). This can result in symptoms such as angina pectoris, shortness of breath, or arrhythmias, and may ultimately lead to myocardial infarction (heart attack) or heart failure.

Risk factors for coronary artery disease include age, smoking, high blood pressure, high cholesterol, diabetes, obesity, physical inactivity, and a family history of the condition. Lifestyle changes such as quitting smoking, exercising regularly, eating a healthy diet, and managing stress can help reduce the risk of developing coronary artery disease. Medical treatments may include medications to control blood pressure, cholesterol levels, or irregular heart rhythms, as well as procedures such as angioplasty or bypass surgery to improve blood flow to the heart.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Combined modality therapy (CMT) is a medical treatment approach that utilizes more than one method or type of therapy simultaneously or in close succession, with the goal of enhancing the overall effectiveness of the treatment. In the context of cancer care, CMT often refers to the combination of two or more primary treatment modalities, such as surgery, radiation therapy, and systemic therapies (chemotherapy, immunotherapy, targeted therapy, etc.).

The rationale behind using combined modality therapy is that each treatment method can target cancer cells in different ways, potentially increasing the likelihood of eliminating all cancer cells and reducing the risk of recurrence. The specific combination and sequence of treatments will depend on various factors, including the type and stage of cancer, patient's overall health, and individual preferences.

For example, a common CMT approach for locally advanced rectal cancer may involve preoperative (neoadjuvant) chemoradiation therapy, followed by surgery to remove the tumor, and then postoperative (adjuvant) chemotherapy. This combined approach allows for the reduction of the tumor size before surgery, increases the likelihood of complete tumor removal, and targets any remaining microscopic cancer cells with systemic chemotherapy.

It is essential to consult with a multidisciplinary team of healthcare professionals to determine the most appropriate CMT plan for each individual patient, considering both the potential benefits and risks associated with each treatment method.

Coronary artery bypass surgery, also known as coronary artery bypass grafting (CABG), is a surgical procedure used to improve blood flow to the heart in patients with severe coronary artery disease. This condition occurs when the coronary arteries, which supply oxygen-rich blood to the heart muscle, become narrowed or blocked due to the buildup of fatty deposits, called plaques.

During CABG surgery, a healthy blood vessel from another part of the body is grafted, or attached, to the coronary artery, creating a new pathway for oxygen-rich blood to flow around the blocked or narrowed portion of the artery and reach the heart muscle. This bypass helps to restore normal blood flow and reduce the risk of angina (chest pain), shortness of breath, and other symptoms associated with coronary artery disease.

There are different types of CABG surgery, including traditional on-pump CABG, off-pump CABG, and minimally invasive CABG. The choice of procedure depends on various factors, such as the patient's overall health, the number and location of blocked arteries, and the presence of other medical conditions.

It is important to note that while CABG surgery can significantly improve symptoms and quality of life in patients with severe coronary artery disease, it does not cure the underlying condition. Lifestyle modifications, such as regular exercise, a healthy diet, smoking cessation, and medication therapy, are essential for long-term management and prevention of further progression of the disease.

Thallium radioisotopes are radioactive isotopes or variants of the element thallium (Tl), which decays and emits radiation. Thallium has several radioisotopes, with the most commonly used being thallium-201 (^201Tl). This radioisotope is used in medical imaging, specifically in myocardial perfusion scintigraphy, to evaluate blood flow to the heart muscle. It decays by electron capture and emits gamma radiation with a half-life of 73 hours, making it suitable for diagnostic procedures.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Immunoglobulin (Ig) Fab fragments are the antigen-binding portions of an antibody that result from the digestion of the whole antibody molecule by enzymes such as papain. An antibody, also known as an immunoglobulin, is a Y-shaped protein produced by the immune system to identify and neutralize foreign substances like bacteria, viruses, or toxins. The antibody has two identical antigen-binding sites, located at the tips of the two shorter arms, which can bind specifically to a target antigen.

Fab fragments are formed when an antibody is cleaved by papain, resulting in two Fab fragments and one Fc fragment. Each Fab fragment contains one antigen-binding site, composed of a variable region (Fv) and a constant region (C). The Fv region is responsible for the specificity and affinity of the antigen binding, while the C region contributes to the effector functions of the antibody.

Fab fragments are often used in various medical applications, such as immunodiagnostics and targeted therapies, due to their ability to bind specifically to target antigens without triggering an immune response or other effector functions associated with the Fc region.

Platelet aggregation is the clumping together of platelets (thrombocytes) in the blood, which is an essential step in the process of hemostasis (the stopping of bleeding) after injury to a blood vessel. When the inner lining of a blood vessel is damaged, exposure of subendothelial collagen and tissue factor triggers platelet activation. Activated platelets change shape, become sticky, and release the contents of their granules, which include ADP (adenosine diphosphate).

ADP then acts as a chemical mediator to attract and bind additional platelets to the site of injury, leading to platelet aggregation. This forms a plug that seals the damaged vessel and prevents further blood loss. Platelet aggregation is also a crucial component in the formation of blood clots (thrombosis) within blood vessels, which can have pathological consequences such as heart attacks and strokes if they obstruct blood flow to vital organs.

Ischemia is the medical term used to describe a lack of blood flow to a part of the body, often due to blocked or narrowed blood vessels. This can lead to a shortage of oxygen and nutrients in the tissues, which can cause them to become damaged or die. Ischemia can affect many different parts of the body, including the heart, brain, legs, and intestines. Symptoms of ischemia depend on the location and severity of the blockage, but they may include pain, cramping, numbness, weakness, or coldness in the affected area. In severe cases, ischemia can lead to tissue death (gangrene) or organ failure. Treatment for ischemia typically involves addressing the underlying cause of the blocked blood flow, such as through medication, surgery, or lifestyle changes.

Drug utilization refers to the use of medications by patients or healthcare professionals in a real-world setting. It involves analyzing and evaluating patterns of medication use, including prescribing practices, adherence to treatment guidelines, potential duplications or interactions, and outcomes associated with drug therapy. The goal of drug utilization is to optimize medication use, improve patient safety, and minimize costs while achieving the best possible health outcomes. It can be studied through various methods such as prescription claims data analysis, surveys, and clinical audits.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Cardiac arrhythmias are abnormal heart rhythms that result from disturbances in the electrical conduction system of the heart. The heart's normal rhythm is controlled by an electrical signal that originates in the sinoatrial (SA) node, located in the right atrium. This signal travels through the atrioventricular (AV) node and into the ventricles, causing them to contract and pump blood throughout the body.

An arrhythmia occurs when there is a disruption in this electrical pathway or when the heart's natural pacemaker produces an abnormal rhythm. This can cause the heart to beat too fast (tachycardia), too slow (bradycardia), or irregularly.

There are several types of cardiac arrhythmias, including:

1. Atrial fibrillation: A rapid and irregular heartbeat that starts in the atria (the upper chambers of the heart).
2. Atrial flutter: A rapid but regular heartbeat that starts in the atria.
3. Supraventricular tachycardia (SVT): A rapid heartbeat that starts above the ventricles, usually in the atria or AV node.
4. Ventricular tachycardia: A rapid and potentially life-threatening heart rhythm that originates in the ventricles.
5. Ventricular fibrillation: A chaotic and disorganized electrical activity in the ventricles, which can be fatal if not treated immediately.
6. Heart block: A delay or interruption in the conduction of electrical signals from the atria to the ventricles.

Cardiac arrhythmias can cause various symptoms, such as palpitations, dizziness, shortness of breath, chest pain, and fatigue. In some cases, they may not cause any symptoms and go unnoticed. However, if left untreated, certain types of arrhythmias can lead to serious complications, including stroke, heart failure, or even sudden cardiac death.

Treatment for cardiac arrhythmias depends on the type, severity, and underlying causes. Options may include lifestyle changes, medications, cardioversion (electrical shock therapy), catheter ablation, implantable devices such as pacemakers or defibrillators, and surgery. It is essential to consult a healthcare professional for proper evaluation and management of cardiac arrhythmias.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

Pathological constriction refers to an abnormal narrowing or tightening of a body passage or organ, which can interfere with the normal flow of blood, air, or other substances through the area. This constriction can occur due to various reasons such as inflammation, scarring, or abnormal growths, and can affect different parts of the body, including blood vessels, airways, intestines, and ureters. Pathological constriction can lead to a range of symptoms and complications depending on its location and severity, and may require medical intervention to correct.

Physician's practice patterns refer to the individual habits and preferences of healthcare providers when it comes to making clinical decisions and managing patient care. These patterns can encompass various aspects, such as:

1. Diagnostic testing: The types and frequency of diagnostic tests ordered for patients with similar conditions.
2. Treatment modalities: The choice of treatment options, including medications, procedures, or referrals to specialists.
3. Patient communication: The way physicians communicate with their patients, including the amount and type of information shared, as well as the level of patient involvement in decision-making.
4. Follow-up care: The frequency and duration of follow-up appointments, as well as the monitoring of treatment effectiveness and potential side effects.
5. Resource utilization: The use of healthcare resources, such as hospitalizations, imaging studies, or specialist consultations, and the associated costs.

Physician practice patterns can be influenced by various factors, including medical training, clinical experience, personal beliefs, guidelines, and local availability of resources. Understanding these patterns is essential for evaluating the quality of care, identifying potential variations in care, and implementing strategies to improve patient outcomes and reduce healthcare costs.

Diffusion Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to produce detailed images of the body's internal structures, particularly the brain and nervous system. In diffusion MRI, the movement of water molecules in biological tissues is measured and analyzed to generate contrast in the images based on the microstructural properties of the tissue.

Diffusion MRI is unique because it allows for the measurement of water diffusion in various directions, which can reveal important information about the organization and integrity of nerve fibers in the brain. This technique has been widely used in research and clinical settings to study a variety of neurological conditions, including stroke, traumatic brain injury, multiple sclerosis, and neurodegenerative diseases such as Alzheimer's disease.

In summary, diffusion MRI is a specialized type of MRI that measures the movement of water molecules in biological tissues to generate detailed images of the body's internal structures, particularly the brain and nervous system. It provides valuable information about the microstructural properties of tissues and has important applications in both research and clinical settings.

A stent is a small mesh tube that's used to treat narrow or weak arteries. Arteries are blood vessels that carry blood away from your heart to other parts of your body. A stent is placed in an artery as part of a procedure called angioplasty. Angioplasty restores blood flow through narrowed or blocked arteries by inflating a tiny balloon inside the blocked artery to widen it.

The stent is then inserted into the widened artery to keep it open. The stent is usually made of metal, but some are coated with medication that is slowly and continuously released to help prevent the formation of scar tissue in the artery. This can reduce the chance of the artery narrowing again.

Stents are also used in other parts of the body, such as the neck (carotid artery) and kidneys (renal artery), to help maintain blood flow and prevent blockages. They can also be used in the urinary system to treat conditions like ureteropelvic junction obstruction or narrowing of the urethra.

Risk assessment in the medical context refers to the process of identifying, evaluating, and prioritizing risks to patients, healthcare workers, or the community related to healthcare delivery. It involves determining the likelihood and potential impact of adverse events or hazards, such as infectious diseases, medication errors, or medical devices failures, and implementing measures to mitigate or manage those risks. The goal of risk assessment is to promote safe and high-quality care by identifying areas for improvement and taking action to minimize harm.

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

A neurological examination is a series of tests used to evaluate the functioning of the nervous system, including both the central nervous system (the brain and spinal cord) and peripheral nervous system (the nerves that extend from the brain and spinal cord to the rest of the body). It is typically performed by a healthcare professional such as a neurologist or a primary care physician with specialized training in neurology.

During a neurological examination, the healthcare provider will assess various aspects of neurological function, including:

1. Mental status: This involves evaluating a person's level of consciousness, orientation, memory, and cognitive abilities.
2. Cranial nerves: There are 12 cranial nerves that control functions such as vision, hearing, smell, taste, and movement of the face and neck. The healthcare provider will test each of these nerves to ensure they are functioning properly.
3. Motor function: This involves assessing muscle strength, tone, coordination, and reflexes. The healthcare provider may ask the person to perform certain movements or tasks to evaluate these functions.
4. Sensory function: The healthcare provider will test a person's ability to feel different types of sensations, such as touch, pain, temperature, vibration, and proprioception (the sense of where your body is in space).
5. Coordination and balance: The healthcare provider may assess a person's ability to perform coordinated movements, such as touching their finger to their nose or walking heel-to-toe.
6. Reflexes: The healthcare provider will test various reflexes throughout the body using a reflex hammer.

The results of a neurological examination can help healthcare providers diagnose and monitor conditions that affect the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, or peripheral neuropathy.

Metoprolol is a type of medication known as a beta blocker. According to the US National Library of Medicine's MedlinePlus, metoprolol is used to treat high blood pressure, angina (chest pain), and heart conditions that may occur after a heart attack. It works by blocking the action of certain natural chemicals in your body, such as epinephrine, on the heart and blood vessels. This helps to reduce the heart's workload, lower its blood pressure, and regulate its rhythm.

Metoprolol is available under various brand names, including Lopressor and Toprol-XL. It can be taken orally as a tablet or an extended-release capsule. As with any medication, metoprolol should be used under the supervision of a healthcare provider, who can monitor its effectiveness and potential side effects.

It is important to note that this definition is intended to provide a general overview of the medical use of metoprolol and should not be considered a substitute for professional medical advice.

Rivera-Bou WL, Cabanas JG, Villanueva SE (2008-11-20). "Thrombolytic Therapy". Medscape. Wardlaw JM, Murray V, Berge E, del ... Maggot therapy for wound debridement is a traditional therapy which was in recent years approved by the FDA. It has been ... See article Maggot therapy -- Regulation and references cited therein. Reames MK, Christensen C, Luce EA (October 1988). "The ... It is one of the enzymes in Sollpura (Liprotamase), a pancreatic enzyme replacement therapy (PERT). It assists in the breakdown ...
"Thrombolytic Therapy: Background, Thrombolytic Agents, Thrombolytic Therapy for Acute Myocardial Infarction". Medscape. Tsurupa ... Rivera-Bou WL, Cabanas JG, Villanueva SE (2008-11-20). "Thrombolytic Therapy". Medscape. Wardlaw JM, Murray V, Berge E, del ... "Reduction of the incidence of amputation in frostbite injury with thrombolytic therapy". Archives of Surgery. 142 (6): 546-51, ... with one resulting in desired thrombolytic activity (see figure). For starters, following administration and release, tPA can ...
Rivera-Bou WL (15 December 2016). "Thrombolytic Therapy". MedScape. Retrieved 28 February 2017. Law RH, Caradoc-Davies T, ... resulting in an increased capacity to treat thrombolytic diseases. Urokinase is similarly used in the medical field, ...
Vanderschueren S, Van de Werf F, Collen D (August 1997). "Recombinant staphylokinase for thrombolytic therapy". Fibrinolysis ...
Thrombolytic therapy: This is a treatment used to break up masses of plaque inside the arteries via intravenous clot-dissolving ... MedlinePlus Encyclopedia: Thrombolytic therapy "Atherosclerosis". Merck Manuals. Retrieved 13 February 2015. Mayerl, Christina ... Medical therapy is often prescribed to help prevent arteriosclerosis for underlying conditions, such as medications for the ...
Zuo Z, Yue J, Dong BR, Wu T, Liu GJ, Hao Q (April 2021). "Thrombolytic therapy for pulmonary embolism". The Cochrane Database ... Nakamura S, Takano H, Kubota Y, Asai K, Shimizu W (July 2014). "Impact of the efficacy of thrombolytic therapy on the mortality ... Ucar EY (June 2019). "Update on Thrombolytic Therapy in Acute Pulmonary Thromboembolism". The Eurasian Journal of Medicine. 51 ... transgender hormone therapy, menopausal hormone therapy and hormonal contraceptives) Genetic thrombophilia (factor V Leiden, ...
Thrombolytic therapy of acute myocardial infarction. The following conditions will always exclude patients for treatment: ... The patient, a 48-year-old woman, was in cardiogenic shock and unresponsive to traditional therapy. An IABP was inserted by a ... Aortic dissection Severe aortoiliac occlusive disease and bilateral carotid stenosis The following conditions make IABP therapy ...
Shyam Sunder Kothari; Sudhir Varma; Harbans Singh Wasir (March 1994). "Thrombolytic therapy in infants and children". American ... Shyam Sunder Kothari; Sudhir Varma; Harbans Singh Wasir (March 1994). "Thrombolytic therapy in infants and children". American ...
Hemorrhagic stroke is a rare but serious complication of thrombolytic therapy. If a patient has had thrombolysis before, an ... Wechsler LR (2011). "Intravenous thrombolytic therapy for acute ischemic stroke". N Engl J Med. 364 (22): 2138-46. doi:10.1056/ ... Anaphylaxis generally requires immediate cessation of thrombolysis.[citation needed] Thrombolysis therapy uses thrombolytic ... In people who receive thrombolytic therapy delivered through a catheter, there is a risk of hemorrhage as a side effect. ...
Baskin JL, Reiss U, Wilimas JA, Metzger ML, Ribeiro RC, Pui CH, Howard SC (May 2012). "Thrombolytic therapy for central venous ... Ucar EY (June 2019). "Update on Thrombolytic Therapy in Acute Pulmonary Thromboembolism". The Eurasian Journal of Medicine. 51 ... Similar to other thrombolytic drugs, alteplase is used to dissolve clots to restore tissue perfusion, but this can vary ... Given that alteplase is a thrombolytic medication, a common adverse effect is bleeding, which can be life-threatening. Adverse ...
Clot busting agents or thrombolytic therapy are a treatment option for migrainous infarction caused by enhanced platelet ... Hommel, M. (1996-07-18). "Thrombolytic Therapy with Streptokinase in Acute Ischemic Stroke". New England Journal of Medicine. ... "Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke ( ... Streptokinase is a thrombolytic agent which aims to permit reperfusion, allowing the restoration of blood flow to the ischaemic ...
Thrombolytic therapy has become the treatment of choice. Surgical or catheter embolectomy is a procedure performed in patients ... and who have an absolute contraindication for thrombolytic therapy. During the procedure, a catheter is inserted into the ...
... percutaneous mechanical thrombectomy and thrombolytic therapies". American Journal of Therapeutics. 21 (2): 131-6. doi:10.1097/ ...
... rethrombosis after thrombolytic therapy and rethrombosis after vascular surgery. It is also indicated for the prevention of ... Platelet counts and survival time remain normal during ancrod therapy. Ancrod was originally isolated from the venom of the ... and facilitates physical and ergo therapy. Finally, ancrod decreases the likelihood of local thrombotic events. These ...
"Adjunctive thrombolytic therapy during angioplasty for ischemic rest angina. Results of the TAUSA Trial. TAUSA Investigators. ...
Pre-hospital thrombolytic therapy in patients with suspected acute myocardial infarction. NEJM 1993:329:383-9 Moleur P, ...
Laffel, Glenn; Braunwald, Eugene (1986). "Management of the Residual Stenosis following Thrombolytic Therapy of Acute ...
"Reduction of the incidence of amputation in frostbite injury with thrombolytic therapy". Archives of Surgery. 142 (6): 546-51. ... Marx 2010 Finderle Z, Cankar K (April 2002). "Delayed treatment of frostbite injury with hyperbaric oxygen therapy: a case ... Weaver LK, Greenway L, Elliot CG (1988). "Controlled Frostbite Injury to Mice: Outcome of Hyperbaric Oxygen Therapy". J. ... climbing Les Droites in the Mont Blanc massif Evidence is insufficient to determine whether or not hyperbaric oxygen therapy as ...
If diagnosed within 12 hours of the initial episode (attack) then thrombolytic therapy is initiated.[citation needed] An ... September 2004). "Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy ... Treatment varies between therapy and surgical intervention by the use of shunts. Portal vein thrombosis affects the hepatic ... Hence, protective therapies are required to attenuate IRI alongside reperfusion in acute ischemic conditions to improve ...
Thrombolytic therapy to abort a myocardial infarction is not always effective. The degree of effectiveness of a thrombolytic ... Thrombolytic therapy is indicated for the treatment of STEMI - if it can begin within 12 hours of the onset of symptoms, and ... 2002). "Thrombolytic therapy vs primary percutaneous coronary intervention for myocardial infarction in patients presenting to ... The benefit of prompt, primary angioplasty over thrombolytic therapy for acute STEMI is now well established. When performed ...
Treatment of established arterial thrombosis includes the use of antiplatelet drugs and thrombolytic therapy. Antiplatelet ... More severe and complicated cases are treated with dual antiplatelet therapy, or in some cases triple therapy that includes ... Antiplatelet therapy may increase the risk of a bleed during surgery, however, stopping therapy may increase the risk of other ... Antiplatelet therapy with one or more of these drugs decreases the ability of blood clots to form by interfering with the ...
"Heparin and Low-Molecular-Weight Heparin The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy". Chest. 126 (3 ... Anticoagulation therapy has a long history. In 1884 John Berry Haycraft described a substance found in the saliva of leeches, ... Before the use of DTIs the therapy and prophylaxis for anticoagulation had stayed the same for over 50 years with the use of ... which returned to baseline after cessation of therapy. Development of other oral DTIs, such as Sofigatran from Mitsubishi ...
... the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy". Chest. 126 (3 Suppl): 188S-203S. doi:10.1378/chest. ... Principles of Antithrombotic Therapy". In Lichtman MA, Beutler E, Kipps TJ, et al. (eds.). Williams Hematology (7th ed.). ISBN ... The hyperkalemia can appear within a few days after the onset of heparin therapy. More rarely, the side-effects alopecia and ... Segura MM, Kamen A, Trudel P, Garnier A (May 2005). "A novel purification strategy for retrovirus gene therapy vectors using ...
Treatment for thrombotic storm may include lifelong anticoagulation therapy and/or thrombolytic therapy, plasmapheresis, and ... Studies have shown that when anticoagulant therapy is withheld, recurrence of thrombosis usually follows. International ...
Antithrombotic and thrombolytic therapy for ischemic stroke: American College of Chest Physicians Evidence-Based Clinical ... 2004; 110: 744-9. Dong B, Jirong Y, Liu G, Wang Q, Wu T. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst ... 1985; 312: 932-6. Sheehan FH et al., The effect of intravenous thrombolytic therapy on left ventricular function: a report on ... However, because access to invasive facilities is limited in many countries, thrombolytic therapy is still employed in many ...
Keeley EC, Boura JA, Grines CL (2003). "Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial ... expertly performed primary percutaneous coronary intervention over thrombolytic therapy for acute ST elevation myocardial ... 2004). "Implications of the Mechanical (PCI) vs Thrombolytic Controversy for ST Segment Elevation Myocardial Infarction on the ... and the proportion of eligible patients receiving some form of reperfusion therapy Earliest possible activation of the cardiac ...
Some Paramedic services are capable of providing thrombolytic therapy in the prehospital setting, allowing reperfusion of the ... and reperfusion therapy is more often reserved for them. Long-term therapy is necessary for prevention of recurrent events and ... Medical therapy for acute coronary syndromes is based on drugs that act against ischemia and resultant angina and limit the ... Patients at low risk can be adequately treated with medical therapy, in many ways similar to the one used for STEMI (but ...
The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy". Chest. 126 (3_suppl): 429S-456S. doi:10.1378/chest. ... Antiarrhythmic drug therapy is indicated as first-line therapy for AF that remains symptomatic despite adequate rate control. ... Dual antiplatelet therapy with aspirin and clopidogrel is inferior to warfarin for preventing strokes or systemic embolism and ... Onalan O, Crystal E, Daoulah A, Lau C, Crystal A, Lashevsky I (2007). "Meta-analysis of magnesium therapy for the acute ...
... thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated ... cognitive therapy, occupational therapy, speech therapy and exercise. Permissive hypertension - allowing for higher than normal ... If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is ... the best course of action is to make every effort to restore impairments through physical therapy, ...
Described as thrombolytic therapy, this treatment was named as one of the top 10 discoveries in cardiology in the 20th century ...
Thrombolytic therapy is the use of drugs to break up or dissolve blood clots, which are the main cause of both heart attacks ... Thrombolytic therapy is the use of drugs to break up or dissolve blood clots, which are the main cause of both heart attacks ... thrombolytic therapy; Heart attack - thrombolytic therapy; Stroke - thrombolysis; Heart attack - thrombolysis; Myocardial ... Reperfusion therapy; Stroke - thrombolytic; Heart attack - thrombolytic; Acute embolism - thrombolytic; Thrombosis - ...
What are the thrombolytic therapy options for pulmonary embolism (PE)?. What is the efficacy of thrombolytic therapy for ... Why is thrombolytic therapy indicated in patients with coronary atherosclerosis?. What is the mainstay of thrombolytic therapy ... Complications of Thrombolytic Therapy. Prior to thrombolytic therapy, risk assessment is mandatory. Particular safety concerns ... What are limitations of thrombolytic therapy for deep vein thrombosis (DVT)?. What is the role of systemic thrombolytic therapy ...
What are the thrombolytic therapy options for pulmonary embolism (PE)?. What is the efficacy of thrombolytic therapy for ... Why is thrombolytic therapy indicated in patients with coronary atherosclerosis?. What is the mainstay of thrombolytic therapy ... Complications of Thrombolytic Therapy. Prior to thrombolytic therapy, risk assessment is mandatory. Particular safety concerns ... What are limitations of thrombolytic therapy for deep vein thrombosis (DVT)?. What is the role of systemic thrombolytic therapy ...
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Centers RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.. ...
Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI. ... Findings: Primary PTCA was better than thrombolytic therapy at reducing overall short-term death (7% [n=270] vs 9% [360]; p= ... Interpretation: Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI. ... Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 ...
"دانلود و دریافت مقاله POSSIBLE THROMBOLYTIC THERAPY FOR TREATMENT OF WAKE-UP STROKE ... POSSIBLE THROMBOLYTIC THERAPY FOR TREATMENT OF WAKE-UP STROKE. POSSIBLE THROMBOLYTIC THERAPY FOR TREATMENT OF WAKE-UP STROKE. ... Baratloo, Alireza and Elfil, Mohamed,1398,POSSIBLE THROMBOLYTIC THERAPY FOR TREATMENT OF WAKE-UP STROKE,14th iranian annual ... the age of onset which encouraged conductingclinical trials assessing the efficacy of MRI-guided thrombolytic therapy in WUS. ...
CT score is simple and reliable and identifies stroke patients unlikely to make an independent recovery despite thrombolytic ... reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy ... Background: Computed tomography (CT) must be done before thrombolytic treatment of hyperacute ischaemic stroke, but the ... CT score is simple and reliable and identifies stroke patients unlikely to make an independent recovery despite thrombolytic ...
Inclusion criteria for thrombolytic therapy were 18 years of age or older, presenting within 6 hours of stroke symptoms onset ... Thrombolytic Therapy of Acute Ischemic Stroke: Correlation of Angiographic Recanalization with Clinical Outcome. Osama O. ... Correlation of rates of re-canalization to the thromboembolic source in acute stroke thrombolytic therapy. J Neurosurg 2004;100 ... Recanalization following thrombolytic therapy was classified as none, partial, or complete. Complete recanalization was defined ...
... to those capable of onsite thrombolytic therapy. This study aimed to assess the time to treatment and outcomes among acute ... Thrombolytic treatment with drip and ship method under teleconsultation is feasible in Thailand. There was no difference of ... Our stroke network consists of different levels of spoke hospitals, ranging from community hospitals where thrombolytic ... Telestroke-assisted thrombolytic treatment with secondary transfer to the CSC (drip-and-ship) 3.) Referral from community ...
... benefits of thrombolytic therapy might be maximized.. Delays in thrombolytic therapy for acute myocardial infarction: ... Delays in thrombolytic therapy for acute myocardial infarction: Association with mode of transportation to the hospital, age, ... OBJECTIVES: To examine treatment times in patients with acute myocardial infarction treated with thrombolytic therapy and to ... METHODS: Medical records of 176 patients with acute myocardial infarction treated with thrombolytic therapy at a community ...
Inclusion Criteria: Includes concepts that identify a procedure for intravenous or intra-arterial thrombolytic (t-PA) therapy. ... therapy. Data Element Scope: This value set may use a model element related to Procedure. ... The purpose of this value set is to represent concepts for procedures of intravenous or intra-arterial thrombolytic (t-PA) ... Constrained to codes in the Procedure, Performed: Intravenous or Intra-arterial Thrombolytic (t-PA) Therapy value set (2.16. ...
Dive into the research topics of Feasibility of thrombolytic therapy--a one year prospective study.. Together they form a ...
Marvin Kajy, Nimrod Blank, M. Chadi Alraies, Jyothsna Akam-Venkata, Sanjeev Aggarwal, Amir Kaki, Tamam Mohamad, Mahir Elder and Theodore Schreiber ...
Ruptured Arteriovenous Malformation Complicating Thrombolytic Therapy With Tissue Plasminogen Activator. Jacqueline Proner, MD ... Proner J, Rosenblum BR, Rothman A. Ruptured Arteriovenous Malformation Complicating Thrombolytic Therapy With Tissue ... of the rupture of an intracranial arteriovenous malformation complicating the use of tissue plasminogen activator therapy. ...
Thrombolytic Therapy. Although thrombolytic therapy (TT) reduces mortality rates in patients with acute MI, its benefits for ... Thrombolytic therapy plus IABP. A prospective cohort study demonstrated the potential survival benefit of combining TT with ... Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol. 2000 Jan. 35(1): ... Before initiating therapy, however, care should be taken to ensure that the patient does not have a myocardial wall rupture ...
Thrombolytic Therapy. Thrombolytic therapy dissolves recent clots promptly by activating a plasma proenzyme, plasminogen, to ... Anticoagulant and thrombolytic therapy options are available. Anticoagulant therapy prevents further clot deposition and allows ... Thrombolytic therapy speeds pulmonary tissue reperfusion and rapidly reverses right heart failure. It also improves pulmonary ... Anticoagulant Therapy. Heparin is the first line of therapy. It is administered by bolus dosing, followed by a continuous ...
Intravenous thrombolytic therapy for acute ischemic stroke: Weighing the risks and benefits of tissue plasminogen activator. ... Intravenous thrombolytic therapy for acute ischemic stroke: Weighing the risks and benefits of tissue plasminogen activator. / ... T1 - Intravenous thrombolytic therapy for acute ischemic stroke. T2 - Weighing the risks and benefits of tissue plasminogen ... Intravenous thrombolytic therapy for acute ischemic stroke: Weighing the risks and benefits of tissue plasminogen activator. ...
Utilization and Outcomes of Thrombolytic Therapy for Acute Pulmonary Embolism: A Nationwide Cohort Study.. Sebastian E Beyer, ... BACKGROUND: There are increased options to deliver thrombolytic treatment for acute, high-risk pulmonary embolism (PE). The ...
Stroke and Stroke Rehabilitation: Thrombolytic Therapy INACTIVE REVIEW: This measure review is older than five years. ... ACEI or ARB Therapy for Left Ventricular Systolic Dysfunction-HF Patients INACTIVE REVIEW: This measure review is older than ... Therapy with ASA, P2Y12 inhibitor, and statin at discharge following PCI in eligible patients INACTIVE REVIEW: This measure ... Opioid Therapy: Follow-up Evaluation All patients 18 and older prescribed opiates for longer than six weeks duration who had a ...
Thrombolytic therapy uses medications to dissolve or break up blood clots in your arteries and has the potential to improve ... Embolization is another potential risk associated with thrombolytic therapy. During therapy, small pieces of the dissolved ... Thrombolytic therapy can be given in one of two ways: through an intravenous (IV) line in the hand or arm or through a catheter ... Thrombolytic therapy is one of many treatment options for PAD, and has the potential to treat blood clots. Blood clots are a ...
6. Thrombolytic Considerations When Used with Anticoagulants published on Aug 2018 by American Society of Health-System ... Appendix L. Considerations for Transitioning from aPTT to Anti-Xa to Manage Heparin Therapy ...
Regional Anesthesia in the Patient Receiving Antithrombotic or Thrombolytic Therapy: American Society of Regional Anesthesia ... Regional Anesthesia in the Patient Receiving Antithrombotic or Thrombolytic Therapy: American Society of Regional Anesthesia ... Regional Anesthesia in the Patient Receiving Antithrombotic or Thrombolytic Therapy: American Society of Regional Anesthesia ...
Dive into the research topics of Selecting acute stroke patients for thrombolytic therapy. Together they form a unique ...
Rivera-Bou WL, Cabanas JG, Villanueva SE (2008-11-20). "Thrombolytic Therapy". Medscape. Wardlaw JM, Murray V, Berge E, del ... Maggot therapy for wound debridement is a traditional therapy which was in recent years approved by the FDA. It has been ... See article Maggot therapy -- Regulation and references cited therein. Reames MK, Christensen C, Luce EA (October 1988). "The ... It is one of the enzymes in Sollpura (Liprotamase), a pancreatic enzyme replacement therapy (PERT). It assists in the breakdown ...
6) Should thrombolytic therapy be used in patients with COVID-19?. A recent case series of three patients with COVID-19 and ... Thrombolytic therapy is not recommended for the vast majority of patients with PE given limited efficacy data in patients who ... clear documentation of intended duration of anticoagulation therapy and ensuring access to prescribed therapies prior to ... b) We recommend that patients who would not be eligible for DOAC therapy prior to the COVID-19 pandemic not be switched to DOAC ...
We use cookies to ensure that we give you the best experience on our website. If you click Accept all cookies well assume that you are happy to receive all cookies and you wont see this message again. If you click Reject all non-essential cookies only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click Find out more for information on how to change your cookie settings. ...
... November 4, 2023 ... Is dual antiplatelet therapy for mild stroke just as effective as thrombolytic therapy?. ... Is dual antiplatelet therapy for mild stroke just as effective as thrombolytic therapy? ... Partcipants were then randomized to receive either thrombolytic treatment with alteplase, or dual antiplatelet therapy with ...
Quinn, T. and Thompson, D.R. (1995) Administration of thrombolytic therapy to patients with acute myocardial infarction. ... provided striking evidence as to the effectiveness of thrombolytic therapy in reducing early mortality and morbidity in ... This article will provide an overview of the use of thrombolytic agents in modern cardiac care, with particular reference to ...
Thrombolytic therapy in acute ischaemic stroke: intravenous, intra-arterial, mechanical, hybrid, and bridging ... Sztajzel, Roman F. (2009) Thrombolytic therapy in acute ischaemic stroke: intravenous, intra-arterial, mechanical, hybrid, and ...
  • CONCLUSIONS: With increased emphasis on recognition and rapid treatment of patients with acute myocardial infarction at highest risk for delays in treatment, that is, women and the elderly, benefits of thrombolytic therapy might be maximized. (uncg.edu)
  • Here's more about the benefits of thrombolytic therapy for PAD and how to contact us when you're ready to discuss this treatment option. (hunterdonvascularcare.com)
  • What Are the Benefits Of Thrombolytic Therapy For PAD? (hunterdonvascularcare.com)
  • In many cases, the benefits of thrombolytic therapy often outweigh its potential risks and disadvantages. (hunterdonvascularcare.com)
  • Thrombolytic therapy is an effective and easily available treatment modality which can be rapidly instituted in patient with prosthetic valve thrombosis. (ijsr.net)
  • Evidence to guide patient selection for IA therapy in acute basilar artery thrombosis is lacking. (ajnr.org)
  • We included 40 consecutive patients with basilar artery thrombosis treated with IA therapy. (ajnr.org)
  • Low GCS score did not correlate with poor neurologic outcome in patients with acute basilar artery thrombosis managed with IA therapy. (ajnr.org)
  • Only 1 multicenter randomized controlled trial assessed IA therapy efficacy for acute basilar thrombosis. (ajnr.org)
  • Streptokinase infusion initially yielded conflicting results until the Gruppo Italiano per la Sperimentazione della Streptochinasi nell'Infarto Miocardico (GISSI) trial in 1986, which validated streptokinase as an effective therapy and established a fixed protocol for its use in AMI. (medscape.com)
  • Patients with acute, massive pulmonary embolism (PE) causing hemodynamic instability may be treated initially with a thrombolytic agent (ie, streptokinase or tissue plasminogen activator). (medscape.com)
  • Thrombolytic agent used was streptokinase in 65 (98.48 %) patients and 1 (1.52 %) received tenecteplase. (ijsr.net)
  • Fibrin-bound plasminogen will be converted by thrombolytic drugs to plasmin, the rate-limiting step in thrombolysis. (medscape.com)
  • This study was designed to test the hypothesis that reperfusion therapy with thrombolysis will prevent the development of significant mitral regurgitation in patients with inferior myocardial infarction. (tau.ac.il)
  • We hypothesized that successful reperfusion therapy with intravenous thrombolysis may reduce the incidence and severity of postinfarction mitral regurgitation in this patient group. (tau.ac.il)
  • The spontaneous recanalization rate is unclear but is likely poor, 6 and Lindsberg and Mattle 7 have suggested that death and dependency rates in those treated with intravenous thrombolysis are similar to those treated with IA therapies. (ajnr.org)
  • The effect of arterial recanalization following thrombolytic therapy of acute ischemic stroke (AIS) is a complicated and controversial issue. (ajnr.org)
  • This study aimed to assess the time to treatment and outcomes among acute ischemic stroke patients who received thrombolytic treatment in the Chulalongkorn Stroke Network by 1. (springer.com)
  • Acute ischemic stroke patients who received thrombolytic treatment during January 2016-December 2017 in the Chulalongkorn Stroke Network were studied. (springer.com)
  • The national thrombolytic treatment for acute ischemic stroke rate has been increased from 0.38% in 2008 [ 1 ] to 4.36% in 2015 [ 6 ]. (springer.com)
  • According to the American Heart Association/American Stroke Association (AHA/ASA), telestroke facilitates the use of thrombolytic therapy in acute ischemic stroke with similar safety as the primary stroke centers [ 8 ]. (springer.com)
  • Dual Antiplatelet Therapy vs Alteplase for Patients With Minor Nondisabling Acute Ischemic Stroke: The ARAMIS Randomized Clinical Trial. (ebmedicine.net)
  • In the present prospective cohort study, the 3-month outcome of patients (mortality, disability) with acute ischemic stroke admitted to neurology department an educational hospital, Kermanshah, Iran, from 2016 to 2019, who had received thrombolytic therapy was assessed. (ac.ir)
  • Since publication of the seventh American College of Chest Physicians (ACCP) supplement on antithrombotic and thrombolytic therapy, the results of clinical trials have provided important new information on the management of thromboembolic disorders, and the science of developing recommendations has advan. (bvsalud.org)
  • Thrombolytic therapy is the use of drugs to break up or dissolve blood clots, which are the main cause of both heart attacks and stroke. (medlineplus.gov)
  • Thrombolytic medicines are approved for the emergency treatment of stroke and heart attack . (medlineplus.gov)
  • We identified short-term and long-term clinical outcomes of death, non-fatal reinfarction, and stroke, and did subgroup analyses to assess the effect of type of thrombolytic agent used and the strategy of emergent hospital transfer for primary PTCA. (nih.gov)
  • Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. (nih.gov)
  • Computed tomography (CT) must be done before thrombolytic treatment of hyperacute ischaemic stroke, but the significance of early ischaemic change on CT is unclear. (nih.gov)
  • This CT score is simple and reliable and identifies stroke patients unlikely to make an independent recovery despite thrombolytic treatment. (nih.gov)
  • Recanalization, however, remains the main goal of endovascular stroke therapy. (ajnr.org)
  • Inclusion criteria for thrombolytic therapy were 18 years of age or older, presenting within 6 hours of stroke symptoms onset with initial National Institute of Health Stroke Scale (NIHSS) of 8 or more, except for aphasia and visual field deficit, and normal initial head CT scan. (ajnr.org)
  • Our stroke network consists of different levels of spoke hospitals, ranging from community hospitals where thrombolytic treatment is not available, to those capable of onsite thrombolytic therapy. (springer.com)
  • Despite the increasing number of patients receiving thrombolytic treatment, this figure is relatively low compared to the number of all ischemic stroke patients. (springer.com)
  • The complexity of the stroke fast track system, which requires multidisciplinary team, management in a timely manner, and lack of stroke specialists limits the availability of thrombolytic treatment in Thailand mainly to provincial and university hospitals. (springer.com)
  • The initiation of a telestroke service under the guidance of stroke specialists in a comprehensive stroke center has increased the use of thrombolytic therapy among community hospitals where stroke specialists are lacking [ 7 ]. (springer.com)
  • The aim of this study is to evaluate time to treatment and clinical outcomes of patients receiving thrombolytic treatment among different thrombolytic delivery protocol in the Chulalongkorn Stroke Network. (springer.com)
  • Is dual antiplatelet therapy for mild stroke just as effective as thrombolytic therapy? (ebmedicine.net)
  • This study aimed to assess the 3-month outcome of patients who underwent thrombolytic therapy following ischemic stroke. (ac.ir)
  • National Institute of Health Stroke Scale (NIHSS) and Modified Rankin Score (MRS) were used for measuring the degree of disability (on admission, at the time of discharge and 3 months after thrombolytic therapy). (ac.ir)
  • There was no significant correlation between 3-month disabilities of stroke patients underwent thrombolytic therapy and age, sex, time from initiation of symptoms, or vital signs on admission. (ac.ir)
  • however, endovascular therapy can only be performed in selected high-performing stroke centers. (frontiersin.org)
  • Recent recommendations from the American Heart Association/American Stroke Association and FDA remove or make less specific many previous contraindications and warnings for therapy. (jointcommission.org)
  • The degree of recanalization was directly related to time to therapy and associated with good clinical outcome without an increase in the rate of adverse effect. (ajnr.org)
  • We investigated the effect of vessel recanalization on clinical outcome following local thrombolytic therapy of AIS patients. (ajnr.org)
  • The key to a good outcome in patients with cardiogenic shock is an organized approach, with rapid diagnosis and prompt initiation of pharmacologic therapy to maintain blood pressure and cardiac output and respiratory support, as well as reversal of the underlying cause. (medscape.com)
  • We hypothesize that low GCS does not correlate with poor outcome and that it should not preclude IA therapy. (ajnr.org)
  • however, as the NINDS investigators concluded, the earlier that IV thrombolytic therapy is initiated, the better the patient outcome. (jointcommission.org)
  • Telestroke-assisted thrombolytic treatment with secondary transfer to the CSC (drip-and-ship) 3. (springer.com)
  • Thrombolytic treatment with drip and ship method under teleconsultation is feasible in Thailand. (springer.com)
  • Although the onset of WUS is unknown, a few studies investigated the potential benefit ofmagnetic resonance imaging (MRI) in estimating the age of onset which encouraged conductingclinical trials assessing the efficacy of MRI-guided thrombolytic therapy in WUS. (civilica.com)
  • In Vitro Thrombolytic Efficacy of Single- and Five-Cycle Histotripsy Pulses and rt-PA. (uc.edu)
  • The effect of 220?kHz insonation scheme on rt-PA thrombolytic efficacy in vitro. (uc.edu)
  • According to results from a 2017 study published in Therapeutic Advances in Cardiovascular Disease , thrombolytic therapy for PAD produces higher patient survival rates and fewer instances of complications and death than surgical treatments for PAD. (hunterdonvascularcare.com)
  • Effects of low-dose triple combination therapy on therapeutic inertia and prescribing patterns in hypertension - results from the TRIUMPH trial. (imperial.ac.uk)
  • We did a search of published work and identified 23 trials, which together randomly assigned 7739 thrombolytic-eligible patients with ST-segment elevation AMI to primary PTCA (n=3872) or thrombolytic therapy (n=3867). (nih.gov)
  • Most patients who received thrombolytic therapy (76%, n=2939) received a fibrin-specific agent. (nih.gov)
  • A total of 24% and 69% of patients had complete and any recanalization, respectively, following endovascular rtPA therapy of AIS. (ajnr.org)
  • BACKGROUND: Although increased myocardial salvage and reduced mortality are associated with timely thrombolytic therapy for acute myocardial infarction, some patients still experience delays in treatment. (uncg.edu)
  • OBJECTIVES: To examine treatment times in patients with acute myocardial infarction treated with thrombolytic therapy and to determine whether delays in treatment are associated with mode of transportation to the hospital, age, sex, or race. (uncg.edu)
  • METHODS: Medical records of 176 patients with acute myocardial infarction treated with thrombolytic therapy at a community hospital were reviewed and analyzed retrospectively. (uncg.edu)
  • Compared with other treatments, thrombolytic therapy is shown to reduce the risk of amputation among patients with PAD. (hunterdonvascularcare.com)
  • Quinn, T. and Thompson, D.R. (1995) Administration of thrombolytic therapy to patients with acute myocardial infarction. (kingston.ac.uk)
  • The publication of large randomised trials such as ISIS 2 (1988) and AIMS (1990), provided striking evidence as to the effectiveness of thrombolytic therapy in reducing early mortality and morbidity in patients suffering acute myocardial infarction. (kingston.ac.uk)
  • The goal of this document is to provide guidance from the Anticoagulation Forum, a North American organization of anticoagulation providers, regarding use of anticoagulant therapies in patients with COVID-19. (springer.com)
  • We discuss in-hospital and post-discharge venous thromboembolism (VTE) prevention, treatment of suspected but unconfirmed VTE, laboratory monitoring of COVID-19, associated anticoagulant therapies, and essential elements for optimized transitions of care specific to patients with COVID-19. (springer.com)
  • This guidance document addresses key issues pertaining to prevention or treatment of thrombotic events in hospitalized patients with COVID-19 with the overarching purpose of striking a balance between risks and benefits of anticoagulation therapies. (springer.com)
  • The value of thrombolytic therapy in patients with inferior or posterior wall myocardial infarction has been controversial. (tau.ac.il)
  • Thrombolytic therapy was administered to 55 patients (treatment group) 3.2 ± 2.1 h after the onset of symptoms. (tau.ac.il)
  • Thrombolytic therapy in the patients with a first inferior myocardial infarction was associated with a reduced incidence of significant mitral regurgitation. (tau.ac.il)
  • These results support the use of such therapy in patients with inferior myocardial infarction. (tau.ac.il)
  • The perioperative management for these patients can be one of the following: continue warfarin therapy, withhold warfarin therapy for a period of time before and after the procedure, or temporarily withhold warfarin therapy and also provide a "heparin bridge" during the perioperative period. (medscape.com)
  • The greatest problem encountered is that no consensus exists regarding the optimal perioperative management of anticoagulation for patients who have been receiving long-term warfarin therapy. (medscape.com)
  • Some prospective studies have suggested that patients on long-term warfarin therapy who undergo minor invasive procedures and are taken off their oral anticoagulation for up to 5 days have a less than 1% risk of experiencing a thromboembolic event. (medscape.com)
  • The Perioperative Anticoagulation Use for Surgery Evaluation (PAUSE) study included 3007 patients with nonvalvular atrial fibrillation who were receiving long-term therapy with dabigatran, rivaroxaban, or apixaban. (medscape.com)
  • Of these, 14 patients were treated with regular antiplatelet agents (aspirin plus clopidogrel) and 59 patients were treated with tirofiban within 24 h of IVT, followed by regular antiplatelet therapy. (frontiersin.org)
  • Chez les patients hypertendus, le taux de mortalité était plus élevé uniquement chez les patients admis pour un infarctus du myocarde avec sus-décalage du segment ST. Après ajustement des résultats en fonction des variables de référence, l'hypertension s'est révélé être un facteur prédictif indépendant de l'insuffisance cardiaque (OR = 1,31) et de l'accident vasculaire cérébral (OR = 2,47). (who.int)
  • It is not appropriate to exclude patients from IA therapy on the basis of low GCS. (ajnr.org)
  • 8. Patients who have received any thrombolytic therapy in the last two weeks. (who.int)
  • Les dossiers de 622 patients âgés en moyenne de 58,3 ans (écart type 12,9) ont été étudiés. (who.int)
  • Des stratégies préventives doivent être mises en oeuvre afin d'améliorer le pronostic à long terme des patients libyens et de réduire la morbidité et la mortalité globales dues à la coronaropathie. (who.int)
  • Utilization and Outcomes of Thrombolytic Therapy for Acute Pulmonary Embolism: A Nationwide Cohort Study. (qxmd.com)
  • Anticoagulant therapy prevents further clot deposition and allows the patient's natural fibrinolytic mechanisms to lyse the existing clot. (medscape.com)
  • Ideally, you should receive thrombolytic medicines within the first 30 minutes after arriving at the hospital for treatment. (medlineplus.gov)
  • Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI. (nih.gov)
  • Referral from community hospital to the CSC for thrombolytic treatment (ship-and-drip). (springer.com)
  • There are increased options to deliver thrombolytic treatment for acute, high-risk pulmonary embolism (PE). (qxmd.com)
  • Thrombolytic therapy is one of many treatment options for PAD, and has the potential to treat blood clots. (hunterdonvascularcare.com)
  • Thrombolytic therapy comes with several potential risks and complications like any other medical treatment or procedure. (hunterdonvascularcare.com)
  • Partcipants were then randomized to receive either thrombolytic treatment with alteplase, or dual antiplatelet therapy with aspirin and clopidogrel. (ebmedicine.net)
  • The thrombolytic agents available today are serine proteases that work by converting plasminogen to the natural fibrinolytic agent plasmin. (medscape.com)
  • The way these drugs work is also referred to as fibrinolytic therapy. (healthline.com)
  • 3 - 9 , 11 - 14 Presenting clinical status, GCS score, age, and time to intervention influence the decision to proceed with IA therapy. (ajnr.org)
  • Many trials have been done to compare primary percutaneous transluminal coronary angioplasty (PTCA) with thrombolytic therapy for acute ST-segment elevation myocardial infarction (AMI). (nih.gov)
  • Outcomes are better if you receive a thrombolytic drug within 12 hours after the heart attack starts. (medlineplus.gov)
  • The most commonly used drug for thrombolytic therapy is tissue plasminogen activator (tPA), but other drugs can do the same thing. (medlineplus.gov)
  • This is a report of the rupture of an intracranial arteriovenous malformation complicating the use of tissue plasminogen activator therapy. (jamanetwork.com)
  • Proner J , Rosenblum BR , Rothman A. Ruptured Arteriovenous Malformation Complicating Thrombolytic Therapy With Tissue Plasminogen Activator. (jamanetwork.com)
  • Tissue plasminogen activator has increasingly been used as the first-choice thrombolytic agent. (medscape.com)
  • Nattokinase See Tissue plasminogen activator and Maggot therapy. (wikipedia.org)
  • He responded well to Bivalirudin thrombolytic and tissue-Plasminogen activator (tPA) combination therapy, with a significant resolution of the thrombus. (childrensmercy.org)
  • Thrombolytic therapy can be given in one of two ways: through an intravenous (IV) line in the hand or arm or through a catheter that goes directly to the site of the blood clot. (hunterdonvascularcare.com)
  • During therapy, small pieces of the dissolved blood clot can break off and travel deeper into the affected organ. (hunterdonvascularcare.com)
  • Thrombolytic therapy uses medications to dissolve or break up blood clots in your arteries. (hunterdonvascularcare.com)
  • 9. History of severe allergy or contraindication, to contrast medium or other medications used during or after endovascular therapy. (who.int)
  • The results seen with primary PTCA remained better than those seen with thrombolytic therapy during long-term follow-up, and were independent of both the type of thrombolytic agent used, and whether or not the patient was transferred for primary PTCA. (nih.gov)
  • Cardiogenic shock is an emergency involving acute hemodynamic instability that necessitates immediate resuscitative therapy before shock irreversibly damages vital organs. (medscape.com)
  • Further therapy, such as cardiac catheterization with angioplasty and stenting, may be needed. (medlineplus.gov)
  • This article will provide an overview of the use of thrombolytic agents in modern cardiac care, with particular reference to their impact on the Accident and Emergency department. (kingston.ac.uk)
  • The history of thrombolytic therapy began in 1933, when it was discovered that filtrates of broth cultures of certain streptococcal strains (beta-hemolytic streptococci) could dissolve a fibrin clot. (medscape.com)
  • Typically used in emergency situations, this therapy uses drugs to dissolve blood clots. (sutterhealth.org)
  • Our aim was to look at the combined results of these trials and to ascertain which reperfusion therapy is most effective. (nih.gov)
  • Modern VTE prophylaxis, which consists of pharmacologic therapy or mechanical compression devices, can reduce the incidence of symptomatic VTE to approximately 0.5%–1% during the hospitalization. (cdc.gov)
  • Wider inclusion criteria needed for thrombolytic therapy. (ox.ac.uk)
  • Proteases have also been used by proponents of alternative therapies, or identified in materials of traditional or folk medicine. (wikipedia.org)
  • Maggot therapy for wound debridement is a traditional therapy which was in recent years approved by the FDA. (wikipedia.org)
  • Thrombolytic therapy */ @213 WOUND 1. (cdc.gov)
  • When used to treat PAD, thrombolytic therapy has the potential to improve your symptoms and reduce any pain or discomfort being caused by this circulatory condition. (hunterdonvascularcare.com)
  • RESULTS: Median times for the interval between arrival at the hospital and acquisition of a diagnostic electrocardiogram (door-to-electrocardiography time) and the interval between arrival and start of thrombolytic therapy (door-to-drug time) were 6 minutes and 34 minutes, respectively. (uncg.edu)
  • When adjusted to time to therapy and vessel occluded, these results lessened but remained significant. (ajnr.org)
  • Heparin therapy should be discontinued immediately before delivery, and then both heparin and warfarin therapy can be started postpartum. (medscape.com)
  • hence, the importance of time for thrombolytic therapy. (medscape.com)
  • Statistical significance was demonstrated between time to IA therapy within 6 hours and mRS ≤ 2. (ajnr.org)
  • Feasibility of thrombolytic therapy--a one year prospective study. (umn.edu)
  • Your health care provider will base the decisions about whether to give you a thrombolytic medicine for a heart attack on many factors. (medlineplus.gov)