Occurs in seeds of Brassica and Crucifera species. Thiouracil has been used as antithyroid, coronary vasodilator, and in congestive heart failure although its use has been largely supplanted by other drugs. It is known to cause blood dyscrasias and suspected of terato- and carcinogenesis.
A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534)
Agents that are used to treat hyperthyroidism by reducing the excessive production of thyroid hormones.
Phenylthiourea is a chemical compound with the formula C6H5NCS, used historically in scientific research as an inhibitor of tyrosinase activity, but now mostly replaced by other more specific agents, and infrequently used in certain diagnostic tests or as a reagent in organic synthesis.
A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA.
A metabolite of THYROXINE, formed by the peripheral enzymatic monodeiodination of T4 at the 5 position of the inner ring of the iodothyronine nucleus.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.

Photocrosslinking of 4-thio uracil-containing RNAs supports a side-by-side arrangement of domains 5 and 6 of a group II intron. (1/79)

Previous studies suggested that domains 5 and 6 (D5 and D6) of group II introns act together in splicing and that the two helical structures probably do not interact by helix stacking. Here, we characterized the major Mg2+ ion- and salt-dependent, long-wave UV light-induced, intramolecular crosslinks formed in 4-thiouridine-containing D56 RNA from intron 5gamma (aI5gamma) of the COXI gene of yeast mtDNA. Four major crosslinks were mapped and found to result from covalent bonds between nucleotides separating D5 from D6 [called J(56)] and residues of D6 near and including the branch nucleotide. These findings are extended by results of similar experiments using 4-thioU containing D56 RNAs from a mutant allele of aI5gamma and from the group IIA intron, aI1. Trans-splicing experiments show that the crosslinked wild-type aI5gamma D56 RNAs are active for both splicing reactions, including some first-step branching. An RNA containing the 3-nt J(56) sequence and D6 of aI5gamma yields one main crosslink that is identical to the most minor of the crosslinks obtained with D56 RNA, but in this case in a cation-independent fashion. We conclude that the interaction between J(56) and D6 is influenced by charge repulsion between the D5 and D6 helix backbones and that high concentrations of cations allow the helices to approach closely under self-splicing conditions. The interaction between J(56) and D6 appears to be a significant factor establishing a side-by-side (i.e., not stacked) orientation of the helices of the two domains.  (+info)

Histological changes in TSH-dependent tumours of the thyroid gland during serial transplantation in Fischer 344 rats. (2/79)

Transplantable tumours were induced in the thyroids of Fischer 344 rats fed thiouracil (TU) in a moderately low iodine diet for 8-13 months. Pieces of hyperplastic thyroid were implanted subcutaneously into rats fed a TU containing diet. Almost all implants gave rise to very small vascularized transplants but there were three significantly larger, pieces of which were transplanted again and gave rise to the tumour lines. From the third transplantation generation on, pieces of tumours were implanted into rats treated to have elevated circulating thyrotropin and a group fed a high iodine diet. With some exceptions, the implants grew only in rats fed the TU or a low iodine diet and yielded TSH-dependent tumours. Almost all the tumours observed initially were papillary, and most of the remainder had colloid-filled follicles bounded by columnar cells. One line of tumours was of the latter type for eight generations. The others had more complex histories, in which there were sublines that were papillary for eight or nine generations, whereas, others became progressively more cellular or follicular, and more heterogeneous with respect to histological types present per section at rates that varied with the subline. The large number of population doublings necessary to make a one gram tumour from a single original tumour cell indicates that the cells of dependent papillary tumours were immortalized.  (+info)

Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. (3/79)

Pseudocomplementary PNAs containing diaminopurine.thiouracil base pairs have been prepared and are shown to bind with high specificity and efficiency to complementary targets in double-stranded DNA by a mechanism termed "double duplex invasion" in which the duplex is unwound and both DNA strands are targeted simultaneously, each by one of the two pseudocomplementary peptide nucleic acids (PNAs). On the basis of our results we predict that (for decameric targets) more than 80% of all sequences can be targeted by straightforward Watson-Crick base pairing by using this approach in its present form. Targeting of pseudocomplementary PNAs to the promoter of the T7 phage RNA polymerase effectively inhibits transcription initiation. These results have important implications in the development of gene therapeutic agents as well as for genetic diagnostic and molecular biology applications.  (+info)

Decreased constitutive nitric oxide synthase, but increased inducible nitric oxide synthase and endothelin-1 immunoreactivity in aortic endothelial cells of donryu rats on a cholesterol-enriched diet. (4/79)

The Donryu rat is resistant to a high cholesterol diet in that typical atheromatous lesions do not develop. Using electron microscopic immunocytochemical techniques, the effects of a CCT diet (4% cholesterol with 1% cholic acid and 0.5% thiouracil) on the distributions of neuronal, macrophage, and endothelial specific nitric oxide synthase (NOS I, NOS II, and NOS III) and endothelin-1 (ET-1) immunoreactivity were examined in the thoracic aortic intima. Atheromatous lesions were absent, but immunocytochemistry showed 1. 4+/-0.52% and 4.0+/-0.9% endothelial cells (EC) with positive staining for NOS I and NOS III, respectively, compared with 16.3+/-2. 5% and 88.6+/-2.48% in control Donryu rats. The CCT-supplemented diet induced expression of NOS II immunoreactivity in thoracic aortic intimal cells. EC, subendothelial macrophages, and smooth muscle cells (SMC) also showed high NOS II-positive staining. The percentage of NOS II-immunoreactive EC was 43+/-1.8%. In control groups, no NOS II immunoreactive cells were observed. The percentage of ET-1 immunopositive cells was also significantly increased by 9. 2+/-0.66% and 64.2+/-1.4% in control and CCT-fed groups, respectively. It is concluded that the administration of a high cholesterol diet in Donryu rats produces endothelial dysfunction associated with changes in the balance of the different isoforms of NOS and ET-1. Therefore, the increase in inducible NOS and ET-1 immunoreactivity seen during the cholesterol-enriched diet appears to be a compensatory reaction of aortic wall cells to the high cholesterol supplementation.  (+info)

Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. (5/79)

Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315-405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis ("relaxed" or rel- strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-UV fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similat to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-UV irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-UV-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay.  (+info)

2-thiouracil is a selective inhibitor of neuronal nitric oxide synthase antagonising tetrahydrobiopterin-dependent enzyme activation and dimerisation. (6/79)

2-thiouracil (TU), an established antithyroid drug and melanoma-seeker, was found to selectively inhibit neuronal nitric oxide synthase (nNOS) in a competitive manner (K(i)=20 microM), being inactive on the other NOS isoforms. The drug apparently interfered with the substrate- and tetrahydrobiopterin (BH(4))-binding to the enzyme. It caused a 60% inhibition of H(2)O(2) production in the absence of L-arginine and BH(4), and antagonised BH(4)-induced dimerisation of nNOS, but did not affect cytochrome c reduction. These results open new perspectives in the understanding of the antithyroid action of TU and provide a new lead structure for the development of selective nNOS inhibitors to elucidate the interdependence of the substrate and pteridine sites and to modulate pathologically aberrant NO formation.  (+info)

Pulsepolarographic determination of 6-benzyl-2-thio-uracil. (7/79)

Polarographic (DPP) activity of 6-benzyl-2-thiouracil (6-benzyl-2-mercapto-4-pyrimidinol, BTU) has been examined in a wide range of pH values and it has been discovered that the number and the height of observed peaks depends on composition of supporting electrolyte and concentration of the thiol. Two different types of signals can be obtained. One of them is controlled by diffusion while the other by adsorption. The procedure for the determination of BTU in pure samples in 0.1 mol.dm-3 sodium hydroxide solution has been worked out. The measurements can be performed in a range 3.10(-4)-3.10(-3) mol.dm-3 of BTU. The detection limit is however lower and reaches 5.10(-6) mol.dm-3. The method has been used in the determination of BTU in an antithyroid drug Basdene.  (+info)

Thyroid cell proliferation in rats and induction of tumors by X-rays. (8/79)

There are very few proliferating cells in the thyroid gland of normal adult rats, as measured by the labeling and mitotic index. One-tenth % 4-methyl-2-thiouracil in drinking water induced an exponential increase of thyroid weight after a lag phase of 2 days; the increase continued for 8 days and was followed by a plateau phase. The following sequence of events was found for the number of dividing follicular and stroma cells as well as for DNA synthesis: no significant changes during the 1st 2 days, a sharp increase between the 2nd and 8th days, a decrease between the 8th and 14th days, and an almost constant flow until the 24th day. Three-hundred rads of X-rays given to a nonproliferating thyroid gland induced tumor growth in 25% of the animals 18 months after irradiation. The same dose of irradiation, applied to a proliferating thyroid gland, increased the tumor incidence to 30% when administered in the lag phase, to 75% when administered at the peak of the proliferating phase, and to 62.5% when administered at the plateau phase. Subsequent treatment of irradiated animals with 4-methyl-2-thiouracil enhanced the number and the size of the thyroid tumors and lead to the occurrence of more carcinomas than appeared in animals treated with X-rays only or 4-methyl-2-thiouracil only.  (+info)

Thiouracil is not typically used as a medical treatment in current clinical practice. It is an anti-thyroid medication that was historically used to manage hyperthyroidism, particularly in cases of Graves' disease. However, due to its adverse effect profile and the availability of safer and more effective treatment options, thiouracil has largely been replaced by other medications such as methimazole and propylthiouracil.

Thiouracil works by inhibiting the enzyme thyroperoxidase, which is necessary for the production of thyroid hormones in the body. By blocking this enzyme, thiouracil reduces the amount of thyroid hormones produced and can help to control symptoms of hyperthyroidism such as rapid heart rate, tremors, and weight loss.

While thiouracil is still available for use in some cases, its use is generally reserved for patients who cannot tolerate or have failed other treatments. The medication can cause serious side effects, including liver damage, bone marrow suppression, and allergic reactions, and requires careful monitoring during treatment.

Propylthiouracil is a medication that is primarily used to treat hyperthyroidism, a condition characterized by an overactive thyroid gland that produces too much thyroid hormone. The medication works by inhibiting the production of thyroid hormones in the body. It belongs to a class of drugs called antithyroid agents or thionamides.

In medical terms, propylthiouracil is defined as an antithyroid medication used to manage hyperthyroidism due to Graves' disease or toxic adenoma. It acts by inhibiting the synthesis of thyroid hormones, triiodothyronine (T3) and thyroxine (T4), in the thyroid gland. Propylthiouracil also reduces the peripheral conversion of T4 to T3. The medication is available as a tablet for oral administration and is typically prescribed at a starting dose of 100-150 mg three times daily, with adjustments made based on the patient's response and thyroid function tests.

It's important to note that propylthiouracil should be used under the close supervision of a healthcare provider due to potential side effects and risks associated with its use. Regular monitoring of thyroid function tests is necessary during treatment, and patients should promptly report any signs or symptoms of adverse reactions to their healthcare provider.

Antithyroid agents are a class of medications that are used to treat hyperthyroidism, a condition in which the thyroid gland produces too much thyroid hormone. These medications work by inhibiting the production of thyroid hormones in the thyroid gland. There are several types of antithyroid agents available, including:

1. Propylthiouracil (PTU): This medication works by blocking the enzyme that is needed to produce thyroid hormones. It also reduces the conversion of thyroxine (T4) to triiodothyronine (T3), another thyroid hormone, in peripheral tissues.
2. Methimazole: This medication works similarly to propylthiouracil by blocking the enzyme that is needed to produce thyroid hormones. However, it does not affect the conversion of T4 to T3 in peripheral tissues.
3. Carbimazole: This medication is converted to methimazole in the body and works similarly to block the production of thyroid hormones.

Antithyroid agents are usually taken orally, and their effects on thyroid hormone production begin within a few hours after ingestion. However, it may take several weeks for patients to notice an improvement in their symptoms. These medications can have side effects, including rash, hives, and joint pain. In rare cases, they can cause liver damage or agranulocytosis, a condition in which the body does not produce enough white blood cells.

It is important to note that antithyroid agents do not cure hyperthyroidism; they only treat the symptoms by reducing thyroid hormone production. Therefore, patients may need to take these medications for several months or even years, depending on their individual circumstances. In some cases, surgery or radioactive iodine therapy may be recommended as alternative treatments for hyperthyroidism.

Phenylthiourea is not typically considered a medical term, but it is a chemical compound that is used in scientific research and has been studied in the context of medicine. Here's a definition from a chemistry perspective:

Phenylthiourea (PTU) is an organic compound with the formula C6H5NCS. It is a derivative of thiourea, where one hydrogen atom is replaced by a phenyl group. PTU is a white crystalline powder that is soluble in water and alcohol.

In medical terms, PTU has been used as a medication to treat hyperthyroidism (overactive thyroid gland) because it can inhibit the production of thyroid hormones. However, its use as a therapeutic agent has declined due to the availability of other medications with fewer side effects. It is still used in research settings to study various biological processes and diseases.

It's important to note that PTU should only be administered under the supervision of a healthcare professional, as it can have adverse effects if not used properly.

Hypothyroidism is a medical condition where the thyroid gland, which is a small butterfly-shaped gland located in the front of your neck, does not produce enough thyroid hormones. This results in a slowing down of the body's metabolic processes, leading to various symptoms such as fatigue, weight gain, constipation, cold intolerance, dry skin, hair loss, muscle weakness, and depression.

The two main thyroid hormones produced by the thyroid gland are triiodothyronine (T3) and thyroxine (T4). These hormones play crucial roles in regulating various bodily functions, including heart rate, body temperature, and energy levels. In hypothyroidism, the production of these hormones is insufficient, leading to a range of symptoms that can affect multiple organ systems.

Hypothyroidism can be caused by several factors, including autoimmune disorders (such as Hashimoto's thyroiditis), surgical removal of the thyroid gland, radiation therapy for neck cancer, certain medications, and congenital defects. Hypothyroidism is typically diagnosed through blood tests that measure levels of TSH (thyroid-stimulating hormone), T3, and T4. Treatment usually involves taking synthetic thyroid hormones to replace the missing hormones and alleviate symptoms.

Reverse Triiodothyronine (rT3) is a thyroid hormone that is chemically identical to triiodothyronine (T3), but has a reverse configuration at one end of the molecule. It is produced in smaller quantities compared to T3 and its function is not well understood. In some cases, increased levels of rT3 have been associated with decreased thyroid hormone action, such as in non-thyroidal illnesses or during calorie restriction. However, the clinical significance of rT3 levels remains a topic of ongoing research and debate.

Thyroxine (T4) is a type of hormone produced and released by the thyroid gland, a small butterfly-shaped endocrine gland located in the front of your neck. It is one of two major hormones produced by the thyroid gland, with the other being triiodothyronine (T3).

Thyroxine plays a crucial role in regulating various metabolic processes in the body, including growth, development, and energy expenditure. Specifically, T4 helps to control the rate at which your body burns calories for energy, regulates protein, fat, and carbohydrate metabolism, and influences the body's sensitivity to other hormones.

T4 is produced by combining iodine and tyrosine, an amino acid found in many foods. Once produced, T4 circulates in the bloodstream and gets converted into its active form, T3, in various tissues throughout the body. Thyroxine has a longer half-life than T3, which means it remains active in the body for a more extended period.

Abnormal levels of thyroxine can lead to various medical conditions, such as hypothyroidism (underactive thyroid) or hyperthyroidism (overactive thyroid). These conditions can cause a range of symptoms, including weight gain or loss, fatigue, mood changes, and changes in heart rate and blood pressure.

  • Propylthiouracil, a member of thiouracils group, i. (biomedcentral.com)
  • Antithyroid drugs such as: thiouracil/propylthiouracil and carbimazole/methimazole. (en-academic.com)
  • Permanganate oxidation of 4-thiouracil derivatives. (wikidata.org)
  • The effect of pyrimidine derivatives 6-amino-2-thiouracil (ATU), 2-thiouracil (TU) and 5-flurouracil (5FU), and pomegranate juice (PJ) on kidney nitric oxide (NO), malondialdehyde (MDA), DNA fragmentation (DNAF), caspase-3 levels and kidney function tests in rats treated with diethyl nitrosamine (DEN) and carbon tetra chloride CCl 4 was studied. (ss-pub.org)
  • Effect of methyltryptophan and thiouracil upon protein and ribonucleic acid synthesis in certain higher plants. (ox.ac.uk)
  • 6-trifluoromethyl-2-thiouracil possesses anti-Toxoplasma gondii effect in vitro and in vivo with low hepatotoxicity. (semanticscholar.org)
  • Here, we report a novel in vivo metabolic RNA sequencing method, SLAM-ITseq, which metabolically labels RNA with 4-thiouracil in a specific cell type in vivo followed by detection through an RNA-seq-based method that specifically distinguishes the thiolated uridine by base conversion. (nih.gov)
  • An overview of Genetic Toxicology Bacterial Mutagenicity study conclusions related to 6-Propyl-2-thiouracil (51-52-5). (nih.gov)
  • Genetic Toxicity Evaluation of 6-Propyl-2-thiouracil in Salmonella/E.coli Mutagenicity Test or Ames Test. (nih.gov)
  • Propylthiouracil (6-propyl-2-thiouracil) is one of the thiocarbamide compounds. (nih.gov)
  • Propyl thiouracil was provided by Shanghai ZhaoHui Pharmaceutical, LOT number 20120206). (biomedcentral.com)
  • Her current regimen consisted of propyl thiouracil (50mg tb 1 + 0.5 tb ), novorapid 3 * 4U, Levemir 1 * 12U. (hendun.org)
  • The molecule under investigation thiouracil (C4H4N2OS) belongs to the class of thionucleobases. (uni-potsdam.de)
  • Thiouracil has been used as antithyroid, coronary vasodilator, and in congestive heart failure although its use has been largely supplanted by other drugs. (nih.gov)
  • A team led by Prof. Dr. Markus Gühr has observed charge motions in light-excited molecules of thiouracil, a modified nucleobase. (uni-potsdam.de)
  • An international research team led by Markus Gühr's group at the University of Potsdam performed laser experiments at Deutsches Elektronen-Synchrotron DESY to monitor charge motions in light-excited molecules of thiouracil, which is a modified nucleobase. (uni-potsdam.de)
  • In the present studies we successfully apply XPS to the study of five nucleic acid base tautomers, as well as the prototypical system 2-hydroxypyridimine and the related molecules S-methyl-2-thiouracil and 2-thiouracil in the vapor phase. (osu.edu)
  • abstract = "The 1,5-dialkyl-6-(arylselenenyl)uracils 10a-h and -2-thiouracils 10i-p have been synthesized as potential anti-HIV-1 agents. (ewha.ac.kr)
  • The application of thyreostats in livestock has been banned in the European Union since 1981, but these drugs are currently in the focus due to the natural occurrence of thiouracil (TU). (nih.gov)
  • An overview of Genetic Toxicology Bacterial Mutagenicity study conclusions related to 5-Methyl-2-thiouracil (636-26-0). (nih.gov)